当前位置:文档之家› 变压吸附基础知识

变压吸附基础知识

变压吸附基础知识
变压吸附基础知识

一、基础知识

1.气体知识

氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084% (空气中各种气体的容积组分为:N2: 78.084%、02: 20.9476%、氩气:0.9364%、CO2: 0.0314%、其它还有 H2、 CH4、 N2O、 O3、 SO2、NO2 等,但含量极少),分子量为 28,沸点: -195.8C,冷凝点:-210C。

2.压力知识

变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂一一碳分子筛最佳吸附压力为 0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。

二、PSA制氮工作原理:

变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示:

碳分子筛的孔径分布特性使其能够实现 O2 、N2 的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对 O2、 N2 的分离作用是基于这两种气体的动力学直径的微小差别,O2 分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率, N2 分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和 CO2 的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是 N2 和 Ar 的混合气。

、变压吸附基础知识

第 1 题什么是吸附?分为几种类型?

答:咐附是分离混合物的一种方式,它是利用多孔性固体吸附剂处理流体混合物,利用混合物中各组分在吸附剂中的被吸附力的不同,使其中一种或数种物质吸附于固体

表面上以达到分离的目的。

根据吸附表面和被吸附物质之间的作用力的不同,可分为物理吸附和化学吸附两种类型。$ x# \& J) ]9 A; h 第 2 题吸附有哪些步骤

答:从动力学的角度看,吸附可分为以下几个步骤: 8 s0 V, \; U' X6 g

(1)外扩散; (2)内扩散; (3)吸附;(4)脱附;(5)反内扩散; (6)反外扩散。第 3 题什么是变压吸附?

答:变压吸附(Pressure Swi ng Adsorption简称PSA,是一种对气体混合物进行提纯的过程,以物理吸附原理为基础,利用两个压力上吸附剂对不同物质吸附能力的不同将

杂质和提纯物质分离。

变压吸附工艺是在两种压力状态之间工作的,杂质的吸附在高压下进行,在低压下解吸使吸附剂再生,而产品在两种压力状态下均只有少量吸附或不吸附,这种不断循环的过程。 8 Y v1 v' t& ]

第 4题变压吸附气体分离技术有哪些优点? ; H0 D7 H# S& W4 S, a. U6 m 答: (1)产品纯度高:特别是对氢和氦等组分几乎能够把所有杂质除去; ( 2) 工艺简单:原料中几种杂质组分可以一步除去不需预先处理; (3)操作简单,能耗低:一般都在常温和不高的压力下操作,设备简单,吸附床再生不需外加热源; (4)吸附剂寿命长;吸附剂使用期限为半永久性,?每年只需少量补充,正常操作下吸附剂一般使用十年以上。

4 g! i1 p+ N, U3 h* l3 r) f) M

5 f; el w, W- K+ ~" H+、’ r2 o

第 5 题常用的吸附剂有哪几种?

答:常用的吸附剂主要有以下几种:硅胶、活性氧化铝、活性碳、沸石分子筛、碳分子筛等。

. [7 I4 x) o) }7 i* V

第 6 题什么叫做吸附剂的孔容? + t4 P: q8 A/ e

答:吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中微孔的容积来表示,单位是 cm 3 /g。

7 I- ?+ e" c, H& c% _; q

第 7 题什么是吸附剂的比表面积? ; ]6 I- x1 l6 s+ _8 n2 i. h

答:比表面积即单位重量吸附剂所具有的面积,单位为m 2 /g,吸附剂的表面积主要是微孔孔壁的表面积。

第 8 题在吸附过程中,吸附床分为哪几个区段?

答:吸附床可分为三个区段: (1)为吸附饱和区, ?在此区吸附剂不再只吸附,达到动态平衡状态; (2)为吸附传质区,传质区愈短,表示传 ?质阻力愈小(即传质系数

大 ),床层中吸附剂的利用率越高; (3)为吸附床的尚未吸附区。

第 9题什么叫吸附前沿 (或传质前沿 )?

答:在实际的吸附床,由于吸附剂传质阻力的存在,吸附质流体以一定的速率进入吸附床时,总是先在吸附床入口处形成一个浓度梯度,以此绘成的曲线便称为吸附前沿(或传质前沿 ),随着吸附质流体的不断流入,使曲线沿吸附床高度方向推进。

第 10 题什么叫吸附床流出曲线?

答:在吸附庆中,随着气体混合物不断流入,吸附前沿不断向床的出口端推进,经过一段时间,吸附质出现在吸附床出口处,以出口浓度--时间绘成的曲线叫做吸附床流出曲线。 . u& W/ X3 |& V$ K" s: B! m9 J

第 11 题什么叫穿透浓度和穿透时间? # v% b- L7 ~9 t$ t+ L

答:在吸附床流出曲线中,随着气体混合物不断流入,经过一段时间 (tc) 后,流出气体中杂质浓度达到一定值(Cc)出现揭点,开始突然上升,这时的杂质浓度(C 0 )称为穿透浓度,所对应的时间(tc)称为穿透时间。

( i/ f M7 ~ m! c* L

第 12 题吸附剂的再生有哪些方法?

答:变温再生:高温下再生,低温下吸附。+ t; k8 u* '6 Z) T! x% h

变压再生:利用降压、抽真空、冲洗、置换等方法使吸附剂所吸附的杂质析出。

0 v6 T: i0 r# S

' [+ R7 c0 D' ~0 v& f8 }

第 13题吸附剂的选择应遵循哪些原则? / V/ M' w! v) W H( N

答: (1)吸附剂对杂质良好的吸附性; (2)吸附剂对各组间的分离系数尽可能大;(3)吸附剂的吸附和再生之间矛盾的解决;(4)吸附剂应有足够的强度,以减少破碎和磨损率。' M" K4 k% Q! b 第 14 题什么叫氢气回收率?

答:回收率是变压吸附装置主要考核指标之一,它的定义是从高压吸附装置获得的产品中氢气组分绝对量占进入变压吸附装置原料气中氢气绝对量的百分比。

第 15 题在变压吸附循环过程中分哪些基本步骤?

答: (1)压力下吸附:吸附床在过程的最高压力下通入气体混合物, ?其中杂质被吸附,需提纯物质从吸附床另一端流出。(2)?减压解吸:根据被吸附组分的性能,选用降压、抽真空、冲洗和置换等几种方法使吸附剂再生; (3)?升压:吸附剂再生完毕后,用产品气体对吸附床进行充压,直至吸附压力为止。 ' |) B- d6 U5 g6 n8 s4 o 第 16 题什么叫循环周期?

答:对一台吸附器来说,一个循环周期就是指该吸附器从吸附杂质开始,经过泄压再生以后,又到新的一次吸附杂质开始,完成这样大的工艺过程叫做循环周期。 /

l( }( c" Y! b! j4 V2 z

$ V k4 a' R8 w; R

第 17题什么叫循环程序? * b8 u4 l" e. a6 {5 Z r

答:将吸附器的循环工艺步骤周密合理地关联起来,实现PSA?工艺得以循环进行的自动工艺阀门程序化的动作程序。

* X0 H0 f6 | R' t" Q [# t

第 18 题什么叫步位? + n* X* V5 e ~! Z1 n

答:步位是循环周期的程序基本单位,十床运行时,一个循环周期由 10 个分周期组成,而一个分周期由两个步位组成,每一步位的时间由步位定时器或吸附时间规

定。 , [' w( C# b+ \# O8 h

8 T5 b% L& l; c( {+ i* Y/ T

第 19 题什么叫吸附时间?

答:指一个吸附器在吸附步骤所经历的时间,其长短可以反映该吸附器处理进料气的总量。在运转过程中,吸附时间是一个主要操作参数,分为能力和局部控制方式。 ! o. a. W# }2 N7 L

第20题什么是分周期时间? 3 k/ |' W+ v3 w1 L2 H5 ' 答:指一个分周期所经历的时间,或者说是二个步位所经历的时间,分周期时间长短由吸附时间大小决定。

2 R, r1 w6 f+ P) d% k# i 第 21 题什么叫保持?

答:指在循环程序中,在某个工艺步骤结束而下一个工艺步骤开始之前,该吸附器处于全封闭状态下,没有压力变化和物料流动,这种状态叫保持,符号为IS,它是循环过程中协调各吸附器的步骤的一种过滤状态。)T7 13 J4 fO }3 d" T' R* T

5 M3 x- ]. y J

第 22 题影响 PSA 过程的主要因素有哪些? 6 h% [% t- S u6 d8 H

答:影响PSA过程的因素有以下几点:8 P. \8 X. J$ L1 ~

(1)?进料带水:进料带水进入床层后严重影响吸附剂对气体杂质的吸附性能,且再生困难,所以必须对进料气体进行严格的脱水分离和伴热保温处理。 / F8 T* T$ o8 H9 q* x% U6 J5 z

(2)进料组成:当氢气含量低于设计值 (杂质增加 )?应相应缩短吸附时间,使产氢量下降,氢收率下降,若进料组成的规格不在设计范围内,还对吸附剂

成损害,影响其合作寿命。:X9 R/ I' ', K# _- \4 '

(3)进料流速:流速低,应延长吸附时间以获得较高氢收率,流速高,?应相应缩短吸附时间,保证产品纯度,?PSA ?的操作弹性较大,?可在设计能力的

110-30%的任何流率下操作,并保证产品氢纯度。

(4)吸附压力:PSA操作压力并非越高越好,在一定压力范围内,杂质吸附量增加而氢回收率提高,但在较高压力下,氢气的吸附量也相应增加,反而使回收率下降,所有压力均在 1.28MPa左右。$ Z$ hl }& z! E1 Z2 E$ Q# d2 v) dO K

(5)进料温度:进料温度太低或太高都使氢收率降低,温度过高不利吸附,影响吸附剂寿命,温度太低再生困难,还有带水的可能,同样不利吸附剂。

2 [$ c( ]" H" B5 x! F8 r5 b

第 23 题吸附步骤结束后,吸附器内是否充满杂质,上部存氢有何用途?答:吸附结束后,吸附器内只有部分装载杂质,吸附器上部仍有未吸附杂质的吸附剂,同时存有纯净的氢气。

上部存氢主要用于其它吸附器再生之后的升压和对被吹扫床提供纯氢气。 3 D( a5 a6 Q v- ]' |- R

& x* q/ \9 S% YO p4 E

第 24 题在不抽空而采用吹扫过程中,为什么要控制氢气量先小后大吹扫?答:从工艺要求来讲,吹扫开始时,被吹扫床内杂质含量多,为了保持均衡的废气流量,需供吹扫气的流量小一些,到吹扫末期,被吹扫床内杂质含量少,需供吹扫气流量高一些,保证吹扫效果,实际执行中,通过HC-103和?HC- 104

的开关控制吹扫过程中气量的大小。

第 25 题什么是吸附时间最佳控制?

答:吸附时间的最佳控制既能保证高的氢气纯度,又能保证高的氢气回收率,同时吸附剂性能稳定,使用寿命长,通常高的进料流率应在较短时间下操作。 " ]5

z$ A$ E2 [- ]+ M' k

: V) i' I7 T1 G, r, T% c+ h

第 26 题吸附时间的控制有哪些方式?

答:吸附时间控制有能力和局部控制两种,局部方式控制时, t A 由操作员利用操作控制台键盘手动输入,这时吸附时间的控制通过新的吸附时间来实现,即根据改变的进料流量大小,输入与之相应的t A ;能力方式控制时,t A作为进料流量的一个函数自动计算,因此 t A 随进料量的变化及时自动调整,若进料量不变要想调整 t A ,可通过改变调谐系数 A 实现, A 值可在 80-120%的范围内变化,增大A值,t A增大,减小A值,t A减小。)X! t$ c. i4 z' ]7 _' A: u

第27题吸附时间(t A )的两种控制方式分别在哪些情况下应用?

答:吸附时间(t A )是调整PSA操作中的重要因素,能力控制时,t ?A随进料量变化及时自动调整,并在保证产品纯度条件下,使氢回收率保持在一个高水平上,因此,在正常生产中,能力控制方式是优先选用的操作方式,而局部控制方式一般应用于开停工或者进料组成急剧变化或怀疑进料流量计有故障等异常情况下操作员根据进料大小输入合适的 t A ,以便尽快得到合格产品,防止杂质超载

的发生。 * z9 x* ?3 R/ u; E1 b+ O

第 28 题什么是和谐调整?什么是不和谐调整?答:和谐调整是根据进料流率的大小调节 t A ,使产品的平均纯度满足产品规格要求,同时保证氢收率,获得 PSA装置最大效能。不和谐调整就是t ?A处于局部方式,PSA采用一个较短的t A进行循环,这种情况下,?产品纯度比规格要求好,而氢气回收率较低。 $ R5 d& q C( z# z

第29题PSA运转方式有哪些?各有什么特点?

答:PSA运转方式有两种:自动步进和手动步进。:L6 T6 O- _, ]1 i* Z9 n

运转方式设定为自动时,屏幕状态、区域里步位号之后显示“AUTO,循环程序由微机控制自动前进,即PSA?装置接受来自压力和定位器信号的控制,自动按程序前行,所有对压力敏感的工艺步骤,如吸附、均压、排放、抽空等都被检查完成情况,若要求的工艺参数未被满足,程序将停滞在该步上,直到条件满足或改变运转方式人为使程序前进。/ e- h5 p8 b4 A! m3 V8 S* ' 运转方式设定在手动方式时,循环程序立即停滞在此时的步位上,所有计时器都停止计时,程序前进由操作员手动控制,按下一次步进键,程序将前进一个步位,而不管工艺条件如何。:u2 A8 K3 G E0 S' D+ o ~) }

/ G; P1 U8 O& s0 G5 a0 u% E

第 30 题什么情况下应用自动或托运步进方式?

答:自动步位方式是装置运转方式,而手动步进方式一般用于装置停运或开工过程中,以及因故障自动程序停滞的情况况下,如开工时可利用手动步进方式调整装置所处步位与开工步位一致,在首次开工中利用手动步进方式进行功能调试。

" p: a1 M# A6 J

第 31 题使用手动步进时,应注意哪些问题?使用不当会造成什么危害?

答: (1)使用手动步进时, ?吸附器的压力状况应与正被选定的前进步位相一致,若不一致,使用手动步进,易造成吸附器压力的快速变化,使吸附剂床层压力突变,对吸附剂造成损害,甚至损坏阀门、堵塞仪表管线,导致操作性能变坏以至停车。 3 E P" _/ v# f1 ~$ H8 ~ N! I) |

(2)不应使装置

停在手动步进的周期超长,否则易造成杂质超载,?损坏吸

附剂,使产品质量下降,并影响装置对压力变化的控制功能。

3 T( V9 G( {$ @* t' v1 '

第 32 题程控阀门的两种方式各有什么特点?

答:自动阀门操作是装置正常运转的阀门操作方式,阀门开关将设计的顺序通过控制单元自动地程序化控制。 3 X9 I. A' k$ {* F; ?7 @

手动阀门方式只适用于停运吸附器,若装置十床循环,手动阀门方式对操作不起作用,若设定了手动阀门方式,则停运吸附器的阀门都通过手动打开或关闭,当阀门操作返回自动方式时,所有手动打开的阀门都将关闭。

- c8 P0 q, h- Q7 [: s9 M: G' R- L% B

第 33 题 PSA 装置有哪些工艺过程可以进行切换?

答:带抽空时,有以下几种::Y" i+ c7'% e6 ]' ]4 e.八8 Y) t* y 10-3-4/V、8-2-3/V、6-2-2/V、5-1-2/V。不带抽空时,有以下几种:

10-3-3、8-2-2、6-2-2、5-1-2。 7 Y. R' T# D2 C3 c0 ]/ }: d) \

$ s% N/ ?8 n! c( s& ~" z8 y

第 34 题各工艺过程的切换方式有几种?各有什么特点? " z" y% \& ]7 v9 a3 g5 O 答:各工艺过程的切换方式有自动切换方式和手动切换方式两种。 : [( l) a6 ~ j) I2 W

自动切换方式时,装置控制系统自动检查装置的运行情况,当阀门故障或模件故障时,控制系统能自动诊断并发生报警,必要时,装置应从主工艺切换到替换工艺。

若切换方式方式设定在手动方式,需切换时,必须由操作员从控制键盘发出切换指令,选择并输入需要的工艺过程代码,输入代码的 10 秒内必须按过程启动键,以实现切换,控制系统将检查出目前步位中是否允许切换,若条件未满足,则装置继续按原工艺循环,直到达到条件,切换才能发生。

第 35 题工艺切换时,吸附时间如何控制?

答:PSA在切换过程中,吸附时间由控制单元临时控制,?系统从任何一种循环工艺切换到另一种循环工艺,切换一旦发生,给定的吸附时间将是正常能力控制时间的 80%,而在完成一个循环后,如装置已处在能力控制方式中,则吸

附时间将自动回复到正常的能力控制吸附时间,如处于局部控制方式,则连续按计算的时间运转,直到吸附时间按手动改变,即输入一个新的吸附时间,如切换中输入新的吸附时间,控制系统将不接受这个时间。

第 36 题什么情况下,由 10 床切入 8 床?

答: (1)某个吸附器控制阀的外部零件如电磁阀出现故障。

(2)某个吸附器的控制阀的阀门执行机构失灵。

(3)某个吸附器的电磁阀输出模件发生故障。 6 U4 B! {" J. l% F7 f8 L( B

(4)某个吸附器的压力变送器内部故障。 }5 S7 a6 N' K) r* m

0 ~- j& r& o yO [8 A/ A$ g- |

第 37题切换完成后,是否需要调整吸附时间?为什么? - p" Y3 h2 g/ w* F$ h 答:切换完成后,应根据氢的收率大小,适当调整吸附时间,因为切换过程中,吸附时间由控制系统临时给定,是正常能力控制吸附时间的80%,切换完成后,若吸附时间处于能力控制方式,则 t A 自动恢复到正常的能力控制,但这时也有可能氢收率不高,若吸附时间处于局部控制方式,则将连续按计算的吸附时间运转,如不适当地调整 t A ,则吸附剂显得得不到充分利用,氢收率低,所以在切完成后,在保证氢纯度前提下,适当调整 t A ,以获得高回收率。

.o, R1 _9 S, n6 A; h; }3 u( S

第38题何谓切换的最佳步位? 0 e% '0 f9 T# ]( \) _

答:所谓最佳步位是指手动切换时选择的切换步位,切换前后的压力状况接近或相符,工艺步骤互相衔接,因此在最佳步位进行切换时整个系统的影响和改变最小,可以避免产生较大的工艺波动。

电化学基础知识点总结

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电解质溶液 1.下列变化中,属于原电池反应的是( ) A .在空气中金属铝表面迅速氧化形成保护层 B .镀锌铁表面有划损时,也能阻止铁被氧化 C .红热的铁丝与水接触表面形成蓝黑色保护层 D .铁与稀H 2SO 4反应时,加入少量CuSO 4溶液时,可使反应加速 2.100 mL 浓度为2 mol/L 的盐酸跟过量的锌片反应,为加快反应速率,又不影响生成氢气的量,可采用的方法是( ) A .加入适量的6 mol/L 的盐酸 B .加入数滴氯化铜溶液 C .加入适量的蒸馏水 D .加入适量的氯化钠溶液 3.称取三份锌粉,分别盛于甲、乙、丙三支试管中,按下列要求另加物质后,塞上塞子,定时测定生成氢气的体积。甲加入50 mL pH =3的盐酸,乙加入50 mL pH =3的醋酸,丙加入50 mL pH =3的醋酸及少量胆矾粉末。若反应终了,生成氢气的体积一样多,且没有剩余的锌。请用“>”“=”或“<”回答下列各题。 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子

电化学方法总结

电化学方法总结 Prepared on 22 November 2020

循环伏安法 1 定义:循环伏安法(Cyclic Voltammetry)以等腰三角形的脉冲电 压加在工作电极上,控制电极电势以不同的速率,随时间以三角 波形一次或多次反复扫描,使电极上能交替发生还原反应和氧化 反应,记录电流-电势曲线。 单圈扫描:电位在初始电位维持一段平衡(静置)时间后,开始匀 速变化(扫描速度为v=dE/dt),扫描到第1个换向电位后,某些仪 器可维持在第1个换向电位一段时间,然后电位反向扫描到第2个 换向电位,某些仪器也可维持在第2个换向电位一段时间,然后再 扫描到最终电位)。 多圈扫描:在初始电位起扫后,在第1、2个换向电位之间循环扫描 多圈,最后扫描到最终电位。 Initial potential Vertex 1 potential Vertex 2 potential Final potential Delay Potential Time 初始电位、换向电 位、扫描速度等是 非常重要的实验设

2 特点: Ⅰ:激励信号:施加的电压为三角波电压,双向扫描,分为氧化过程和还原过程,氧化态电势高,还原态电势低。 Ⅱ:参数设置:两个可调参数为电位范围和扫描速度。设置电位范围时需根据溶液的初始条件设置起始电位,起始电位不应破坏溶液的初始条件;若起始电位与溶液初始条件不一致,则在静置几秒内所发生的氧化还原反应未被记录。 Ⅲ:实验条件:进行循环伏安扫描时体系应处于静止状态,若搅拌则记录的图中不会出现峰,相反呈S型。 3 所得信息: Ⅰ:判断电极反应的可逆程度,依据为峰电流比及峰电势差,对于可逆体系:i pa/i pc1;E pa/E pc nF。 Ⅱ:判断电极表面的修饰情况,峰电流大说明电极传递电子能力较强。但这只能定性判断,实际循环伏安图中,存在充电电流的影响,因此CV峰电流测量不太容易精确。 Ⅲ:判断其控制步骤和反应机理,若i p∝v,则此过程为表面控制,发生在电极表面;若i p∝v1/2,则此过程为扩散控制,发生在溶液中。 循环伏安法可作用于可逆的电极过程,也可作用于不可逆或准可逆的电极过程以及各种伴随航行反应的过程,不同的电极过程分别阳极峰电势E pa和阴极峰电势E pc,并给出峰电位差△E p和峰电流之比。

电化学基础知识点总结

装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 1.下列变化中,属于原电池反应的是( ) A .在空气中金属铝表面迅速氧化形成保护层 B .镀锌铁表面有划损时,也能阻止铁被氧化 C .红热的铁丝与水接触表面形成蓝黑色保护层 D .铁与稀H 2SO 4反应时,加入少量CuSO 4溶液时,可使反应加速 2.100 mL 浓度为2 mol/L 的盐酸跟过量的锌片反应,为加快反应速率,又不影响生成氢气的量,可采用的方法是( ) A .加入适量的6 mol/L 的盐酸 B .加入数滴氯化铜溶液 C .加入适量的蒸馏水 D .加入适量的氯化钠溶液 3.称取三份锌粉,分别盛于甲、乙、丙三支试管中,按下列要求另加物质后,塞上塞子,定时测定生成氢气的体积。甲加入50 mL pH =3的盐酸,乙加入50 mL pH =3的醋酸,丙加入50 mL pH =3的醋酸及少量胆矾粉末。若反应终了,生成氢气的体积一样多,且没有剩余的锌。请用“>”“=”或“<”回答下列各题。 (1)开始时,反应速率的大小为__________。 (2)三支试管中参加反应的锌的质量为__________。 (3)反应终了,所需时间为__________。 (4)在反应过程中,乙、丙速率不同的理由是(简要说明)__________。 失e -,沿导线传递,有电流产生

人教版高中化学选修4第四章电化学基础知识归纳

电化学基础知识归纳(含部分扩展内容)(珍藏版) 特点:电池总反应一般为自发的氧化还原反应,且为放热反应(△H<0);原电池可将化学能转化为电能 电极负极:一般相对活泼的金属溶解(还原剂失电子,发生氧化反应) 正极:电极本身不参加反应,一般是电解质中的离子得电子(也可能是氧气等氧化剂),发生还原反应 原电池原理电子流向:负极经导线到正极 电流方向:外电路中,正极到负极;内电路中,负极到正极 电解质中离子走向:阴离子移向负极,阳离子移向正极 原电池原理的应用:制成化学电源(实用原电池);金属防腐(被保护金属作正极);提高化学反应速率;判断金属活性强弱 一次电池负极:还原剂失电子生成氧化产物(失电子的氧化反应) 正极:氧化剂得电子生成还原产物(得电子的还原反应) 放电:与一次电池相同 二次电池规则:正极接外接电源正极,作阳极;负极接外接电源负极,作阴极(正接正,负接负) 充电阳极:原来的正极反应式反向书写(失电子的氧化反应) 原电池阴极:原来的负极反应式反向书写(得电子的还原反应) 化学电源电极本身不参与反应(一般用多孔电极吸附反应物),总反应相当于燃烧反应 负极:可燃物(如氢气、甲烷、甲醇等)失电子被氧化(注意电解质的酸碱性) 电极反应正极:O得电子被还原,具体按电解质不同通常可分为4种 2 燃料电池碱性介质:O+4e-+2H O==4OH- 22 酸性介质:O+4e-+4H+==2H O 22 电解质不同时氧气参与的正极反应固体或熔融氧化物(传导氧离子):O+4e-==2O2- 2 第1页质子交换膜(传导氢离子):O+4e-+4H+==2H O 22

特殊原电池:镁、铝、氢氧化钠,铝作负极;铜、铝、浓硝酸,铜作负极;铜、铁、浓硝酸,铜作负极,等 特点:电解总反应一般为不能自发的氧化还原反应;可将电能转化为化学能 活性电极:阳极溶解(优先),金属生成金属阳离子 阳极惰性电极一般为阴离子放电,失电子被氧化,发生氧化反应 (接电源正极)(石墨、铂等)常用放电顺序是:Cl->OH->高价态含氧酸根(还原性顺序), 发生氧化反应,相应产生氯气、氧气 电解原理电极反应 阴极电极本身一般不参加反应,阳离子放电,得电子被还原,发生还原反应 (接电源负极)常用放电顺序是:Ag+>Cu2+>H+>活泼金属阳离子(氧化性顺序), 相应产生银、铜、氢气 电流方向:正极到阳极再到阴极最后到负极 电子流向:负极到阴极,阳极到正极(电解质溶液中无电子流动,是阴阳离子在定向移动) 离子流向:阴离子移向阳极(阴离子放电),阳离子移向阴极(阳离子放电) 常见电极反应式阳极:2Cl--2e-==Cl↑,4OH--4e-==O↑+2H O或2H O-4e-==O↑+4H+(OH-来自水时适用) 22222 电解池阴极:Ag++e-==Ag,Cu2++2e-==Cu,2H++2e-==H↑或2H O+2e-==H↑+2OH-(H+来自水时适用) 222 电解水型:强碱、含氧强酸、活泼金属的含氧酸盐,如:NaOH、KOH、H SO、HNO、Na SO溶液等 24324 电解溶质型:无氧酸、不活泼金属的含氧酸盐,如:HCl、CuCl溶液等 2 常见电解类型电解溶质+水(放氢生碱型):活泼金属的无氧酸盐,如:NaCl、KCl、MgCl溶液等 2 电解溶质+水(放氧生酸盐):不活泼金属的含氧酸盐,如:CuSO、AgNO溶液等 43 氯碱工业的基础:电解饱和食盐水制取氯气、氢气和氢氧化钠 第2页

电化学基础知识点总结最新版本

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电解质溶液 电极反应: 负极(锌筒)Zn-2e -=Zn 2+ 正极(石墨)2NH 4++2e -=2NH 3+H 2↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+=Zn 2++2NH 3+H 2↑ 干电池: 电解质溶液:糊状的NH 4Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电流增加); 电解液:由中性变为碱性(离子导电性好)。 正极(PbO 2) PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极(Pb ) Pb+SO 42--2e -=PbSO 4 铅蓄电池:总反应:PbO 2+Pb+2H 2SO 4 2PbSO 4+2H 2O 电解液:1.25g/cm 3~1.28g/cm 3的H 2SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni ——Cd )可充电电池; 其它蓄电池 Cd+2NiO(OH)+2H 2O Cd(OH)2+2Ni(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e -=4OH - ③、氢氧燃料电池: 总反应:O 2 +2H 2 =2H 2O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属(Hg 2+)酸碱等物质;回收金属,防止污染。 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子 化学电源简介 放电 充电 放电 放电`

《电化学基础》知识点归纳

《电化学基础》知识点 归纳 https://www.doczj.com/doc/1b12355807.html,work Information Technology Company.2020YEAR

第四章电化学基础 第一节原电池 原电池: 1、概念:化学能转化为电能的装置叫做原电池。 2、组成条件:①两个活泼性不同的电极②电解质溶液③电极用导线相连并插入电解液构成闭合回路 3、电子流向:外电路:负极——导线——正极 内电路:盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。 4、电极反应:以锌铜原电池为例: 负极:氧化反应: Zn-2e=Zn2+(较活泼金属) 正极:还原反应: 2H++2e=H2↑(较不活泼金属) 总反应式: Zn+2H+=Zn2++H2↑ 5、正、负极的判断: (1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。(2)从电子的流动方向负极流入正极 (3)从电流方向正极流入负极 (4)根据电解质溶液内离子的移动方向阳离子流向正极,阴离子流向负极(5)根据实验现象①__溶解的一极为负极②增重或有气泡一极为正极 第二节化学电池 1、电池的分类:化学电池、太阳能电池、原子能电池 2、化学电池:借助于化学能直接转变为电能的装置 3、化学电池的分类:一次电池、二次电池、燃料电池 一、一次电池

1、常见一次电池:碱性锌锰电池、锌银电池、锂电池等 二、二次电池 1、二次电池:放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。 2、电极反应:铅蓄电池 放电:负极(铅): Pb +SO 42--2e - =PbSO 4↓ 正极(氧化铅): PbO 2+4H ++SO 42-+2e - =PbSO 4↓+2H 2O 充电:阴极: PbSO 4+2H 2O -2e - =PbO 2+4H ++SO 42- 阳极: PbSO 4+2e - =Pb +SO 42- 两式可以写成一个可逆反应: PbO 2+Pb +2H 2SO 4 2PbSO 4↓+2H 2O 3、目前已开发出新型蓄电池:银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池 三、燃料电池 1、燃料电池: 是使燃料与氧化剂反应直接产生电流的一种原电池 2、电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。,负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。 当电解质溶液呈酸性时: 负极:2H 2-4e - =4H + 正极:O 2+4e - +4H + =2H 2O 当电解质溶液呈碱性时: 负极: 2H 2+4OH --4e -=4H 2O 正极:O 2+2H 2O +4 e - =4OH - 放电 充电

《电化学基础》知识点归纳

第四章电化学基础 第一节原电池 原电池: 1、概念:化学能转化为电能的装置叫做原电池。 2、组成条件:①两个活泼性不同的电极②电解质溶液③电极用导线相连并插入电解液构成闭合回路 3、电子流向:外电路:负极——导线——正极 内电路:盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。 4、电极反应:以锌铜原电池为例: 负极:氧化反应: Zn-2e=Zn2+(较活泼金属) 正极:还原反应: 2H++2e=H2↑(较不活泼金属) 总反应式: Zn+2H+=Zn2++H2↑ 5、正、负极的判断: (1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。 (2)从电子的流动方向负极流入正极 (3)从电流方向正极流入负极 (4)根据电解质溶液内离子的移动方向阳离子流向正极,阴离子流向负极 (5)根据实验现象①__溶解的一极为负极②增重或有气泡一极为正极 第二节化学电池 1、电池的分类:化学电池、太阳能电池、原子能电池 2、化学电池:借助于化学能直接转变为电能的装置 3、化学电池的分类:一次电池、二次电池、燃料电池 一、一次电池 1、常见一次电池:碱性锌锰电池、锌银电池、锂电池等 二、二次电池 1、二次电池:放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。

2、电极反应:铅蓄电池 放电:负极(铅): Pb +SO 42--2e ? =PbSO 4↓ 正极(氧化铅): PbO 2+4H + +SO 42-+2e ? =PbSO 4↓+2H 2O 充电:阴极: PbSO 4+2H 2O -2e ? =PbO 2+4H + +SO 42- 阳极: PbSO 4+2e ? =Pb +SO 42- 两式可以写成一个可逆反应: PbO 2+Pb +2H 2SO 4 2PbSO 4↓+2H 2O 3、目前已开发出新型蓄电池:银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池 三、燃料电池 1、燃料电池: 是使燃料与氧化剂反应直接产生电流的一种原电池 2、电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。,负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。 当电解质溶液呈酸性时: 负极:2H 2-4e - =4H + 正极:O 2+4e - +4H + =2H 2O 当电解质溶液呈碱性时: 负极: 2H 2+4OH --4e -=4H 2O 正极:O 2+2H 2O +4 e - =4OH ? 另一种燃料电池是用金属铂片插入KOH 溶液作电极,又在两极上分别通甲烷?燃料?和氧气?氧化剂?。电极反应式为: 负极:CH 4+10OH - -8e -? = +7H 2O ; 正极:4H 2O +2O 2+8e? =8OH?。 电池总反应式为:CH 4+2O 2+2KOH =K 2CO 3+3H 2O 3、燃料电池的优点:能量转换率高、废弃物少、运行噪音低 四、废弃电池的处理:回收利用 放电 充电

电化学基础知识点总结

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e =Zn 2+ 2H + +2e =2H 2 ↑ 电解质溶液 电极反应: 负极(锌筒)Zn-2e =Zn 2+ 正极(石墨)2NH 4+ +2e =2NH 3 +H 2 ↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+ =Zn 2+ +2NH 3 +H 2 ↑ 干电池: 电解质溶液:糊状的NH 4 Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电流增加); 电解液:由中性变为碱性(离子导电性好)。 正极(PbO 2 ) PbO 2 +SO 42-+4H + +2e =PbSO 4 +2H 2 O 负极(Pb ) Pb+SO 42--2e =PbSO 4 铅蓄电池:总反应:PbO 2 +Pb+2H 2 SO 4 2PbSO 4 +2H 2 O 失e ,沿导线传递,有电流产生 溶解 不断移 向 阳离 子 放电 充电

电解液:1.25g/cm 3 ~1.28g/cm 3 的H 2 SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni ——Cd )可充电电池; 其它蓄电池 Cd+2NiO(OH)+2H 2 O Cd(OH)2 +2Ni(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4 、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2 +2OH -4e =4H 2 O ;正极:O 2 +2H 2 O+4e =4OH ③、氢氧燃料电池: 总反应:O 2 +2H 2 =2H 2 O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属(Hg 2+ )酸碱等物质;回收金属,防止污染。 腐蚀概念:金属或合金与周围接触到的气体或液体进行化学反应而腐蚀损耗的过程。 概述: 腐蚀危害: 腐蚀的本质:M-ne →M n+ (氧化反应) 分类: 化学腐蚀(金属与接触到的物质直接发生化学反应而引起的腐蚀)、电化腐蚀 定义:因发生原电池反应,而使金属腐蚀的形式。 负极(Fe ):Fe-2e =Fe 2+ ;正极(C ):O 2 +2H 2 O+4e =4OH 电化 吸氧腐蚀: 总反应:2Fe+O 2 +2H 2 O=Fe(OH)2 腐蚀 后继反应:4Fe(OH)2 +O 2 +2H 2O =4Fe(OH)3 钢铁的腐蚀: 2Fe(OH)3 Fe 2 O 3 +3H 2 O 负极(Fe ):Fe-2e =Fe 2+ ; 析氢腐蚀: 正极(C ):2H + +2e =H 2 ↑ 化学电源简介 金属的腐蚀与防护 放电 放电` △

电化学基础知识点复习总结

装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电极反应: 负极(锌筒)Zn-2e -=Zn 2+ 正极(石墨)2NH 4++2e -=2NH 3+H 2↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+=Zn 2++2NH 3+H 2↑ 干电池: 电解质溶液:糊状的NH 4Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电流增加); 。 正极(PbO 2) PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极(Pb ) Pb+SO 42--2e -=PbSO 4 铅蓄电池:总反应:PbO 2+Pb+2H 2SO 4 2PbSO 4+2H 2O 电解液:1.25g/cm 3~1.28g/cm 3的H 2SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni ——Cd )可充电电池; 其它蓄电池 Cd+2NiO(OH)+2H 2O Cd(OH)2+2Ni(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e -=4OH - ③、氢氧燃料电池: 总反应:O 2 +2H 2 =2H 2O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属(Hg 2+)酸碱等物质;回收金属,防止污染。 失e -,沿导线传递,有电流产生化学电源简介 放电 充电 放电 放电`

高中化学选修4电化学知识点总结(最新整理)

第四章电化学基础 一、原电池: 1、概念:化学能转化为电能的装置叫做原电池。 2、组成条件:①两个活泼性不同的电极②电解质溶液③电极用导线相连并插入电解液构成闭合回路 3、电子流向:外电路:负极——导线—— 正极 内电路:盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。 4、电极反应:以锌铜原电池为例: 负极:氧化反应: Zn-2e=Zn2+(较活泼金属) 正极:还原反应: 2H++2e=H2↑(较不活泼金属) 总反应式: Zn+2H+=Zn2++H2↑ 5、正、负极的判断: (1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。 (2)从电子的流动方向:负极流入正极 (3)从电流方向:正极流入负极 (4)根据电解质溶液内离子的移动方向:阳离子流向正极,阴离子流向负极 (5)根据实验现象:①溶解的一极为负极②增重或有气泡一极为正极 二、化学电池 1、电池的分类:化学电池、太阳能电池、原子能电池 2、化学电池:借助于化学能直接转变为电能的装置 3、化学电池的分类:一次电池、二次电池、燃料电池 (一)一次电池 1、常见一次电池:碱性锌锰电池、锌银电池、锂电池等 (二)二次电池 1、二次电池:放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。 2、电极反应:铅蓄电池 放电:负极(铅): Pb-2e- =PbSO4↓ 正极(氧化铅): PbO2+4H++2e- =PbSO4↓+2H2O 充电:阴极: PbSO4+2H2O-2e- =PbO2+4H+ 阳极: PbSO4+2e- =Pb 两式可以写成一个可逆反应: PbO2+Pb+2H2SO4 ? 2PbSO4↓+2H2O 3、目前已开发出新型蓄电池:银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池 (三)燃料电池 1、燃料电池:是使燃料与氧化剂反应直接产生电流的一种原电池 2、电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。 ①当电解质溶液呈酸性时: 负极:2H2-4e- =4H+ 正极:O2+4e- +4H+ =2H2O

高中选修4-电化学基础知识点总结

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e - =2 H2↑ 电解质溶液 电极反应: 负极(锌筒)Zn -2e-=Zn 2+ 正极(石墨)2NH4++2e -=2NH 3+ H 2↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+=Zn 2+ +2NH 3+H 2↑ 干电池: 电解质溶液:糊状的NH 4Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电 流增加); 电解液:由中性变为碱性(离子导电性好)。 正极(PbO 2) PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极(Pb ) P b+SO 42--2e- =PbSO 4 铅蓄电池:总反应:P bO 2+P b+2H 2SO 4 2P bSO 4+2H 2O 电解液:1.25g/cm 3~1.28g/cm3 的H 2SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni——Cd )可充电电池; 其它蓄电池 Cd +2NiO(O H)+2H 2O Cd(OH)2+2N i(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子 化 学 电源 简介 放电 充电 放电 放电`

(完整版)高考电化学知识点总结

2011届高考电化学知识点总结 直击高考考点- 电化学知识是理论部分的一个重要内容,也是历年高考考查的一个重点。电化学知识既可以综合学科内的知识,如联系到:化学实验现象的判断和分析、定量实验的操作要求、离子方程式的书写、氧化还原反应问题分析、化学计算等。也可以涉及到学科间的知识的运用,如联系到物理学的“有关电流强度的计算、有关电量和阿伏加德罗常数的计算”等,还可以与生产生活(如金属的腐蚀和防护、电镀废液的危害与环保)、新科技及新技术(新型电池)等问题相联系,是不可忽视的一个知识点。在《考试大纲》中,它主要涵盖以下基本要求 1.理解原电池原理和电解池原理,能够正确分析和判断电化学中的电极反应,正确书写电极反应式。 2.了解化学腐蚀与电化学腐蚀,联系生产、生活中的金属腐蚀现象,会分析和区别化学腐蚀和电化学腐蚀,了解一般防腐蚀的方法,并能运用原电池的基本原理解释简单的防腐蚀等生产实际问题。。 3.铜的电解精炼、镀铜、氯碱工业等是电解原理的具体应用,要了解和熟悉这些反应原理。 4.电解池中电解质溶液的pH变化的计算。 复习过程中注意以下两点:(1)综合命题的趋势要求宽而不是难,历年的高考试题印证了这一点。对相差基础知识应扎实掌握,如电极反应的方程式的书写、燃料电池的分析、计算等。(2)理科综合考试的一个重要变化是从知识立意向能力立意的转变。对电化学问题、实物图的分析是近几年高考命题的一个热点,对图表类问题的分析处理要灵活掌握。 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原③、形成闭合回路(或在溶液中接触) 电负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。池基本概念:正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。原电极反应方程式:电极反应、总反应。 理 氧化反应负极铜锌原电池正极还原反应反应原理:Zn-2e-=Zn2+2H++2e-=2H2↑ 电解质溶液 失e-,沿导线传递,有电流产生 溶 解 不 断 移 向 阳 离 子

原电池与电解池 电化学知识点全复习

原电池与电解池 一、原电池 1. 构成原电池的条件: A.活泼性不同的两个电极 ①活动性不同的金属(或一种金属和一种非金属导体石墨),活泼金属为负极。 ②两惰性电极——石墨或Pt等(燃料电池电极)。; B.电解质溶液; C.形成闭合电路; D.自发氧化还原反应。 2. 原电池的反应原理 电子从负极流出,沿导线流回正极 ①活动性不同的金属(或一种金属和一种非金属导体石墨) 负极:较活泼金属,失电子,化合价升高,发生氧化反应 溶液中的阴离子向负极移动,电极质量减小。 正极:不活泼金属(或石墨等),得电子,化合价降低,发生还原反应。 ①当负极材料能与电解液直接反应时,溶液中的阳离子得电子。例:溶液中如果有阳离子,应由金属阳离子先得电子,变成金属单质,锌铜原电池中,电解液为HCl,正极H+得电子生成H2。 ②当负极材料不能与电解液反应时,溶解在电解液中的O2得电子。如果电解液呈酸性,O2+4e-+4H+==2H2O;如果电解液呈中性或碱性,O2+4e-+2H2O==4OH- 判断正负极的依据:金属活动顺序表 ②两惰性电极——石墨或Pt等(燃料电池电极) 负极:可燃烧的气体 正极:氧气 3. 各种电池 ①碱性干电池 Zn+2MnO2+2H2O=Zn(OH)2+2MnOOH ②铅蓄电池 Pb+PbO2+2H2SO4=2PbSO4+2H2O, 请写出电极反应式。注意:PbSO4是难溶物。 ③燃料电池

二、电解池 1. 电解:使电流通过电解质溶液而在阴阳两极引起氧化还原反应的过程,叫做电解。 2. 电解池的组成条件: ①直流电源 ②两个电极 ③电解质溶液或熔融电解质 ④形成闭合回路 ? 判断电解池两极的常用依据 ①看电源(与电池正极相连的是阳极,与负极相连的是阴极) ②看电子方向、两极产物(阳离子移向阴极,发生还原反应 阴离子移向阳极,发生氧化反应) 3. 电解反应方程式: 阴极:溶液中的阳离子向阴极移动,得电子,发生还原反应。阴极受保护。(电镀原理) 阳离子的放电顺序:金属活动顺序表的逆序 Zn 2+< Fe 2+ < Pb 2+ < H + < Cu 2+ < Fe 3+ < Hg 2+ < Ag + 注意: Ag + > Fe 3+ > Cu 2+ ; Fe 2+ > H 2O > Al 3+ 电镀时:H +浓度较小:H +< Zn 2+< Fe 2+< Pb 2+ < Cu 2+ 阳极:溶液中的阴离子向阴极移动,失电子,发生氧化反应。 放电顺序:① 活性电极(Ag 以前),电极失电子 A - ne-==A n+ ② 惰性电极(Pt 、Au 、石墨),阴离子放电 S 2->I ->Br ->Cl - >OH - ? 电解硫酸铜溶液的电极反应式和总反应式 阴极:2Cu 2+ + 4e- = 2Cu 阳极:4OH - - 4e- = 2H 2O + O 2↑ 4H2O==4H ++4OH- ? 写出以碳棒作电极电解饱和氯化钠溶液的电极反应式 阳极 (C): 2Cl -- 2e -=Cl2↑ 阴极 (C):2H+ +2e -= H2 ↑ ? 写出以铜棒作电极电解氯化铜溶液的电极反应式 阳极 (Cu): Cu - 2e -=Cu2+ 阴极 (Cu): Cu2+ +2e -= Cu 4. 电解原理的应用 a. 铜的电解精炼 ⑴粗铜含的杂质: Zn 、Fe 、Ni 、Ag 、Au 等 ⑵粗铜的精炼 粗铜做阳极,纯铜做阴极,CuSO 4溶液做电解液 (3)电极反应式 (4) 阳极上比铜不活泼的金属,沉积于阳极底部,成为阳极泥,可以提炼金、银 等贵重金属 通电 2Cu 2+ + 2H 2O 2Cu + 4H+ + O 2↑

电化学基础复习总结

6-3~4电化学原理一、电化学装置——原电池和电解池的联系比较

二、几种特殊的电池 1、蓄电池 又称次电池、充电电池,蓄电池在工作(放电)过程中属于池反应,在充电过程中属于池反应。 放电时——、两极的电极反应式的书写时~分析电解质溶液是否参与电极反应(直接反应或明显发生后继反应);充电时——、两极的电极反应式的书写时~分析电极材料和离子放电顺序。 例析:Ag—Zn高能电池(钮扣电池)由Ag2O、Zn及KOH溶液组成。总反应为:Zn+Ag2O+H2O=Zn(OH)2+2Ag 根据原电池原理可知:Zn做负极,Ag2O做正极,电解质溶液为KOH溶液。负极极失去电子发生氧化反应:Zn–2e-=Zn2+,Zn2+与溶液中的OH-反应Zn2++2OH-=Zn(OH)2,所以负极反应式为:Zn–2e-+2OH-=Zn(OH)2; 正极为Ag2O得到电子发生还原反应,即Ag2O+2e-=2Ag+O2- ,O2-在中性或碱性环境结合H2O生成OH-,所以正极反应式为:Ag2O+2e-+H2O=2Ag+2OH-。 2、燃料电池 燃料电池是一种不经燃烧而将燃料的化学能经过电化学反应直接转变为电能的装置。不发火焰(不转化光能,热能转化很少),化学能直接转化为电能,能量转化程度高达80%以上。 所有的燃料电池的工作原理一样,反应书写有规可循。如果燃料电池发生的电化学反应的最终产物与燃烧产物相同(一般为酸性条件),可根据燃烧反应写出总的电池反应,但不注明反应的条件。负极发生氧化反应,正极发生还原反应,要注意一般电解质溶液要参与电极的后继反应(一般为碱性条件)。 3、盐桥电池 如Cu-Zn原电池中以KCl溶液做电解质 盐桥的作用仅仅是导电,利用了其中的阴阳离子的定向移动将两个烧杯形成闭合回路。 锌铜电池,电解质溶液锌端硫酸锌,铜端硫酸铜,即两端不一样,所以产生电势差,于是,电子从负极Zn失去,沿着导线移向正极Cu,即外面的导线中,电子即负电荷从Zn到Cu,中间有盐桥连接,即盐桥中的负电荷即阴离子应该从CuSO4的一端沿着盐桥移向ZnSO4的一端,或者说,盐桥中的正电荷即阳离子就从ZnSO4的一端沿着盐桥移向CuSO4的一端,总之,要保证两端烧杯中的正负电荷要守恒。 另外以含有离子的琼脂块作盐桥,应用很广泛。 4、其它因介质而不同的电池 (1)镁铝因酸碱而不同的电池··· (2)铜铁因硝酸浓稀而不同的电池··· 5、常见原电池方程式 1.熔融碳酸盐燃料电池 (Li2CO3和Na2CO3熔融盐作电解液,CO作燃料): 正极:O2+2CO2+4e- →2(CO3)2-(持续补充CO2气体)

高考电化学专题复习知识点总结完美版资料

一、原电池的工作原理装置特点:化学能转化为电能。①、两个活泼性不同的电极; ;形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应)③、形成闭合回路(或在溶液中接触)原 ④、建立在自发进行的氧化还原反应基础之上电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。池 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。原基本概念:电极反应方程式:电极反应、总反应。理 正还原反氧化反应负铜锌原电 -2++ =2H+22H反应原理Zn-2e↑=Z 不 解断 电解质溶液 二、常见的电池种类2+ -负极(锌筒)Zn-2e=Zn 电极反应: -+↑=2NH 正极(石墨)2NH+H+2e 2432++ +2NH 总反应:Zn+2NH+H=Zn↑①普通锌——锰干电池243Cl 电解质溶液:糊状的NH 干电池:4特点:电量小,放电过程易发生气涨和溶液 锰干电池②碱性锌——--负极(锌筒)Zn-2e=Zn(OH)+2OH电极反应:22MnOOH ++2HO +2MnO=- 2e 2OH-( 氢氧化氧锰) 正极(石墨) 222MnOOH2 HO+Zn+2MnO=+总反应:Zn(OH) 222电极:负极由锌改锌粉(反应面积增大,放电电流增加);使用寿命提高 。电解液:由中性变为碱性(离子导电性好) -2-+O +4H=PbSOPbO+SO+2e+2H 正极(PbO)22244-2--2e=PbSO Pb+SOPb 负极()44O +Pb+2HSO 2PbSO+2HPbO 铅蓄电池总反应:放电24242充电33溶液的电解液:1.25g/cmH~1.28g/cmSO42特点:电压稳定, 废弃电池污染环境蓄电池 ——Cd)可充电电池;Ⅰ、镍——镉(Ni 可充电电池 KOH溶液负极材料:Cd;正极材料:涂有NiO,电解质:其它2Ni(OH)+ Cd(OH) NiO+Cd+2HO 2222 放电Ⅱ、银锌蓄电池放电` KOH和石墨,负极盖填充锌汞合金,电解质溶液。正极壳填充AgO2 充电 O+H﹦反应式为:2Ag+Zn(OH)Zn+Ag 222电放`充电+2S 6LiCl+LiSO 8Li+3SOCl)(Li-SOCl 锂亚硫酰氯电池:= 32 22电放 `)( 用途:质轻、高能比能量高、高工作效率、高稳定电压、工作温度宽、高使用寿命,锂电池 广泛应用于军事和航空领域。

新人教版高中化学选修4知识点总结:第四章电化学基础

电化学基础 一、原电池 课标要求 1、掌握原电池的工作原理 2、熟练书写电极反应式和电池反应方程式 要点精讲 1、原电池的工作原理 (1)原电池概念:化学能转化为电能的装置,叫做原电池。 若化学反应的过程中有电子转移,我们就可以把这个过程中的电子转移设计成定向的移动,即形成电流。只有氧化还原反应中的能量变化才能被转化成电能;非氧化还原反应的能量变化不能设计成电池的形式被人类利用,但可以以光能、热能等其他形式的能量被人类应用。 (2)原电池装置的构成 ①有两种活动性不同的金属(或一种是非金属导体)作电极。 ②电极材料均插入电解质溶液中。 ③两极相连形成闭合电路。 (3)原电池的工作原理 原电池是将一个能自发进行的氧化还原反应的氧化反应和还原反应分别在原电池的负极和正极上发生,从而在外电路中产生电流。负极发生氧化反应,正极发生还原反应,简易记法:负失氧,正得还。 2、原电池原理的应用 (1)依据原电池原理比较金属活动性强弱 ①电子由负极流向正极,由活泼金属流向不活泼金属,而电流方向是由正极流向负极,二者是相反的。

②在原电池中,活泼金属作负极,发生氧化反应;不活泼金属作正极,发生还原反应。 ③原电池的正极通常有气体生成,或质量增加;负极通常不断溶解,质量减少。 (2)原电池中离子移动的方向 ①构成原电池后,原电池溶液中的阳离子向原电池的正极移动,溶液中的阴离子向原电池的负极移动; ②原电池的外电路电子从负极流向正极,电流从正极流向负极。 注:外电路:电子由负极流向正极,电流由正极流向负极; 内电路:阳离子移向正极,阴离子移向负极。 3、原电池正、负极的判断方法: (1)由组成原电池的两极材料判断 一般是活泼的金属为负极,活泼性较弱的金属或能导电的非金属为正极。 (2)根据电流方向或电子流动方向判断。 电流由正极流向负极;电子由负极流向正极。 (3)根据原电池里电解质溶液内离子的流动方向判断 在原电池的电解质溶液内,阳离子移向正极,阴离子移向负极。 (4)根据原电池两极发生的变化来判断 原电池的负极失电子发生氧化反应,其正极得电子发生还原反应。 (5)根据电极质量增重或减少来判断。 工作后,电极质量增加,说明溶液中的阳离子在电极(正极)放电,电极活动性弱;反之,电极质量减小,说明电极金属溶解,电极为负极,活动性强。 (6)根据有无气泡冒出判断 电极上有气泡冒出,是因为发生了析出H2的电极反应,说明电极为正极,活动性弱。 本节知识树

电化学专题复习教案.doc

电化学专题复习 一、电化学基础知识 [规律总结]: 1、原电池、电解池、电镀池判定 (1)若无外接电源,可能是原电池,然后根据原电池的形成条件判定; (2)若有外接电源,两极插入电解质溶液中,则可能是电解池或电镀池,当阳极金属与电解质溶液中的金属离子相同则为电镀池; (3)若为无明显外接电源的串联电路,则应利用题中信息找出能发生自发氧化还原反应的装置为原电池。 2、可充电电池的判断放电时相当于原电池,负极发生氧化反应,正极发生还原反应;充电时相当于电解池,放电时的正极变为电解池的阳极,与外电源正极相连,负极变为阴极,与外电源负极相连。

二、原电池的分类及电极反应的书写 (一) [规律总结]: 1、原电池电极名称的判断方法 (1)根据电极材料的性质确定金属—金属电极,活泼金属是负极,不活泼金属是正极;金属—非金属电极,金属是负极,非金属是正极;金属—化合物电极,金属是负极,化合物是正极。 (2)根据电极反应的本身确定失电子的反应—氧化反应—负极;得电子的反应—还原反应—正极 2、原电池电极反应式书写关键 (1)明确电池的负极反应物是电极本身还是其他物质、反应产物及化合价的变化; (2)确定电池的正极反应物是电解质溶液中的离子,还是其他物质(如溶有或通入的氧气);(3)判断是否存在特定的条件(如介质中的微粒H+、OH-非放电物质参加反应),进而推断电解质溶液的酸碱性的变化; (4)总的反应式是否满足质量守衡、得失电子守衡、电荷守衡。 (二)中学化学常见原电池分为三大类。 1、仅有一电极材料参与反应 在这类原电池中,参与反应的电极失去电子、被氧化,是负极,一般为金属;不参与反应的另一电极为正极,正极周围的离子或分子(如:H+、Cu2+、O2、Cl2等)得电子、被还原。 例:教材上介绍的以Zn和Cu为电极材料,H2SO4溶液为电解质的原电池属于这一类。钢铁的电化腐蚀过程中形成的许多微小的原电池也属于这一类。 例:以铜和石墨为电极材料, ①硝酸银溶液为电解质的原电池负极反应式为:;正极电极反应式为:。 ②氯水为电解质融合组成的原电池,负极反应式为:;正极电极反应式为:。 2.两电极材料都参与反应 这一类电池的两电极材料分别由金属和金属的化合物组成。金属失去电子,被氧化,为负极。金属的化合物得电子,被还原,为正极。这一类电池一般可以充电。铅蓄电池、银锌钮扣电池都属于这类。

相关主题
文本预览
相关文档 最新文档