当前位置:文档之家› 山东省 高考数学第二轮复习 专题升级训练22 解答题专项训练(函数与导数)专题升级训练卷(附答案) 文

山东省 高考数学第二轮复习 专题升级训练22 解答题专项训练(函数与导数)专题升级训练卷(附答案) 文

山东省 高考数学第二轮复习 专题升级训练22 解答题专项训练(函数与导数)专题升级训练卷(附答案) 文
山东省 高考数学第二轮复习 专题升级训练22 解答题专项训练(函数与导数)专题升级训练卷(附答案) 文

专题升级训练22 解答题专项训练(函数与导数)

1.已知函数f (x )=x 2

+a x

(x ≠0,a ∈R ).

(1)讨论函数f (x )的奇偶性,并说明理由;

(2)若函数f (x )在[2,+∞)上为增函数,求a 的取值范围.

2.设定义在(0,+∞)上的函数f (x )=ax +1

ax

+b (a >0).

(1)求f (x )的最小值;

(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =3

2

x ,求a ,b 的值.

3.已知定义在实数集R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2

x

4x +1

.

(1)求函数f (x )在(-1,1)上的解析式; (2)判断f (x )在(0,1)上的单调性;

(3)当λ取何值时,方程f (x )=λ在(-1,1)上有实数解?

4.某高新区引进一高科技企业,投入资金720万元建设基本设施,第一年各种运营费用120万元,以后每年增加40万元;每年企业销售收入500万元,设f (n )表示前n 年的纯收入.(f (n )=前n 年的总收入-前n 年的总支出-投资额)

(1)从第几年开始获取纯利润?

(2)若干年后,该企业为开发新产品,有两种处理方案: ①年平均利润最大时,以480万元出售该企业; ②纯利润最大时,以160万元出售该企业; 问哪种方案最合算?

5.已知函数f (x )=e x

-ax -1(a ∈R ).

(1)讨论f (x )=e x

-ax -1(a ∈R )的单调性;

(2)若a =1,求证:当x ≥0时,f (x )≥f (-x ).

6.已知函数f (x )=

ax

x 2+b

在x =1处取得极值2,设函数y =f (x )图象上任意一点(x 0,f (x 0))

处的切线斜率为k .

(1)求k 的取值范围;

(2)若对于任意0<x 1<x 2<1,存在k ,使得k =f x 2-f x 1

x 2-x 1

,求证:x 1<|x 0|<x 2.

7.已知函数f (x )满足f (x )=f ′(1)e

x -1

-f (0)x +12

x 2

.

(1)求f (x )的解析式及单调区间;

(2)若f (x )≥12

x 2

+ax +b ,求(a +1)b 的最大值.

8.已知定义在正实数集上的函数f (x )=12

x 2+2ax ,g (x )=3a 2

ln x +b ,其中a >0,设两

曲线y =f (x ),y =g (x )有公共点,且在该点处的切线相同.

(1)用a 表示b ,并求b 的最大值; (2)求证:f (x )≥g (x )(x >0).

参考答案

1.解:(1)当a =0时,f (x )=x 2

对任意x ∈(-∞,0)∪(0,+∞),f (-x )=(-x )2=x 2

=f (x ), ∴f (x )为偶函数.

当a ≠0时,f (x )=x 2

+a x

(a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-

f (1)=-2a ≠0,

∴f (-1)≠-f (1),f (-1)≠f (1).

∴函数f (x )既不是奇函数,也不是偶函数. (2)若函数f (x )在[2,+∞)上为增函数, 则f ′(x )≥0在[2,+∞)上恒成立,

即2x -a

x 2≥0在[2,+∞)上恒成立,

即a ≤2x 3

在[2,+∞)上恒成立,

只需a ≤(2x 3

)min ,x ∈[2,+∞),∴a ≤16. ∴a 的取值范围是(-∞,16].

2.解:(1)f (x )=ax +1

ax

+b ≥2

ax ·1

ax

+b =b +2,

当且仅当ax =1?

??

??x =1a 时,f (x )取得最小值为b +2.

(2)由题意得:f (1)=32?a +1a +b =3

2

, ①

f ′(x )=a -1ax 2?f ′(1)=a -1a =3

2

, ②

由①②得:a =2,b =-1.

3.解:(1)∵f (x )是x ∈R 上的奇函数,∴f (0)=0. 设x ∈(-1,0),则-x ∈(0,1),

f (-x )=2-x 4-x +1=2x 4x +1=-f (x ),∴f (x )=-2

x 4x +1

∴f (x )=?????

-2

x

4x +1

,x -1,,

0,x =0

2x 4x

+1,x

(2)设0<x 1<x 2<1,

f (x 1)-f (x 2)=12122112

2222224141x x x x x x x x +(-)+(+-)

(+)(+)

=121212

22124141x x x x x x +(-)(-)(+)(+),∵0<x 1<x 2<1, ∴121202<22>21x x

x x +,

=, ∴f (x 1)-f (x 2)>0,

∴f (x )在(0,1)上为减函数. (3)∵f (x )在(0,1)上为减函数,

∴2141+1<f (x )<2040+1,即f (x )∈? ??

??25,12.

同理,f (x )在(-1,0)上的值域为? ????-1

2

,-25.

又f (0)=0,∴当λ∈? ????-1

2

,-25∪? ????25,12,或λ=0时,

方程f (x )=λ在x ∈(-1,1)上有实数解.

4.解:由题意知每年的运营费用是以120为首项,40为公差的等差数列,

则f (n )=500n -????

??120n +n n -2×40-720=-20n 2

+400n -720. (1)获取纯利润就是要求f (n )>0,故有-20n 2+400n -720>0,解得2<n <18.又n ∈N *

,知从第三年开始获取纯利润.

(2)①年平均利润f n n

=400-20? ??

??n +36n ≤160,当且仅当n =6时取等号.故此方案获

利6×160+480=1 440(万元),此时n =6. ②f (n )=-20n 2+400n -720=-20(n -10)2

+1 280,当n =10时,f (n )max =1 280. 故此方案共获利1 280+160=1 440(万元).

比较两种方案,在同等数额获利的基础上,第①种方案只需6年,第②种方案需要10年,故选择第①种方案.

5.(1)解:f ′(x )=e x

-a .

当a ≤0时,f ′(x )≥0恒成立,

当a >0时,令f ′(x )>0,得x >ln a ;令f ′(x )<0,得x <ln a . 综上,当a ≤0时,f (x )在(-∞,+∞)上单调递增;

当a >0时,增区间是(ln a ,+∞),减区间是(-∞,ln a ).

(2)证明:令g (x )=f (x )-f (-x )=e x

-1e

x -2x ,

g ′(x )=e x +e -x

-2≥0,

∴g (x )在[0,+∞)上是增函数,∴g (x )≥g (0)=0, ∴f (x )≥f (-x ).

6.(1)解:f ′(x )=ab -ax 2

x 2+b 2

.

由f ′(1)=0及f (1)=2,得a =4,b =1.

k =f ′(x 0)=4??????2+x 20

2-11+x 20,

设11+x 20=t ,t ∈(0,1],得k ∈????

??-12,4. (2)证明:f ′(x )=4-4x

2

+x

22,令f ′(x )>0?x ∈(-1,1).

f (x )的增区间为(-1,1),故当0<x 1<x 2<1时,f x 2-f x 1

x 2-x 1

>0,

即k >0,故x 0∈(-1,1).

由于f ′(x 0)=f ′(-x 0),故只需要证明x 0∈(0,1)时结论成立.

由k =f x 2-f x 1

x 2-x 1

,得f (x 2)-kx 2=f (x 1)-kx 1,

记h (x )=f (x )-kx ,则h (x 2)=h (x 1). h ′(x )=f ′(x )-k ,则h ′(x 0)=0,

设g (x )=1-x +x 2,x ∈(0,1),g ′(x )=x -3

+x

3<0,

g (x )为减函数,故f ′(x )为减函数.

故当x >x 0时,有f ′(x )<f ′(x 0)=k ,此时h ′(x )<0,h (x )为减函数. 当x <x 0时,h ′(x )>0,h (x )为增函数.

所以h (x 0)为h (x )的唯一的极大值,因此要使h (x 2)=h (x 1),必有x 1<x 0<x 2.

综上,有x 1<|x 0|<x 2成立. 7.解:(1)f (x )=f ′(1)e

x -1

-f (0)x +12

x 2=

f

e

e x -

f (0)x +12

x 2?f ′(x )=f ′(1)e

x

-1

-f (0)+x ,

令x =1得:f (0)=1.

f (x )=f ′(1)e x -1-x +12

x 2?f (0)=f ′(1)e -1=1?f ′(1)=e ,

得:f (x )=e x -x +12x 2.令g (x )=f ′(x )=e x

-1+x ,

则g ′(x )=e x

+1>0?y =g (x )在x ∈R 上单调递增, ∴f ′(x )在R 上单调递增,

f ′(x )>0=f ′(0)?x >0,f ′(x )<0=f ′(0)?x <0,

得:f (x )的解析式为f (x )=e x

-x +12

x 2,

且单调递增区间为(0,+∞),单调递减区间为(-∞,0).

(2)令h (x )=f (x )-12x 2-ax -b ,则h (x )=e x -(a +1)x -b ≥0,h ′(x )=e x

-(a +1).

①当a +1≤0时,h ′(x )>0y =h (x )在x ∈R 上单调递增, x →-∞时,h (x )→-∞与h (x )≥0矛盾. ②当a +1>0时,

h ′(x )>0x >ln (a +1),h ′(x )<0x <ln (a +1), 得:当x =ln (a +1)时,

h (x )min =(a +1)-(a +1)ln (a +1)-b ≥0,

(a +1)b ≤(a +1)2-(a +1)2

ln (a +1),(a +1>0).

令F (x )=x 2-x 2

ln x (x >0),则F ′(x )=x (1-2ln x ), F ′(x )>0?0<x <e ,F ′(x )<0?x > e.

当x =e 时,F (x )max =e

2

.

当a =e -1,b =

e 2时,(a +1)b 的最大值为e 2

. 8.(1)解:设曲线y =f (x )与y =g (x )(x >0)在公共点(x 0,y 0)处的切线相同,

∵f ′(x )=x +2a ,g ′(x )=3a

2x

, ∴依题意得???

??

f x 0=

g x 0,f

x 0=g

x 0,

即?????

1

2x 20

+2ax 0

=3a 2

ln x 0

+b ,x 0

+2a =3a

2

x

0,

由x 0+2a =3a

2

x 0

,得x 0=a 或x 0=-3a (舍去),

则b =12a 2+2a 2-3a 2ln a =52a 2-3a 2

ln a .

令h (t )=52

t 2-3t 2

ln t (t >0),

则h ′(t )=2t (1-3ln t ),

由h ′(t )=0得13

=t e 或t =0(舍去).

当t 变化时,h ′(↗ ↘

于是函数h (t )在(0,+∞)上的最大值为3

33()=e 2

h e ,

即b 的最大值为2

33e 2

.

(2)证明:设F (x )=f (x )-g (x ) =12

x 2+2ax -3a 2

ln x -b (x >0), 则F ′(x )=x +2a -3a 2x =x -a x +3a

x

(x >0),

由F ′(x )=0得x =a 或x =-3a (舍去).

当x 变化时,F ′(x )↘ ↗

结合(1)可知函数F (g (a )=0. 故当x >0时,有f (x )-g (x )≥0, 即当x >0时,f (x )≥g (x ).

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

二次函数的定义专项练习30题(有答案)

二次函数的定义专项练习 30 题(有答案) 1.下列函数中,是二次函数的有( ) ① y=1﹣ x 2② y= ③ y=x (1﹣x )④ y= ( 1﹣ 2x )( 1+2x ) A 1 个 B 2 个 C 3 个 D 4 个 5.若 y=(m 2+m ) 是二次函数,则 m 的值是( ) A m=1 ±2 B m=2 C m= ﹣ 1 或 D m=3 . . . m=3 . 6.下列函数 ,y=3x 2, ,y=x (x ﹣2),y=(x ﹣ 1)2﹣ x 2 中,二次函数的个数 为 ( 7.下列结论正确的是( ) 二次函数中两个变量的值是非零实数 二次函数中变量 x 的值是所有实数 2 形如 y=ax +bx+c 的函数叫二次函数 2 二次函数 y=ax +bx+c 中 a ,b ,c 的值均不能为零 8.下列说法中一定正确的是( ) A . y=ax 2 是二次函数 B . 二次函数自变量的取值范围是所有实数 C . 二次方程是二次函数的特例 D . 二次函数自变量的取值范围是非零实数 3.下列具有二次函数关系的是( ) A . 正方形的周长 y 与边长 x B . 速度一定时,路程 s 与时间 t C . 三角形的高一定时,面积 y 与底边长 x D . 正方形的面积 y 与边长 x 4.若 y= ( 2﹣ m ) 是二次函数,则 m 等于( ) 2.下列结论正确的是 ( ) D 不能确定 A C ﹣ 2 ±2 B 2 A . B . C . D .

2 A . 函数 y=ax 2+bx+c (其中 a ,b , c 为常数)一定是二次函数 B . 圆的面积是关于圆的半径的二次函数 C . 路程一定时,速度是关于时间的二次函数 D . 圆的周长是关于圆的半径的二次函数 2 9.函数 y=( m ﹣ n )x 2+mx+n 是二次函数的条件是( ) A . m 、n 是常数,且 m ≠0 B . m 、 n 是常数,且 m ≠n C . m 、n 是常数,且 n ≠0 D . m 、 n 可以为任何常数 10.下列两个量之间的关系不属于二次函数的是( ) A . 速度一定时,汽车行使的路程与时间的关系 B . 质量一定时,物体具有的动能和速度的关系 C . 质量一定时,运动的物体所受到的阻力与运动速度的关系 D . 从高空自由降落的物体,下降的高度与下降的时间的关系 11.下列函数中, y 是 x 二次函数的是( ) A y=x ﹣1 B y=x 2+ ﹣ 10 C 2 y=x +2x D 2 y =x ﹣ 1 . . . . 12.下面给出了 6 个函数: 其中是二次函数的有( ) A 1 个 B 2个 C 3 个 2 13.自由落体公式 h= gt 2(g 为常量),h 与 t 之间的关系是( ) A 正比例函数 B 一次函数 C 二次函数 D 以上答案都不对 14.如果函数 y= ( k ﹣ 3) +kx+1 是二次函数,那么 k 的值一定是 ___________ . 15.二次函数 y= ( x ﹣2) 2﹣ 3 中,二次项系数为 __________ ,一次项系数为 ___________ 为 _________ . 16.已知函数 y=(k+2) 是关于 x 的二次函数,则 k= __________ . 17.已知二次函数 的图象是开口向下的抛物线, m= ___________ . 22 18.当 m __________ 时,关于 x 的函数 y= (m 2﹣1)x 2+(m ﹣1) x+3 是二次函数. 2 2 2 19. y=(m 2﹣ 2m ﹣3)x 2+(m ﹣1)x+m 2是关于 x 的二次函数要满足的条件是 ___________ . ① y=3x 2﹣1;② y=﹣ x 2 ﹣3x ; ③ y= ; 2 ④ y=x (x +x+1 );⑤ y= ⑥ y= ,常数项

2015高考数学专题复习:函数零点

2015高考数学专题复习:函数零点 函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图像与x 轴交点的横坐标. ()x g x f y -=)(的零点(个数)?函数()x g x f y -=)(的图像与x 轴的交点横坐标(个数) ?方程()()0=-x g x f 即()x g x f =)(的实数根(个数) ?函数)(x f y =与)(x g y =图像的交点横坐标(个数) 1.求下列函数的零点 1.232-+=x x y 2.x y 2log = 3.62 -+=x x y 4.1ln -=x y 5.2 1sin + =x y 2.函数22()(2)(32)f x x x x =--+的零点个数为 3.函数()x f =???>-≤-+) 0(2ln ) 0(322x x x x x 的零点个数为 4.函数() () ???>+-≤-=13.41.44)(2x x x x x x f 的图像和函数()ln g x x =的图像的交点个数是 ( ) .A 1 .B 2 .C 3 .D 4 5.函数5 ()3f x x x =+-的零点所在区间为 ( ) A .[0,1] B .[1,2] C .[2,3] D .[3,4] 6.函数1()44x f x e x -=+-的零点所在区间为 ( ) A. (1,0)- B. (0,1) C. (1,2) D. (2,3) 7.函数()2ln(2)3f x x x =--的零点所在区间为 ( ) A. (2,3) B. (3,4) C. (4,5) D. (5,6) 8.方程2|2|lg x x -=的实数根的个数是 9.函数()lg ()72f x x g x x ==-与图像交点的横坐标所在区间是 ( ) A .()21, B .()32, C .()43, D .()54, 10.若函数2 ()4f x x x a =--的零点个数为3,则a =______

高三数学二轮复习教学案一体化:函数的性质及应用(2)

专题1 函数的性质及应用(2) 高考趋势 1.函数历来是高中数学最重要的内容,不仅适合单独命题,而且可以综合运用于其它内容.函数是中学数学的最重要内容,它既是工具,又是方法和思想.在江苏高考文理共用卷中,函数小题(不含三角函数)占较大的比重,其中江苏08年为3题,07年为4题. 2.函数的图像往往融合于其他问题中,而此时函数的图像有助于找出解决问题的方向、粗略估计函数的一些性质。另外,函数的图像本事也是解决问题的一种方法。这些高考时常出现。图像的变换则是认识函数之间关系的一个载体,这在高考中也常出现。通过不同途径了解、洞察所涉及到的函数的性质。在定义域、值域、解析式、图象、单调性、奇偶性、周期性等方面进行考察。在上述性质中,知道信息越多,则解决问题越容易。 考点展示 1. “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它 醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2 分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是 B 2. 函数x y 1=的图像向左平移2个单位所得到的函数图像的解析式是 21 +=x y 3. 函数 )(x f 的图像与函数2)1(2---=x y 的图像关于 x 轴对称,则函数 )(x f 的解析式是 2)1(2+-x 4. 方程22 3x x -+=的实数解的个数为 2 5. 函数)1(x f y +=的图像与)1(x f y -=的图像关于 x=0 对称 函数图象对称问题是函数部分的 一个重要问题,大致有两类:一类是同一个函数图象自身的对称性;一类是两个不同函数之间的对称性。 定理1 若函数y=f(x) 对定义域中任意x 均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线2 a b x += 对称。 定理2 函数()y f a x ω=+与函数()y f a x ω=-的图象关于直线2b a x ω -=对称 特殊地,函数y=f(a+x)与函数y=f(b-x)的图象关于直线2 b a x -= 对称。 6. 函数2 1()2 f x x x =-+定义域为[]n m ,,值域为[]n m 2,2,m n <,则m n += -2 样题剖析 例1. 已知R 上的奇函数)(x f 在),0[+∞上是单调递增函数,且2)3(=f ,若函数)(x f 的图像向右 平移1个单位后得到函数)(x g 的图像,试解不等式: 02 )(2 )(>+-x g x g ),4()2,(+∞--∞ 变式:若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是 (-2,2) . 例2. 已知函数x b b ax x f 22242)(-+-=,R b a a x x g ∈---=,,)(1)(2 其中 (1) 当b=0时,若)(x f 在),2[+∞上单调递增,求a 的取值范围;1≥a (2) 求满足下列条件的所有实数对),(b a :当a 为整数时,存在0x ,使得)(0x f 是)(x f 的最大值, )(0x g 是)(x g 的最小值。 (2224b b a -+=2)1(5--=b ,502≤

(完整word版)初三数学函数专项练习题及答案

初三数学函数专项练习题及答案 一、选择题(每小题4分,共32分) 1.函数y =x +2中,自变量x 的取值范围是 (A ) A .x ≥-2 B .x <-2 C .x ≥0 D .x ≠-2 2.已知函数y =?????2x +1(x≥0), 4x (x <0), 当x =2时,函数值y 为(A ) A .5 B .6 C .7 D .8 3.已知点A (2,y 1),B (4,y 2)都在反比例函数y =k x (k <0)的图象上,则y 1,y 2的大小关系为(B ) A .y 1>y 2 B .y 1

2021高考数学专题复习:基本函数一

2021高考数学专题复习:二次函数 (1)已知函数()x f 满足()(),x a f x a f -=+则()x f y =对称轴为 ()()?-=+x f x f 22对称轴=x ()()?--=+-x f x f 11对称轴=x ()()220f f x =?= ?=0x ()()131f f x =?= ?=1x ()()042f f x =?= ?=2x (2)已知函数()x f 满足()(),x b f x a f -=+则()x f y =对称轴为 ()()?-=+x f x f 62对称轴=x ()()?-=+x f x f 51对称轴=x ?=0x ?=0x ?=1x ?=1x ?=2x ?=2x (3)已知函数()x f 满足()(),x a f x f -=则()x f y =对称轴为 ()()?-=x f x f 6对称轴=x ()()?-=x f x f 2对称轴=x ?=0x ?=0x ?=1x ?=1x ?=2x ?=2x

作函数图像: (1)322--=x x y (2) 432-+=x x y (3)x x y 32+-= (4)32+-=x y (5)x x y 22--= (6)432-+-=x x y (7)x x y 22+= (8)x x y 22--= (9)432-+-=x x y (10)x x y 42-= (11)x x y 22+= (12)432-+=x x y

(13)()()?????<+≥-=0.20.222x x x x x x y (14)()()?????<--≥+-=0.20.222x x x x x x y (15)()() ?????<-+≥--=0.320.3222x x x x x x y (16)()()?????<-≥+=0.0.22x x x x x x y (17)()()?????<--≥--=0.430.4322x x x x x x y (18)()() ?????<+≥-=0.20.222x x x x y 1.函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,()()()1,1,2f f f -的大小关系为 2.函数()x f 满足()(),31x f x f -=+在区间(]2,∞-上单调递增,设()()(),5,2,5.1f c f b f a ==-= 则,,a b c 的大小顺序为

高考数学二轮复习专题02:函数与导数

高考数学二轮复习专题 02:函数与导数
姓名:________
班级:________
成绩:________
一、 单选题 (共 17 题;共 34 分)
1. (2 分) (2016 高一上·厦门期中) 已知函数 f(x)=xln(x﹣1)﹣a,下列说法正确的是( )
A . 当 a=0 时,f(x)没有零点
B . 当 a<0 时,f(x)有零点 x0 , 且 x0∈(2,+∞)
C . 当 a>0 时,f(x)有零点 x0 , 且 x0∈(1,2)
D . 当 a>0 时,f(x)有零点 x0 , 且 x0∈(2,+∞)
2. (2 分) (2018 高二下·沈阳期中) 函数 A. B. C. D.
恰有一个零点,则实数 的值为( )
3. (2 分) 已知函数 f(x)= -cosx,若 A . f(a)>f(b) B . f(a)0
, 则( )
4. ( 2 分 ) (2019 高 二 上 · 浙 江 期 中 ) 已 知
的两个相邻的零点,且
,则
,且


是函数
的值为( )
第 1 页 共 12 页

A. B. C. D.
5. (2 分) 定义在 R 上的奇函数 f(x),当 x≥0 时,f(x)= =f(x)﹣a(0<a<1)的所有零点之和为( )
A . 3a﹣1 B . 1﹣3a C . 3﹣a﹣1 D . 1﹣3﹣a
, 则关于 x 的函数 F(x)
6. (2 分) 已知函数 取值范围是( )
A. B.
的图像为曲线 C,若曲线 C 存在与直线
垂直的切线,则实数 m 的
C.
D.
7. (2 分) (2016 高一上·沈阳期中) 已知函数 f(x)满足:当 f(x)= ()
A.
第 2 页 共 12 页
,则 f(2+log23)=

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

(完整版)一次函数专项练习题

一次函数专项练习题 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A , B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 任意两点(,),(,)A A B B A x y B x y 的距离为22()()A B A B x x y y -+-; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为 A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 到原点之间的距离为 22A A x y + 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ????- ? ???? ?,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时, ()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法: ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y 轴上同一点。 ☆特殊直线方程: X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。 2、对于函数1223 y x =-, y 的值随x 值的________而增大。 3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__。4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。 5、直线y=kx+b 经过第一、二、四象限,则直线y=-bx+k 经过第____象限。 6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。 7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点? 题型五、待定系数法求解析式 方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。 ☆ 已知是直线或一次函数可以设y=kx+b (k ≠0); ☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。 1、若函数y=3x+b 经过点(2,-6),求函数的解析式。 2、直线y=kx+b 的图像经过A (3,4)和点B (2,7), 4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。6、已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。 7、已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,求k 、b 的值。8、已知直线y=kx+b 与直线y= -3x+7关于原点对称,求k 、b 的值。 5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤9,求此函数的解析式。 题型六、平移 方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。 1. 直线y=5x-3向左平移2个单位得到直线 。 2. 直线y=-x-2向右平移2个单位得到直线 3. 直线y=21x 向右平移2个单位得到直线 4. 直线y=22 3+-x 向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线

高三数学二轮复习重点及策略

高三数学二轮复习重点及策略 高三数学二轮复习时间安排 1:第一阶段为重点知识的强化与巩固阶段,时间为3月1日—3月27日。 2:第二阶段是对于综合题型的解题方法与解题能力的训练,时间为3月28日—4月 16日。 专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点 函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。这些性质通常会综 合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。 一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些 基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向, 与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负, 最终达到求出单调区间的目的,求出极值及最值。 不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。 当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的 综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。 专题二:数列。以等差等比数列为载体,考察等差等比数列的通项公式,求和公式, 通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法, 这些知识点需要掌握。 专题三:三角函数,平面向量,解三角形。三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单 调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定 理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还 可以和数学的一大难点解析几何整合。 专题四:立体几何。立体几何中,三视图是每年必考点,主要出现在选择,填空题中。大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。 另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中, 应该掌握三棱柱,长方体。空间直线与平面的位置关系应以证明垂直为重点,当然常考察 的方法为间接证明。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

2021高考数学专题复习:周期函数

2021高考专题复习(1)周期函数定义 一、定义: 1.对于函数(),x f 如果存在一个大于零的实数,T 使当x 取定义域内的每一个值时,都有()(),x f T x f =+ 则函数()x f y =的最小正周期为 ()()2f x f x T +=?= ()()4f x f x T -=?= ()()6f x f x T =+?= 2.若()(),b x f a x f +=+则函数()x f y =的最小正周期为 ()()27f x f x T +=+?= ()()720f f x =?= ( )()f f x =?=1 ?=2x ?=3x ()()36f x f x T -=+?= ( )()f f x =?=0 ?=1x ?=2x ?=3x 3.对于非零常数,A 若函数()x f y =满足()(),x f A x f -=+则函数()x f y =的最小正周期为 ()()()()?=-??? ? ??= +?-=+x f A x f x f A x f =?T ()()2f x f x T +=-?= ()()1f x f x T -=-?=

4.对于非零常数,A 函数()x f y =满足()() ,1 x f A x f = -则函数()x f y =的最小正周期为 ()() ()()?=????? ???? ?= -?= -x f A x f x f A x f 11 =?T ()() 1 1f x T f x += ?= ()() 1 2f x T f x -= ?= 5.对于非零常数,A 函数()x f y =满足()() ,1 x f A x f - =+则函数()x f y =的最小正周期为 ()() ()()?=- ????? ? ????= +- =+x f A x f x f A x f 11 =?T ()() 1 4f x T f x +=- ?= ()=?2020f , ()=2021f ()() 1 5f x T f x --= ?= ()=?2020f , ()=2019f 6.对于非零常数,A 函数()x f y =满足()()() ,11x f x f A x f +-=+则函数()x f y =的最小正周期为

高考数学二轮复习 函数概念与性质

2008高考数学二轮复习 函数概念与性质 一、考点、要点、疑点: 考点:1、理解函数的有关概念;2、理解函数的有关性质。 要点: (一)函数的有关概念: 1、传统定义:如果在某个变化过程中有两个变量x 、y ,并且对于x 在某个范围内的每一个确 定的值,按照某个对应法则f ,y 都有惟一确定的值和它对应, 那么y 就是x 的函数,记作y =f (x ) 近代定义:函数是由一个非空数集到另一个非空数集的映射. 2、函数的三要素: 函数是由定义域...、值域..以及从定义域到值域的对应法则.... 三部分组成的特殊映射。 ① 能使函数式有意义的实数x 的集合称为函数的定义域。求函数的定义域的主要依据是: (1) 分式的分母不等于零; (2) 偶次方根的被开方数不小于零; (3) 对数式的真数必须大于零; (4) 指数、对数式的底必须大于零且不等于1。 ② 函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域。 3、函数的表示法:解析式法、列表法、图象法。 (二)函数的有关性质: 1、函数的单调性: ① 一般地,设函数f (x )的定义域为 I , 如果对于属于定义域 I 内某个区间上的任意两个自变量的值1x , 2x , 当1x <2x 时,都有f (1x ) < f (2x ),那么就说f(x)在这个区间上是增函数. 当1x <2x 时,都有f (1x ) > f (2x ),那么就说f(x)在这个区间上是减函数. 函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上可能是减函数,例如函数2 x y =,当x ∈),0[+∞时是增函数, 当x ∈]0,(-∞时是减函数。 ② 单调区间: 如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.在单调区间上增函数的图象是上升的,减函数的图象是下降的. ③ 用定义证明函数单调性的步骤 (1) 取值:对任意1x , 2x ∈M ,且1x <2x ; (2) 作差:f (1x ) - f (2x ); (3) 判定差的正负; (4) 根据判定的结果作出相应的结论。 ④ 导数方法判断函数的单调性

相关主题
文本预览
相关文档 最新文档