《3.3 解一元一次方程(二)——去括号与去分母》教学设计
- 格式:doc
- 大小:77.50 KB
- 文档页数:5
人教版七年级数学上册:3.3《解一元一次方程(二)——去括号与去分母》说课稿一. 教材分析人教版七年级数学上册3.3《解一元一次方程(二)——去括号与去分母》这一节,是在学生已经掌握了方程的概念、一元一次方程的解法的基础上进行的一节内容。
本节内容主要让学生掌握解一元一次方程的去括号和去分母的方法,是解一元一次方程的重要步骤。
在教材中,通过例题和练习题的形式,引导学生掌握这两种方法,并能够灵活运用。
二. 学情分析七年级的学生已经具备了一定的代数基础,对于方程的概念和解一元一次方程的方法已经有了一定的了解。
但是,学生在解方程的过程中,可能会遇到去括号和去分母的困难。
因此,本节课需要教师通过生动的讲解和示例,让学生理解和掌握这两种方法。
三. 说教学目标1.让学生掌握解一元一次方程的去括号和去分母的方法。
2.培养学生解决实际问题的能力,能够运用所学的知识解决一些简单的实际问题。
3.培养学生合作学习的能力,通过小组讨论和交流,提高解题的效率和准确性。
四. 说教学重难点1.教学重点:让学生掌握解一元一次方程的去括号和去分母的方法。
2.教学难点:让学生理解去括号和去分母的原理,能够灵活运用这两种方法解方程。
五. 说教学方法与手段在本节课中,我将采用讲授法、示例法、练习法、小组合作学习法等教学方法。
通过生动的讲解和示例,让学生理解和掌握解一元一次方程的去括号和去分母的方法。
同时,通过大量的练习题,让学生巩固所学的知识。
此外,采用小组合作学习法,让学生在小组内进行讨论和交流,提高解题的效率和准确性。
六. 说教学过程1.导入:通过复习方程的概念和一元一次方程的解法,引出本节课的内容——解一元一次方程的去括号和去分母的方法。
2.讲解:讲解去括号和去分母的方法,通过示例让学生理解这两种方法的原理和步骤。
3.练习:让学生进行大量的练习题,巩固所学的知识。
4.小组合作学习:让学生在小组内进行讨论和交流,共同解决问题。
5.总结:对本节课的内容进行总结,强调去括号和去分母的方法和注意事项。
一、学习目标:1.理解去括号的理论依据,掌握去括号的方法;2.理解去分母的理论依据,掌握去分母的方法;3.会解较复杂的一元一次方程;4.会列一元一次方程解决实际问题.二、重点、难点:重点:掌握含括号、分母的一元一次方程的解法,熟悉解方程的一般步骤.难点:去分母时的注意事项和一元一次方程的应用.三、考点分析:一元一次方程在中考中是必考内容,常与其他知识相结合.如果单独出题,一般考查较复杂的带分母、括号的一元一次方程的解法,或以应用题的形式出现,通常以选择题和填空题的形式进行考查.【知识点】1.去括号解方程的去括号和有理数运算中的去括号相似,主要依据的是乘法分配律.应注意,在去括号时,括号前边是负因数,去掉括号后所得各项的符号与原括号内相应各项的符号相反.2.去分母一个方程中如果含有分母,可以利用等式的性质2,在方程两边都乘所有分母的最小公倍数,将分母去掉.应注意:①分子如果是一个多项式,去掉分母后,要添上括号,防止出现符号错误;②整数项不要漏乘分母的最小公倍数.例题知识点一:一元一次方程的解法例1.解方程:(1)5x-(1-x)=-13;(2)2(y-6)=3-(4y+8).思路分析:题意分析:本题考查用去括号法则和移项法则解方程.解题思路:这两道题的解法是一样的,先去掉括号,再移项、合并同类项,最后把系数化为1,得到方程的解.解答过程:(1)去括号,得5x-1+x=-13移项,得5x+x=-13+1合并同类项,得6x =-12系数化为1,得x =-2.(2)去括号,得2y -12=3-4y -8移项,得2y +4y =3-8+12合并同类项,得6y =7系数化为1,得y =76. 解题后的思考:在求出方程的解之后,应自觉检查解的正误.把所求的解分别代入已知方程的左右两边,看左右两边是否相等.养成验根的习惯是非常必要的,可以帮助我们发现错误、避免错误.例2. 解方程:(1)7x -14=58;(2)16m -3=9m -23;(3)y -15-y -12=310. 思路分析:题意分析:本题中每个小题都含有分母,第(2)题去分母时应注意不要漏乘整数项.解题思路:解这三个方程都可以通过先去分母,然后去括号、移项、合并同类项、未知数系数化为1这五步完成.解答过程:(1)方程两边都乘8,得7x -14×8=58×8 去分母,整理得2(7x -1)=5去括号,得14x -2=5移项,得14x =5+2合并同类项,得14x =7系数化为1,得x =12. (2)方程两边都乘6,得16m ×6-3×6=9m -23×6 去分母,整理得m -18=2(9m -2)去括号,得m -18=18m -4移项,得m -18m =-4+18合并同类项,得-17m =14系数化为1,得m =-1417. (3)方程两边都乘10,得2(y -1)-5(y -1)=3去括号,得2y -2-5y +5=3合并同类项,得-3y +3=3移项,得-3y =3-3合并同类项,得-3y =0系数化为1,得y =0.解题后的思考:①解含有分母的方程去掉分母后,分子上的多项式要用括号括起来;②一般情况下,解一元一次方程主要有五个步骤,但并不是一定要经过这五个步骤.。
人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计一. 教材分析《人教版数学七年级上册3.3解一元一次方程(二)——去括号与去分母》这一节主要是让学生掌握解一元一次方程中的一种方法——去括号与去分母。
在学习了解一元一次方程的基础知识之后,本节内容是对学生解题能力的进一步提升。
通过本节内容的学习,学生能够熟练掌握去括号与去分母的步骤和技巧,为后续的学习打下坚实的基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于解一元一次方程的基本步骤和方法已经有了一定的了解。
但是,学生在实际操作中可能会遇到去括号和去分母的困惑。
因此,在教学过程中,教师需要引导学生理解去括号和去分母的原理,并通过大量的练习让学生熟练掌握操作步骤。
三. 教学目标1.让学生掌握去括号与去分母的步骤和技巧。
2.培养学生解决实际问题的能力,提高学生的数学素养。
3.通过对本节内容的学习,使学生能够灵活运用所学的知识,解决更复杂的问题。
四. 教学重难点1.去括号与去分母的步骤和技巧。
2.在实际问题中,如何正确运用去括号与去分母的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,提供典型案例让学生分析,小组讨论使学生相互学习,共同提高。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,让学生思考如何解决这类问题。
2.呈现(10分钟)呈现去括号与去分母的步骤和技巧,引导学生理解并掌握。
3.操练(10分钟)学生分组进行练习,教师巡回指导,及时解答学生的疑问。
4.巩固(10分钟)针对学生练习中出现的问题,进行讲解和总结,使学生加深对去括号与去分母方法的理解。
5.拓展(5分钟)提供一些拓展问题,让学生思考如何在实际问题中运用去括号与去分母的方法。
6.小结(5分钟)对本节内容进行总结,强调重点和难点,提醒学生注意事项。
7.家庭作业(5分钟)布置一些练习题,让学生巩固所学知识。
《3.3 解一元一次方程(二)——去括号与去分母》学历案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》学历案(第一课时)一、学习主题本节课的学习主题是“解一元一次方程的进一步学习”,具体聚焦于“去括号与去分母”这一关键知识点。
通过本课的学习,学生将掌握去括号和去分母的方法,为后续学习一元一次方程的解法打下坚实的基础。
二、学习目标1. 掌握去括号的法则和技巧,能够在解一元一次方程的过程中正确运用。
2. 理解去分母的意义和作用,掌握去分母的方法,并能在实际问题中应用。
3. 通过练习,提高学生的计算能力和问题解决能力,培养学生的数学思维和逻辑推理能力。
三、评价任务1. 能否正确理解和掌握去括号的法则和技巧,能否在解一元一次方程的过程中正确运用。
2. 能否理解去分母的意义和作用,能否掌握去分母的方法,并能在实际问题中应用。
3. 通过课堂练习和课后作业,评价学生的计算能力和问题解决能力是否有所提高。
四、学习过程1. 导入新课:通过回顾一元一次方程的基本形式和解法,引出本节课的学习内容——去括号与去分母。
2. 学习新知:首先,讲解去括号的法则和技巧,通过例题演示让学生理解并掌握。
其次,讲解去分母的方法和意义,同样通过例题演示让学生理解并掌握。
3. 课堂练习:提供一系列练习题,让学生运用所学知识进行练习,加深对知识的理解和掌握。
4. 课堂讨论:组织学生进行课堂讨论,分享解题经验和技巧,提高学生的交流和合作能力。
5. 归纳总结:对本节课的学习内容进行归纳总结,强调重点和难点,加深学生的印象。
五、检测与作业1. 课堂检测:通过小测验或课堂练习,检测学生对本节课所学知识的掌握情况。
2. 课后作业:布置相关练习题,让学生在家中进行巩固练习,提高计算能力和问题解决能力。
六、学后反思1. 学生应反思自己在课堂上的表现,包括听讲、练习、讨论等方面,找出自己的不足之处。
2. 学生应思考如何更好地掌握去括号与去分母的方法和技巧,提高自己的计算能力和问题解决能力。
学习必备欢迎下载
典型课例
教学设计
课题:3.3解一元一次方程(二)
去括号和去分母(第一课时)
授课人汪亚军
授课地点何湾镇丫山初中七(1)班
授课时间二◦一三年^一月^一日
课题:3.3解一元一次方程(二)
—去括号和去分母(第一课时)
【设计说明】
1. 教学内容
一元一次方程的去括号解法,用方程模型解决实际问题。
2. 教学内容分析
本节继续结合一些实际问题讨论一元一次方程,重点讨论两方面的问题:
(1)如何根据实际问题列方程?这也是贯穿全章的中心问题。
(2)如何解方程?本节课重点讨论解方程中的“去括号”。
本节课从一道“用电问题”,引出解方程中的“去括号”问题,进而讨论用“去括号” 的方法解这类方程.“去括号”是今后学习化简代数式、分解因式、配方法等知识的重要环节。
3. 教学问题诊断分析
在《有理数》和《整式的加减》的学习中,学生已经掌握了用“去括号”和“分配律” 化简算式的方法,在掌握方程中的“合并同类项”和“移项”的基础上,能初步了解“用一元一次方程分析和解决实际问题的基本过程”。
当实际问题中出现多个未知量或有隐含数量时,分析数量关系和建立相等关系对学生来说有一定的困难。
【教学目标及重难点分析】
【教学流程安排】
【教学过程设计】。
3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程教学目标1.掌握用一元一次方程解决实际问题的方法,会用分配律去括号解含括号的一元一次方程;(重点)2.经历应用方程解决实际问题的过程,发展分析问题、解决问题的能力,进一步体会方程模型的作用.(难点)教学过程一、情境导入复习提问:1.解一元一次方程时,最终结果一般是化为哪种形式?2.我们学了哪几种一元一次方程的解法?3.移项,合并同类项,系数化为1,要注意什么?4.一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是______________.(2)根据题意可列方程为______________.你能解这个方程吗?二、合作探究探究点一:利用去括号解一元一次方程【类型一】 用去括号的方法解方程例1 解下列方程:(1)4x -3(5-x )=6;(2)5(x +8)-5=6(2x -7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)去括号得4x -15+3x =6,移项合并同类项得7x =21,系数化为1得x =3;(2)去括号得5x +40-5=12x -42,移项、合并得-7x =-77,系数化为1得x =11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.在具体解方程时,不论进行到哪一步,只要得出方程的解,下面的步骤就不用再进行了.【类型二】 根据已知方程的解求字母系数的值例2 已知关于x 的方程3a -x =x 2+3的解为2,求代数式(-a )2-2a +1的值. 解析:此题可将x =2代入方程,得出关于a 的一元一次方程,解方程即可求出a 的值,再把a 的值代入所求代数式计算即可.解:∵x =2是方程3a -x =x 2+3的解, ∴3a -2=1+3,解得a =2,∴原式=a 2-2a +1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x 的值代入方程,求出a的值,然后将a的值代入整式即可解决此类问题.探究点二:应用方程思想求值例3 当x为何值时,代数式2(x2-1)-x2的值比代数式x2+3x-2的值大6.解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x2-1)-x2-(x2+3x-2)=6,去括号得2x2-2-x2-x2-3x+2=6,移项、合并得-3x=6,系数化为1得x=-2.方法总结:先按要求列出方程,然后按照去括号,移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:去括号解方程的应用题例4 今年5月,在中国东莞举办了苏迪曼杯羽毛球团体赛.在17日的决赛中,中国队战胜日本队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?解析:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,根据题意建立方程,求出方程的解就可以得出结论.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计解一元一次方程——去括号:1.去括号的顺序:先去小括号,再去中括号,最后去大括号.简单地说,由内向外去括号,也可以由外向内去括号.2.去括号的规律:(1)将括号外的因数连同它前面的符号看成一个整体,利用分配律将它与括号内的项相乘,即a(b+c)=ab+ac;(2)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.教学反思本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生探索新的解题方法.第2课时 利用去分母解一元一次方程教学目标1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)教学过程一、情境导入1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3; (2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程【类型一】 用去分母解方程例1 (1)x -x -25=2x -53-3; (2)x -32-x +13=16. 解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3,去分母得15x -3(x -2)=5(2x -5)-45,去括号得15x -3x +6=10x -25-45,移项得15x -3x -10x =-25-45-6,合并同类项得2x =-76,把x 的系数化为1得x =-38.(2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6,去括号得3x -9-2x -2=6,移项得3x -2x =1+9+2,合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值例2 已知方程1-2x 6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a 6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可.解:1-2x 6+x +13=1-2x -142(1-2x )+4(x +1)=12-3(2x -1)2-4x +4x +4=12-6x +36x =9,x =32.把x =32代入x +6x -a 3=a 6-3x , 得32+9-a 3=a 6-92, 9+18-2a =a -27,-3a =-54,a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值例3 (1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数? 解析:根据题意列出方程,然后解方程即可.解:(1)根据题意可得3k +12-k +13=1, 去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6,移项得9k -2k =6+2-3,合并得7k =5,系数化为1得k =57; (2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0,去括号得2k +2+9k +3=0,移项得2k +9k =-3-2,合并得11k =-5,系数化为1得k =-511. 方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题例4 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程:x40-x+4050=1,解得x=360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.教学反思本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.。