当前位置:文档之家› 高等数学上_复旦大学出版_习题2答案

高等数学上_复旦大学出版_习题2答案

高等数学上_复旦大学出版_习题2答案
高等数学上_复旦大学出版_习题2答案

高等数学 复旦大学出版社 课后习题答案

1. 解: (1)相等. 因为两函数的定义域相同,都是实数集R ; x =知两函数的对应法则也相同;所以两函数相等. (2)相等. 因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等. (3)不相等. 因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 解: (1)要使函数有意义,必须 400x x -≥?? ≠? 即 40x x ≤?? ≠? 所以函数的定义域是(,0)(0,4]-∞U . (2)要使函数有意义,必须 30lg(1)010x x x +≥?? -≠??->? 即 301x x x ≥-?? ≠??

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高等数学下_复旦大学出版_习题十答案详解

206 习题十 1. 根据二重积分性质,比较 ln()d D x y σ +?? 与 2 [ln()]d D x y σ +?? 的大小,其中: (1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(, )|35,02}x y x y ≤≤≤≤. 解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有 图10-1 12x y ≤+≤ 从而 0l n ()1 x y ≤+< 故有 2 l n ()[l n ()] x y x y +≥+ 所以 2 l n ()d [l n ()]d D D x y x y σσ+≥ +?? ?? (2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥ . 图10-2 从而 ln(x +y )>1 故有 2 l n ()[l n ()] x y x y +<+ 所以 2 l n ()d [l n ()]d D D x y x y σσ+< +?? ?? 2. 根据二重积分性质,估计下列积分的值: (1 ),{(,)|02,02}D I D x y x y σ==≤≤≤≤??; (2)2 2 sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤??; (3)2 2 2 2 (49)d ,{(,)|4}D I x y D x y x y σ= ++=+≤?? . 解:(1)因为当(, )x y D ∈时,有02x ≤≤, 02y ≤≤

207 因而 04xy ≤≤. 从而 2≤≤故 2d d d D D σσσ≤ ≤ ?? ?? ?? 即 2d d D D D σσσ ≤ ≤???? 而 d D σσ =?? (σ为区域D 的面积),由σ=4 得 8D σ≤ ≤?? (2) 因为2 2 0sin 1,0sin 1x y ≤≤≤≤,从而 2 2 0sin sin 1x y ≤≤ 故 22 0d sin sin d 1d D D D x y σσσ ≤ ≤ ?? ?? ?? 即2 2 sin sin d d D D x y σσσ ≤ ≤ =?? ?? 而2 π σ= 所以222 0sin sin d π D x y σ≤ ≤?? (3)因为当(,)x y D ∈时,2 2 04x y ≤+≤所以 2 2 2 2 9494()925x y x y ≤++≤++≤ 故 22 9d (49)d 25d D D D x y σσσ ≤ ++≤ ?? ?? ?? 即 2 2 9(49)d 25D x y σσσ ≤ ++≤?? 而 2 π24πσ=?= 所以 22 36π(49)d 100πD x y σ≤ ++≤?? 3. 根据二重积分的几何意义,确定下列积分的值: (1 ) 222 (, {(,)|};D a D x y x y a σ- =+≤?? (2 ) 2 2 2 , {(,)|}.D D x y x y a σ=+≤?? 解:(1 ) (, D a σ-?? 在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

高等数学习题11答案(复旦大学出版社)

261 习题十一 3.计算下列对坐标的曲线积分: (1)() 22d -?L x y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧; (2)d L xy x ? 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行); (6)()322d 3d d x x zy y x y z Γ++-?,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线; 解:(1)L :y =x 2,x 从0变到2, ()()2 22224 35001156 d d 3515 L x y x x x x x x ??-=-=-=-?????? (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为 图11-1 cos 0πsin x a a t t y a t =+?≤≤?=? L 2的方程为y =0(0≤x ≤2a ) 故 ()()()()() 12 π 200π32 0π π322003 d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π 2L L L a xy x xy x xy x a a t a a t t x a t t t a t t t t a =+'=?++=-+=-+=-???????? (6)直线Γ的参数方程是32=??=??=?x t y t z t t 从1→0.

262 故()()3220322103 10 4 1 d 3d d 27334292d 87d 187487 4x x zy y x y z t t t t t t t t t Γ++-??=?+??+-???==?=-??? 7.应用格林公式计算下列积分: (1)()()d d 24356+-++-? x y x y x y Γ , 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界; 解:(1)L 所围区域D 如图11-4所示,P =2x -y +4, Q =3x +5y -6,3Q x ?=?,1P y ?=-?,由格林公式得 ()()d d 24356d d 4d d 4d d 14322 12 L D D D x y x y x y Q P x y x y x y x y +-++-????-= ????? ===???=??????? 8.利用曲线积分,求下列曲线所围成的图形的面积: (1)星形线x = a cos 3t ,y = a sin 3t ; 解:(1) ()()()()()2π 3202π2π242222002π20 2π202π202d sin 3cos d sin 33sin cos d sin 2sin d 4 3d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416 312π+d cos 2cos61623π8L A y x a t a t t t a t t t a t t t a t t t a t t t t t a t t t a =-=-?-==?= --=--+??=+????=??????? 9.证明下列曲线积分与路径无关,并计算积分值: (2)()()()()3,423221,2d d 663x y xy y x y xy +--? ; (3)()() 1,22 1,1d d x y x x y -?沿在右半平面的路径;

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

高等数学(复旦大学版)第十章_多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等数学复旦大学出版社习题答案七

习题七 1. 在空间直角坐标系中,定出下列各点的位置: A(1,2,3); B(-2,3,4); C(2,-3,-4); D(3,4,0); E(0,4,3); F(3,0,0). 解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限; 点D在xOy面上;点E在yOz面上;点F在x轴上. 2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢? 答: 在xOy面上的点,z=0; 在yOz面上的点,x=0; 在zOx面上的点,y=0. 3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢? 答:x轴上的点,y=z=0; y轴上的点,x=z=0; z轴上的点,x=y=0. 4. 求下列各对点之间的距离: (1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4); (3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3). 解:(1)s= (2) s== (3) s== (4) s== 5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 02 s= x s== y s== 5 z s==. 6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则 222222 (4)1(7)35(2) z z -++-=++-- 解得 14 9 z=

即所求点为M (0,0, 149 ). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图 7-1 图7-1 9. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解: 232(2)3(3) 2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c 10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=-- c a 222 5D A BA BD =-=--c a 333 5D A BA BD =-=--c a 444 .5 D A BA BD =-=--c a 11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则 1 Pr j cos604 2.2 u OM OM =?=?= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标. 解:设此向量的起点A 的坐标A (x , y , z ),则 {4,4,7}{2,1,7}AB x y z =-=----

大学高等数学上考试题库及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( B ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( B ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( C ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( D ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( C ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( A ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( A ).

复旦高等数学B期终试卷Word版

复旦大学数学科学学院 2008~2009学年第二学期期末考试试卷 A 卷 B 卷 课程名称:__高等数学B _________ 课程代码: MATH120004.02.03__ 开课院系:__数学科学学院 _____________ 考试形式:闭卷 姓 名: 学 号: 专 业: 题 号 一 二 三 四 五 六 七 八 总 分 得 分 (以下为试卷正文) ( 装 订 线 内 不 要 答 题 )

注意:答题应写出文字说明、证明过程或演算步骤。 一、简单计算(每题4分,共40分) 1. 写出函数y x x u +=arccos 的定义域。 2. 求( )2 20 1ln lim y x e x y y x ++→→。 3. 设f 是一个三元可微函数,() xy y x y x f u 2,,2 222-+=,求 y u ??。 4. 设()y x z z ,=是由方程()0,,=+xz z y xy F 所确定的隐函数,且F 具有连续的一阶偏导数,求 x z ??。 5. 交换二次积分 ()? ? 20 32 ,y y dx y x f dy 的积分顺序。

6. 求级数()() ∑ ∞ =+-113231 k k k 的和。 7. 判别级数∑∞ =1 3sin 2n n n π 的收敛性。 8. 求幂级数() ∑∞ =--1 1 21n n n n n x 的收敛域。 9. 求方程() 042 =-+dy x x dx y 的通解。 10. 求方程023=+'-''y y y 的通解。 ( 装 订 线 内 不 要 答 题 )

二、 设 ()333,y x y x f +=,判断()y x f ,在()0,0处是否可微,为什么?(6分) 三、 计算二重积分( )dxdy xe y I D y ??+=2 ,其中D 是由1=y ,2 x y =及0=x 所围成的 有界闭区域。(6分)

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章多元函数积分学(Ⅰ) f x在区间[a,b]上的定积分,并且已经建立 一元函数积分学中,曾经用和式的极限来定义一元函数() 了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1曲顶柱体的体积 设有一立体它的底是xOy面上的闭区域D它的侧面是以D的边界曲线为准线而母线平行于z轴的柱面它的顶是曲面z f(x y)这里f(x y)0且在D上连续这种立体叫做曲顶柱体现在我们来讨论如何计算曲顶柱体的体积 首先用一组曲线网把D分成n个小区域 1 2n分别以这些小闭区域的边界曲线为准线作母线平行于z轴的柱面这些柱面把原来的曲顶柱体分为n个细曲顶柱体在每个i中任取一点(i i)以f (i i)为高而底为i的平顶柱体的体积为

f ( i i ) i (i 1 2 n ) 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 可以认为是整个曲顶柱体体积的近似值 为求得曲顶柱体体积的精确值 将分割加密 只需取极限 即 i i i n i f V σηξλ?==→∑),(lim 1 其中是个小区域的直径中的最大值 2 平面薄片的质量 设有一平面薄片占有xOy 面上的闭区域D 它在点(x y )处的面密度为(x y ) 这里 (x y )0且在D 上连续 现在要计算该薄片的质量M 用一组曲线网把D 分成n 个小区域 1 2 n 把各小块的质量近似地 看作均匀薄片的质量 ( i i ) i 各小块质量的和作为平面薄片的质量的近似值 i i i n i M σηξρ?≈=∑),(1 将分割加细 取极限 得到平面薄片的质量 i i i n i M σηξρλ?==→∑),(lim 1 其中是个小区域的直径中的最大值 定义 设f (x y )是有界闭区域D 上的有界函数 将闭区域D 任意分成n 个小闭区域 1 2 n 其中 i 表示第i 个小区域 也表示它的面积 在每个 i 上任取一点( i i ) 作和 i i i n i f σηξ?=∑),(1 如果当各小闭区域的直径中的最大值趋于零时 这和的极限总存在 则称此极限为函数f (x y )在 闭区域D 上的二重积分 记作 σ d y x f D ??),( 即

高等数学上复旦第三版 课后习题答案

283 高等数学上(修订版)(复旦出版社) 习题六 无穷数级 答案详解 1.写出下列级数的一般项: (1)111135 7 ++++ ; (2)2 2242462468x x x x x ++++?????? ; (3)3579 3579 a a a a -+-+ ; 解:(1)1 21 n U n =-; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1)()()() 11 11n x n x n x n ∞ =+-+++∑ ; (2) ( )1 221n n n n ∞ =+-++∑; (3)23 111 5 55+ ++ ; 解:(1)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

284 从而()()()()()()() ()()()()()()()1111 1211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ?-+-= +++++++?? ++ - ?+-++++? ?? -= ?++++?? 因此() 1lim 21n n S x x →∞ =+,故级数的和为 () 121x x + (2)因为()()211n U n n n n =-+-++- 从而()()()() ()()()()3243322154432112112 1 12 21 n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++ 所以lim 12n n S →∞ =-,即级数的和为12-. (3)因为2111 5551115511511145n n n n S =+ ++????-?? ???? ?=-????=-?? ????? 从而1lim 4 n n S →∞ =,即级数的和为14 . 3.判定下列级数的敛散性: (1) ( )1 1n n n ∞ =+-∑; (2) ()() 11111661111165451n n +++++???-+ ; (3) ()23133222213333 n n n --+-++- ;

高等数学复旦大学出版社习题答案十三

习题十三 1. 求下列函数在所示点的导数: (1)()sin cos t f t t ??= ???,在点π4t =; 解:( )π4f ?? ?'= - ? (2)()22,x y g x y x y +??= ? ?+?? ,在点()(),1,2x y =; 解:()111,224g ??= ??? (3)sin cos u v u T u v v v ???? ?= ? ??? ??? ,在点π1u v ????= ? ?????; 解:1010101T -???? ?'=- ? ?π?? ??? (4)2222232u x y v x x y w x y y ?=-?=-??=-? 在点()3,2-. 解:6 26 6362-?? ?- ? ?--?? 2. 设()()(),,,,,,w f x y z u g x z v h x y ===,求,,w w w x y z ??????. 解:,w w w v w w u w v w w u x x v x y u y v x z u z ????????????=+=+=????????????, 3. 若r =()()21,,,,3n r r f r r n r ?????≥. 解: ()()()()()()()2231111,,,2,,,,,,,,,,,n n r x y z r x y z x y z f r f r x y z r nr x y z r r r r -'?=?=?=?=?=

4. 求22224428u x y z x y x y z =+++-+-在点,,,1,1,1,1,1,1(000)()()O A B ---的梯度,并求梯度为零的点. 解:()()()() 54,2,8,2,10,6,10,6,10,3,,42------- 5. 证明本章关于梯度的基本性质(1)~(5). 证明:略 6. 计算下列向量场A 的散度与旋度: (1)()222222,,y z z x x y =+++A ; 解:()0,2,,y z z x x y --- (2)()222,,x y z x y z x y z =A ; 解:()()()()2222226,,,xy x z y y x z z y x --- (3),,y x z y z z x x y ?? = ???A . 解:111yz zx xy ++,2222221,,y y z z x x xyz z y x z y x ??--- ??? 7. 证明: 本章关于散度的基本性质(1)~(3). 解:略。 8. 证明: 本章关于旋度的基本性质(1)~(3)(可应用算符?推导) 解:略。 9. 证明:场()()()()2,2,2y z x y z x z x y z x y x y z =++++++A 是有势场,并求其势函数. 解:略。 10. 若流体流速()222,,x y z =A ,求单位时间内穿过18球面,22210,0,0x y z x y z ++=>>>的流量. 解:38 π 11. 设流速(),,y x c =-A (c 为常数),求环流量: (1)沿圆周221,0x y z +==; 解:2π (2)沿圆周()2251,0x y z -+==. 解:2π

高等数学经典求极限方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】) sin 1tan 1(sin tan lim sin 1tan 1lim 3030 x x x x x x x x x x +++-=+-+→→

高等数学下 复旦大学出版 习题九

194 习题九 1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ ,,343 αβγ===的方向导数。 解: (1,1,2)(1,1,2) (1,1,2)cos cos cos u u u u y l x z αβγ????=++???? 22(1,1,2)(1,1,2)(1,1,2)πππ cos cos cos 5.(2)()(3)343 xy xz y yz z xy =++=--- 2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。 解:{4,3,12},13.AB AB == AB 的方向余弦为 4312cos ,cos ,cos 131313 αβγ= == (5,1,2) (5,1,2) (5,1,2)(5,1,2) (5,1,2)(5,1,2) 2105 u yz x u xz y u xy z ?==??==??==? 故 4312982105.13131313 u l ?=?+?+?=? 3. 求函数222 21x y z a b ?? =-+ ??? 在点处沿曲线22221x y a b +=在这点的内法线方向的方向导数。 解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为 2222220,x y b x y y a b a y ''+==- 所以在点处切线斜率为 2.b y a a ' ==-

195 法线斜率为cos a b ?=. 于是tan sin ??== ∵ 2222,,z z x y x a y b ??=-=-?? ∴ 2222z l a b ??=- -= ?? 4.研究下列函数的极值: (1)z =x 3+y 3-3(x 2+y 2); (2)z =e 2x (x +y 2+2y ); (3)z =(6x -x 2)(4y -y 2); (4)z =(x 2+y 2)2 2() e x y -+; (5)z =xy (a -x -y ),a ≠0. 解:(1)解方程组2 2 360 360 x y z x x z y y ?=-=??=-=?? 得驻点为(0,0),(0,2),(2,0),(2,2). z xx =6x -6, z xy =0, z yy =6y -6 在点(0,0)处,A =-6,B =0,C =-6,B 2-AC =-36<0,且A <0,所以函数有极大值z (0,0)=0. 在点(0,2)处,A =-6,B =0,C =6,B 2-AC =36>0,所以(0,2)点不是极值点. 在点(2,0)处,A =6,B =0,C =-6,B 2-AC =36>0,所以(2,0)点不是极值点. 在点(2,2)处,A =6,B =0,C =6,B 2-AC =-36<0,且A >0,所以函数有极小值z (2,2)=-8. (2)解方程组22 2e (2241)0 2e (1)0x x x y z x y y z y ?=+++=??=+=?? 得驻点为1,12??- ??? . 22224e (21)4e (1)2e x xx x xy x yy z x y y z y z =+++=+= 在点1 ,12??- ??? 处,A =2e,B =0,C =2e,B 2-AC =-4e 2<0,又A >0,所以函数有极小值e 1,122z ?? =-- ??? . (3) 解方程组2 2 (62)(4)0 (6)(42)0x y z x y y z x x y ?=--=??=--=?? 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4). Z xx =-2(4y -y 2), Z xy =4(3-x )(2-y )

相关主题
文本预览
相关文档 最新文档