当前位置:文档之家› 电解加工在航空制造中的应用及发展

电解加工在航空制造中的应用及发展

电解加工在航空制造中的应用及发展
电解加工在航空制造中的应用及发展

电解加工在航空工业中的应用前景(精)

电解加工在航空工业的应用前景 电解加工是近代才被采用的一种新型的加工方法。我国在 1958年首先在膛线加工中应用,后来逐渐地在深孔、花键孔、链轮、内齿轮、叶片、异形零件和模具制造等的方面推广而来。如今,电解加工已经是一种成熟的特种加工技术。它区别与冷加工,热加工,机械加工,而是利用化学能进行加工,完美的将化学工业与机械工 业结合起来。 电解加工及其复合加工今年来在航空航天工业的应用越来越多。电解加工以其加工速度快,便面质量好,不怕材料强、硬、韧个,无宏观机械切削力,工件阴极无损耗,可用同一个成型阴极作单方向送进而成批加工复杂型腔、型面、型孔的等优点, 在航空制造应用领域甚广。 叶片是航空发动机、汽轮机的重要零件。以前叶片的加工是靠在铣床上用靠模进行铣削,效率非常低,据综合统计,由于航空发动机叶片数量多且难加工,用传统切 削方法加工约占整台发动机加工劳动量的 30%以上。而相对于叶片的几何结构及 采用的材料,电解加工却能充分发挥其技术特长。我国、苏联、英国早在 20世纪 50年代末、 60年代初就开始采用电解加工叶片,尽管由于叶片精密锻造、精密铸造、精密辊轧技术的提高有更多的叶片采用精密成形,使电解加工叶片的数量有一些减少,但随着叶片材料向高强、高硬、高韧性方向发展和钛合金、钴镍超级耐热合金的采用,以及超精密、超薄、大扭角、低展弦比等特殊结构叶片的出现,对电解加工又提出了新的,更高的要求,电解加工依然是优选工艺方法之一。 特殊类型的孔加工是电解加工在航天制造中的另一种典型应用, 主要包括难切削材料构件上的深小孔、型孔加工。如空心冷却涡轮叶片和导向器叶片上的许多小孔 , 特别是深小孔和呈多向不同角度分布的小孔 , 用普通机械钻削方法特别困难 , 甚至不能加工 ; 而用电火花、激光加工又有表面再铸层问题 , 且加工孔深也有限 ; 采用电解方法则加工效率、加工质量明显提高 , 加工孔深大大增加 , 还可以采用复合多孔加工方式 , 使加工效率提高几倍、十几倍。

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

超精密加工技术的发展现状是怎么样的

超精密加工技术的发展现状是怎么样的 自从中国将“装备制造业”列为国家发展战略后,中国的装备制造业取得了突飞猛进的发展,很多大型装备的制造能力都已经跃居世界先进水平,甚至成为世界的顶级水平,但中国制造业总体还是落后的,其落后就在于精密制造的落后。 超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向。 现代科学技术的发展以试验为基础,所需试验仪器和设备几乎无一不需要超精密加工技术的支撑。由宏观制造进入微观制造是未来制造业发展趋势之一,当前超精密加工已进入纳米尺度,纳米制造是超精密加工前沿的课题。世界发达国家均予以高度重视。 超精密加工的发展阶段 目前的超精密加工,以不改变工件材料物理特性为前提,以获得极限的形状精度、尺寸精度、表面粗糙度、表面完整性(无或极少的表面损伤,包括微裂纹等缺陷、残余应力、组织变化)为目标。 超精密加工的研究内容,即影响超精密加工精度的各种因素包括:超精密加工机理、被加工材料、超精密加工设备、超精密加工工具、超精密加工夹具、超精密加工的检测与误差补偿、超精密加工环境(包括恒温、隔振、洁净控制等)和超精密加工工艺等。一直以来,国内外学者围绕这些内容展开了系统的研究。超精密加工的发展经历了如下三个阶段。1)20世纪50年代至80年代,美国率先发展了以单点金刚石切削为代表的超精密加工技术,用于航天、国防、天文等领域激光核聚变反射镜、球面、非球面大型零件的加工。2)20世纪80年代至90年代,进入民间工业的应用初期。美国的摩尔公司、普瑞泰克公司,日本的东芝和日立,以及欧洲的克兰菲尔德等公司在政府的支持下,将超精密加工设备的商品化,开始用于民用精密光学镜头的制造。单超精密加工设备依然稀少而昂贵,主要以专用机的形式订制。在这一时期还出现了可加工硬质金属和硬脆材料的超精密金刚石磨削技术及磨床,但其加工效率无法和金刚石车床相比。

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

精密和超精密加工技术复习思考题答案

精密和超精密加工技术复习思考题答案 第一章 1.试述精密和超精密加工技术对发展国防和尖端技术的重要意义。 答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。制造惯性仪表,需要有超精密加工技术和相应的设备。 尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。 2.从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。 答:通常将加工精度在0.1-lμm,加工表面粗糙度在Ra 0.02-0.1μm之间的加工方法称为精密加工。而将加工精度高于0.1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。 3.精密和超精密加工现在包括哪些领域。 答:精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨。例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工。如电子束,离子束加工。使美国超大规模集成电路线宽达到0.1μm。 4.试展望精密和超精密加工技术的发展。 答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术。 5.我国的精密和超精密加工技术和发达国家相比情况如何。 答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。磁盘生产质量尚未完全过关,激光打印机的多面棱镜尚不能生产。1996年我国进口精密机床价值达32亿多美元(主要是精密机床和数控机床)。相当于同年我国机床的总产值,某些大型精密机械和仪器国外还对我们禁运。这些都说明我国必须大力发展精密和高精密加工技术。 6.我目要发展精密和超精密加工技术,应重点发展哪些方面的内容。

电解原理及应用

电解原理及应用 学习目标 知识与技能:1、理解电解原理,会判断电解池、电极产物、电极周围溶液pH值及整个溶液pH值的变化; 2、能书写电极反应式及总反应式,培养分析归纳知识的能力。 过程与方法:1、利用惰性电极电解氯化铜的实验,探究电解原理 2、了解电解的应用,特别是电解在电镀、电解精炼、电冶炼等方面的应用。情感态度与价值观:通过电解知识的学习,发现其在日常生活和工农业生产中的广泛应用,激发学生勇于创新、积极实践的科学态度。 重点:理解电解原理和以电解CuCl2溶液为例得出惰性电极作阳极时的电解的一般规律。 难点:理解电解原理,非惰性电极作阳极对电解产物的判断,电解原理的应用。 先学后教 回顾:电解质是指在________________________________能够导电的___________。电离是指电解质在_____________或__________状态下离解成____________过程。电解质溶液或熔融电解质导电的实质是。 一、电解 1、定义: 2、电解装置—电解池(槽) (1)定义: (2)构成条件: ①——提供电能 ②——形成闭合回路 ③——帮助实现能量转化 (3)能量转化方式: (4)电极名称、电极判断和电极反应类型: 左边石墨棒电极名称:,电极反应类型: 右边石墨棒电极名称:,电极反应类型: 电解质溶液中离子的迁移方向: 二、电解原理 1、离子放电顺序(惰性电极通常包括和等) 阴极阳离子放电顺序:Ag+> Hg 2+> Fe 3+> Cu 2+>H+> Pb 2+>Sn 2+>Fe 2+>Zn 2+> Al 3+>Mg 2+>Na+>Ca 2+>K+ 阳极阴离子放电顺序:S2-> I-> Br->Cl-> OH-> 含氧酸根> F- 思考与交流:①上述阳离子顺序与离子的氧化性或金属活动性顺序有何联系?上述阴离子顺序与离子的还原性有何联系? ②若用铜做电极,阳极的放电情况会怎么样? 2、电极反应式书写

焊接技术的发展及发展趋势

焊接技术的发展及发展趋势 黄牡丹 佳木斯大学材料科学与工程学院黑龙江省佳木斯市154007 摘要:本文综述焊接技术的发展及发展趋势,焊接技术,又称连接工程,是一种重要的材料加工工艺,随着人类社会的发展,各种新材料的不断开发及科学技术不断的发展,焊接技术已经成为一门独立的学科,它广泛应用于石油化工、电力、航空航天、海洋工程、微电子技术等工业部门。可以预测,在未来焊接技术的发展趋势必然走向自动化、高效、环保、节能等方面。 关键词:焊接技术、自动化、环保 The development of welding technology and development trend HUANGMudan Jia-mu-si University, School of materials science and engineering, Jia-mu-si 154007 Abstract:This paper reviews the development of welding technology and developing trend of welding technology, also known as the connection of engineering, is a kind of important material processing technology, with the development of human society, all kinds of new materials to develop and continuously with the development of science and technology, welding technology has become an independent discipline, it is widely used in petrochemical, electric power, aerospace, Marine engineering, microelectronics and other industrial sectors. Can be predicted that in the future development trend of welding technology inevitably toward automation, high efficiency, environmental protection, energy saving, etc. Key words:Welding technology ; automation; Environmental protection; 0引言 焊接的定义如下:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程成为焊接[1]。焊接的发展过程就某种意义上来说就是焊接热源的发展过程,从上个世纪80年代开发电弧以来,焊接热源也在不断发展中。进入到新世纪,焊接技术的不断的在得到发展,从目前的发展趋势看来,焊接技术逐步向高效率、高质量、低成本、降低劳动强度、降低能耗的方向发展。所以焊接技术将随着科学技术的进步而不断发展,主要体现在以下几个方面 1数字化控制推动焊接技术的升级和发展 在几年前,数字化控制的焊机只是少数几个国际知名公司的“尖端科技”,但现在数字化控制的焊机已经广泛应用在我国的许多企业,在芬兰KEMPPI和奥地利Fronius 的推动下,数字化焊机已进入产业规模化生产阶段。虽然目前智能化还处在初级阶段,但有着广阔前景,是一个重要的发展方向。有关焊接工程的专家系统,近年来国内外已有较深入的研究,并已推出或准备推出某些商品化焊接专家系统。焊接专家系统是具有相当于专家的知识和经

超精密加工技术论文

超精密加工技术简介论文 学校:XXXXX 学院:XXXX 班级:XXXXX 专业:XXXXX 姓名:XXXX 学号:XXXX 指导教师:XXX

目录 目录 .......................................................................................................................................... - 2 - 一、概述................................................................................................................... - 1 - 1、超精密加工的内涵...................................................................................... - 1 - 2.、发展超精密加工技术的重要性................................................................. - 1 - 二、超精密加工所涉及的技术范围....................................................................... - 2 - 三、超精密切削加工............................................................................................... - 3 - 1、超精密切削对刀具的要求.......................................................................... - 3 - 2、金刚石刀具的性能特征.............................................................................. - 3 - 3、超精密切削时的最小切削厚度.................................................................. - 3 - 四、超精密磨削加工............................................................................................... - 4 - 1、超精密磨削砂轮.......................................................................................... - 4 - 2、超精密磨削砂轮的修整.............................................................................. - 4 - 3、磨削速度和磨削液...................................................................................... - 5 - 五、超精密加工的设备........................................................................................... - 5 - 六、超精密加工的支撑环境................................................................................... - 6 - 1、净化的空气环境.......................................................................................... - 6 - 2、恒定的温度环境.......................................................................................... - 6 - 3、较好的抗振动干扰环境.............................................................................. - 7 - 七、超精密加工的运用领域................................................................................... - 7 - 八、超精密加工的现状及未来发展....................................................................... - 7 - 1、超精密加工的现状...................................................................................... - 7 - 2、超精密加工的发展前景.............................................................................. - 8 - 总结:....................................................................................................................... - 9 - 参考文献:.....................................................................................错误!未定义书签。

埃马克高精密电解加工(PECM)技术2_图文

页码 1 — 6 埃马克高精密电解加工(PECM 技术——应对难加工材料的解决方案 汽车生产行业发展飞速,其趋势之一就是,建设新的生产基地,迎接新的挑战。特别是南美和中国,正在建设大量的生产基地,这些基地的规划会受到多种需求的影响。不仅需要建设具备创新技术和高度灵活的生产线来确保产量的提高(例如,每天出厂的乘用车数量,还要必须保障产品质量的不断提高。因此,在研发更有效的新工艺方面,对机械工程设计行业的创新者们提出了更高的要求,而埃马克(EMAG 的PECM 技术在对难加工材料制成的复杂零部件进行加工时拥有巨大的优势。 汽车工业、航空工业以及其他工业部门的发展为加工行业带来了巨大挑战,因为随着这些行业的发展和技术的进步,他们需要越来越多的难加工材料,以及制造更多具有特别复杂几何形状的新零部件。制造这些零部件所需的新工艺必须能够保证高效的生产工艺,和保证绝对的工艺完整性。 关注高难度的加工要求 在这种背景下,显而易见,生产计划人员必须要努力寻找新的创新性加工工艺。同时人们经常会问:那些机械工程设计领域中的新技术能否应对不断增长的生产需求?对于这一问题,埃马克集团旗下的一家电解加工(ECM 技术公司 EMAG ECM GmbH 给出了一个特殊的答案。埃马克的专家们利用他们称之为 PECM 的技术(“ P ”代表“精密”,进一步改进了该工艺。他们从一开始就特别关注加工复杂零部件

过程中所需的高难度任务。正如 EMAG ECM 技术销售主管理查德 ·凯勒所说:“在加工高强度合金时,许多用户至今仍依赖高速铣削和电火花放电加工。但是这项技术有自己的劣势,比如,工具磨损非常大,而且产生高温对材料造成不良影响。在PECM 中,则不会存在这些问 页码 2 — 6 题,即使出现这些现象,所造成的影响也是微不足道的。事实上,这正是该项工艺的特殊优势所在。” 高质量的工艺 该项工艺具有出众的优势:加工高强度合金(又被称为“超级合金”以及其它难加工材料时,工具基本上没有明显的磨损。产品表面光洁度非常高:没有毛刺,也没有材料结构损害。这是如何实现的呢?首先, EMC 工艺在清除材料的过程中,动作非常柔和。工件作为阳极,工具作为阴极,在这两极之间有电解液,电解液可以将金属离子从工件上剥离。由于工具的阴极形状代表了所期望的工件形状,因此仅在需要清除的地方清除材料即可。通过这种技术, 可以在非接触式、不受热效应影响的情况下加工出曲面、环形通道、凹槽或腔室等形状,并且能够确保最高的精确度。 更高的效率 凯勒先生说:“这项工艺使我们能够生产最为精致和复杂的零部件。我们已经有意识地将 ECM 发展为 PECM ,以确保我们能够在越来越小的部件上实现更高精度

我国通用航空发展现状及未来发展前景预测

我们所说的通用航空实际上只是整个民用航空业中的一个独立的分支,通用航空所涉及到的活动范围特别广阔,它基本包括了去除公共航空运输之外的所有内容,通用航空从事的方面包括了工农林渔等一系列方面,它的作业区域一般集中在低空区域,高度普遍在3000米以下,有一大部分甚至于是在600米以下的低空区域。通用航空作为一个新兴的领域,近几年来不断的蓬勃发展,根据报告数据显示,我们国家的通用航空的规模一直在以15%以上的增速在发展壮大,与几年前相比都是翻了几番,通用航空行业规模不断壮大,应用的场景也是日益增多,通用航空在整个国家GDP中的贡献率也越来越高。 1中国通用航空的现状分析 1.1中国通用航空的现状 中国的通用航空发展较晚,但是发展的比较迅猛,特别是近几年来一直保持着持续高效的发展趋势。就一个国家的通用航空而言,我们一般都是通过六个方面来考察它的整体水平:通用航空企业数量、通用航空机组规模、通用航空机场数量、年总飞行时长、从业人员水平以及社会经济效益。但是中国是一个人口和经济大国,按照这些指标来进行简单的评判的话并不能直接明了的判断出我国的通用航空发展的实际情况。就比如我国目前获得了通用航空许可证的企业超过了200家,航空机组规模也超过了3000架,但是这并不能代表我们国家的通用航空发展的水平比较高。若要真正的知晓我们国家的通用航空发展状况,我以为还是得从以下四个方面来实际的评判:(1)整体的通用航空的运输能力有多强;(2)通用航空用于工业作业以及农林作

业等的普及率有多高;(3)通用航空用于抢险救灾等重大事故救援中的水平有多高;(4)国内的普通居民的通用航空使用率有多高。 就通用航空的运输能力而言,我国目前的物流运输能力已经是初具规模,航空运输系统已经经受住了电网大型活动如“双十一”等的考验,但是这种规模的航空物流运输仅仅是停留在了大中型城市,通用航空运输的覆盖范围还是有限的,小型城市以及农村地区都无法被通用航空所覆盖。并且根据对通用航空企业的统计发现,现有的企业大多分布在我国的东部,西部地区的企业只有零星20来家,这种分布不均也会对整体的航空运输体验感造成很大影响。 就通用航空用于工业作业以及农林作业等的普及率而言,通用航空用于工农业的历史还是比较长的,但是根据调查研究是数据显示,截至到2016年,通用航空在工农业中的实际应用时长都没有达到15万小时,这个数据真实的表明了通用航空在工农业中的应用状态,整体都是十分缓慢的。 再来看看我国通用航空在抗震救灾中的应用,在天灾人祸发生的时候,通用航空会起到无法替代的作用。在几年前我国发生重大地震灾情的时候,地面通行都已经被阻断了,这个时候通用航空的作用是无可替代的,只能依靠直升机以及运输机等机组来进行运输救援,在这几次的天灾事故之中,虽然通用航空起到了得天独厚的作用,但是同样也暴露出了特别大的问题,相比国外,我们的通用航空的设备相对较为落后,各类配置都不够齐全,整体的救援能力还有待提高。 1.2通用航空存在的问题

精密加工技术期末复习资料

1.精密加工研究包括哪些主要内容? 精密加工机床,金刚石刀具,精密切削机理,稳定的加工环境,误差补偿,精密测量技术二.实现精密与超精密加工应具备哪些条件?试结合金刚石刀具精密切削简述切削用量对加工质量的影响及主要控制技术? ①精密加工机床-精密机床主轴轴承要求具有很高的回转精度,转动平稳,无振动,其关键在于主轴轴承 ②金刚石刀具-金刚石刀具的刀口半径只能达到0.1-0.3/um。当刃口半径小于0.01um时,必须解决测量上的难题。金刚石晶体的晶面选择。金刚石刀具刃口的锋利性 ③精密切削机理-掌握其变化规律 ④稳定的加工环境-包括恒温防振和空气净化 ⑤误差补偿-通过消除或抵消误差本身的影响,达到提高加工精度的目的 ⑥精密测量技术-精密加工要求测量精度比加工精度高一个数量级 3.试述常用几种主轴轴承的特点,并说明为什么目前大部分精密和超精密机床采用空气轴承? ①液体静压轴承-特点:转动平稳无振动,达到较高的刚度 空气轴承-特点:刚度低,承受载荷小 ②空气轴承造成的热变形小,刚度低,只能承受较小的载荷,超精密切削时切削力小,空气轴承能满足要求 4.试述在线检测和误差补偿技术在精密加工中的作用 精密和超精密加工的精度是依靠检测精度来保证的,而为了消除误差进一步提高加工精度,必须使用误差补偿技术 5.常用微量进给装置有哪些种类与作用? ①机械传动或液压传动式②弹性变形式③热变形式④流体膜变形式⑤磁致伸缩式⑥电致伸缩式作用:为了实现精密与超精密加工 6.金刚石刀具破损形式 ①裂纹:结构缺陷可产生裂纹,另外当切屑经过刀具表面时,金刚石收到循环应力的作用也可产生裂纹②碎裂:由于金刚石材料较脆,在切削过程中收到冲击和振动都会使金刚石刀刃产生细微的解理形成碎裂③解理:金刚石晶面方面选择不当,切削力容易引起金刚石的解理,刀具寿命下降 7.金刚石刀具磨损形式 ①机械磨损②破损③碳化磨损 8.微量进给机构的作用及类型 ①电致伸缩微量进给装置,作用:用于误差在线补偿②机械结构弹性变形微量进给装置,作用:用于手动操作③压电或电致伸缩微量进给装置,作用:用于实现自动微量进给 9.导轨类型 ①滚动导轨②液体静压导轨③气浮导轨和空气静压导轨 10.为什么精密切削加工会产生碾压作用? 在刃口圆弧处,不同的切削深度,刀具的实际前角是变化的,实际前角为较大的负前角,在刀具刃口圆弧处将产生很大的挤压摩擦作用,被加工表面将产生残余压应力 1.精密磨削加工按磨料加工大致分为哪几类?试述其特点及适用场合 ①磨料加工,固结磨料加工:磨削,砂轮磨削,砂带磨削研磨等 游离磨料加工:抛光,研磨:干式研磨,湿式研磨,磁式研磨。滚磨:回转式,振动式,离心式,主轴式,涡流式,衍密等②特点磨削除可以加工铸铁、碳钢。合金钢等一些一般结构材料外,还能加工一般刀具难以切削的高硬度材料如淬火钢,但不宜精加工塑性

《精密与超精密加工技术》知识点总结

《精密与超精密加工技术》知识点总结 1.加工的定义:改变原材料、毛坯或半成品的形状、尺寸及表面状态,使之符合规定要求的各种工作的统称。规定要求:加工精度和表面质量。 2.加工精度:是指零件在加工以后的几何参数(尺寸、形状、位置)与图纸规定的理想零件的几何参数相符合的程度。符合程度越高,加工精度则越高。 3.表面质量:指已加工表面粗糙度、残余应力及加工硬化。 4.精密加工定义:是指在一定时期,加工精度和表面质量达到较高程度的加工技术(工艺)。 5.超精密加工:是指在一定时期,加工精度和表面质量达到最高程度的加工技术(工艺)。 6.加工的划分普通加工(一般加工)、精密加工和超精密加工。普通加工:加工精度在1μm 以上(粗加工IT13~IT9、半精加工IT8~IT7、精加工IT6~IT5),粗糙度Ra0.1-0.8μm。加工方法:车、铣、刨、磨等。适用于:普通机械(汽车、拖拉机、机床)制造等。 精密加工:加工精度在1~0.1μm ,粗糙度Ra0.1μm 以下(一般Ra0.1~0.01μm )的加工方法。加工方法:车削、磨削、研磨及特种加工。适用于:精密机床、精密测量仪器等中的关键零件的制造。 超精密加工:加工精度在0.1~0.01μm ,粗糙度小于Ra0.01μm(Ra0.01~Ra0.001μm)的加工方法。 加工方法:金刚石刀具超精密切削、超精密磨削、超精密特种加工。适用于:精密元件的制造、计量标准元件、集成电路等的制造。 7.精密加工影响因素 8.切削、磨削加工:精密切削和磨削、超精密切削与磨削。 9.特种加工:是指一些利用热、声、光、电、磁、原子、化学等能源的物理的,化学的非传统加工方法。 10.精密加工和超精密加工的发展趋势:向高精度方向发展、向大型化,微型化方向发展、向加工检测一体化发展、研究新型超精密加工方法的机理、新材料的研究。 11.精密加工和超精密加工的特点:形成了系统工程它是一门多学科的综合高级技术;它与特种加工关系密切传统加工方法与非传统加工方法相结合;加工检测一体化在线检测并进行实时控制、误差补偿;与自动化技术联系密切依靠自动化技术来保证;与产品需求联系紧密加工质量要求高、技术难度大、投资大、必须与具体产品需求相结合。 12.金刚石刀具是超精密切削中的重要关键。金刚石刀具有两个比较重要的问题:一是晶面的选择,因为金刚石晶体各向异性;二是研磨质量,也就是刃口半径,因为影响变形和最小切削厚度。 13.检测技术是超精密切削中一个极为重要的问题。超精密加工要求测量精度比加工精度高一个数量级。 14.超精密加工必须在超稳定的加工环境条件下进行:恒温条件、防振条件。恒温:20℃±(1~0.02)℃恒湿:35﹪~45﹪空气净化、防振等。 15.金刚石分类:天然金刚石和人造金刚石两大类(碳的同素异形体)。 16.金刚石晶体的三种晶面晶体——原子具有规则排列的物体。晶体中各种方位上的原子面 叫晶面。晶体中各种方位上的原子列叫晶向。金刚石晶格中有三种重要晶面,(100),(110),(111)。 17.金刚石晶体具有强烈的各向异性不同晶面,不同方向性能有明显差别;金刚石刀具的晶面选择直接影响切削变形和加工表面质量;金刚石晶体和铝合金、紫铜间的摩擦系数在0.06~0.13之间,而

超精密加工技术的发展与展望

精密与特种加工技术 结课论文 题目:超精密加工技术的发展与展望指导教师:沈浩 学院:机电工程学院 专业:机械工程 姓名:司皇腾 学号:152085201020

超精密加工技术的发展与展望 摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。环保也是机械制造业发展的必然趋势。 关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工 【引言】 精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。超精

密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。 通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。现阶段通常把被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术称为超精密加工技术[1],也可以理解为超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程,其精度从微米到亚微米,乃至纳米。超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向[2]。 超精密加工技术综合应用了机械技术发展的新成果及现代光电技术、计算机技术、测量技术和传感技术等先进技术。同时,作为现代高科技的基础技术和重要组成部分,它推动着现代机械、光学、半导体、传感技术、电子、测量技术以及材料科学的发展进步。超精密加工在现代武器和一些尖端产品制造中具有举足轻重的地位,是其它一些加工方法无可替代的,它不仅可以应用于国防,而且可以广泛地应用于比较高端的民用产品中,是衡量一个国家科学技术发展水平的重要标志。 1、超精密加工技术的发展历史 精密超精密加工技术的起源从一定意义上可以上溯到原始社会:当原始人类学会了制作具有一定形状且锋利的石器工具时,可以认为出现了最原始的手工研

我对精密超精密加工技术的认识

我对精密超精密加工技 术的认识 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

我对精密超精密加工技术的认识目前,精密、超精密技术在我国的应用已不再局限于国防尖端和航空航天等少数部门,它已扩展到了国民经济的许多领域,应用规模也有较大增长。计算机、现代通信、影视传播等行业,现都需要精密、超精密加工设备,作为其迅速发展的支撑条件。计算机磁盘、录像机磁头、激光打印机的多面棱镜、复印机的感光筒等零部件的精密、超精密加工,采用的都是高效的大批量自动化生产方式。 传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达~μ;m,最好可到μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。抛光是利用机

电解池(电解原理及应用习题)讲解学习

电解池(电解原理及应 用习题)

电解池及其应用 一、电解池的工作原理 1电解:在直流电的作用下,在两电极上分别发生和的过程叫做电解。 2电解池:把转化为能的装置叫 ,也叫。 3.电解池中的基本关系: 阳极:与电源相连,电子,发生反应,元素化合价 ①电极 阴极:与电源相连,电子,发生反应,元素化合价 ②闭合回路:电子从流出,经过、,流入 电解池内:阳离子从移动向,阴离子从移动向。 阴阳离子的定向移动形成电流。 4.电解池的构成条件: (1)(2) (3)(4) 5.电解池中离子的放电顺序: 物质在电解池的阴、阳两极得失电子发生发生氧化还原反应的过程叫放电。阴极(阳离子放电顺序): Ag+>Hg2+>Fe3+>Cu2+>H+(酸)>Pb2+>Sn2+>Fe2+>Zn2+>H+ (水)>Al3+>Mg2+>Na+>Ca2+>K+ 阳极: ①为活性电极如金属单质(除Pt、Au)等时,则阳极材料自身优先放电。

②为惰性电极(石墨、Pt等)时,阴离子的放电顺序: S2->I->Br->Cl->OH->含氧酸根(如NO3-、SO42-、CO32-等)>F- 常见惰性电极电解电解质溶液类型 ①H2SO4阴极阳极 总化学方程式 ②NaOH阴极阳极 总化学方程式 ③KNO3阴极阳极 总化学方程式 ○4HCl阴极阳极 总化学方程式 ⑤CuCl2阴极阳极 总化学方程式 ⑥NaCl阴极阳极 总化学方程式 ⑦CuSO4阴极阳极 总化学方程式 二、电解原理的应用 1、氯碱工业:电解饱和食盐水 2、电镀 阳极:;阴极:;电解质溶液: 3、精炼铜 阳极:;阴极:;电解质溶液: 4、电冶金 活泼金属,如钾、钙、钠、镁、铝的冶炼 钠的冶炼: 镁的冶炼:

相关主题
文本预览
相关文档 最新文档