当前位置:文档之家› 海河流域湿地格局变化分析

海河流域湿地格局变化分析

海河流域湿地格局变化分析
海河流域湿地格局变化分析

1007-4619 (2011) 02-349-23Journal of Remote Sensing 遥感学报

Received: 2010-01-06; Accepted: 2010-08-10

Foundation: The Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW-08-03).

First author biography: LU Shanlong (1979— ), male, Ph.D., Assistant researcher. His research interests are focused on water resources remote sensing and wetland ecology. E-mail: lusl@https://www.doczj.com/doc/1412980991.html,

Corresponding author: WU Bingfang, E-mail: wubf@https://www.doczj.com/doc/1412980991.html,

Wetland pattern change in Hai Basin

LU Shanlong 1, WU Bingfang 1, LI Fapeng 2

1. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China;

2. College of Water Sciences, Beijing Normal University, Beijing 100875, China

Abstract: Four phases of wetland thematic maps for 1980, 1990, 2000, and 2007 were mapped fromLandsat MSS/TM/

ETM+ remote sensing images. The wetland landscape pattern changing, the regional climate changing, and the human activities’ impact were analyzed. We concluded that: (1) The shrinking trend of the natural wetlands is significant, with total area decreas -ing from 5360 km 2 to 4331 km 2 within the period from 1980 to 2007. The man-made wetland areas increasing from 3492 km 2 to 5245 km 2 within the period from 1980 to 1990, and then decreasing to 4499 km 2 in 2007; (2) The plains wetlands spread firstly and then shrank along with the changes in agricultural wetlands .The mountain wetland areas have shrunk gradually mainly because of the decreasing of rivers and river flood plains; (3) In the Grade Ⅲ water resources regions , the rivers and agricultural wetlands of the downstream plains of the Ziyahe River and the Beisanhe River are the most dramatically changed wetland types in the natural and man-made wetlands in the plain area of the Basin. The rivers and river flood plains in the mountain areas of the Yongdinghe River, the Ziyahe River, the Daqinghe River are the mostly changed natural wetlands, and the reservoirs in the mountain areas of the Yongdinghe River, the Beisanhe River and the Daqinghe River are the mostly changed man-made wetlands; (4) Until 1980, the rivers wetlands have been found distributed, widely and afterwards reducing, comparing with the spreading of the other wetland types such as agricultural, reservoirs, marine aquaculture fields and brine pans as well as the shallow waters; (5) Influenced by the climate changes and human activities, the wetland landscape patches are becoming fragmented, and their spatial distribution is becoming homogenized and isolated. Among the influences mentioned above, temperature is the main natural factor that influences the wetland changes, and total population changes and food production are the main human activity factors.

Key words: wetland, landscape pattern, influencing factors, remote sensing monitoring, Hai Basin CLC number: TP79 Document code : A

1 INTRODUCTION

Wetlands are the most plentiful global ecosystems on the earth. Wetland has the functions of stabilizing the environment and spe-cies and resource protection. However, with population growth and economic development, the wetlands reclamation, siltation, overexploitation, and pollution have caused the total wetland areas decreasing sharply. In the United States, from 1998 to 2004, 1462 km 2 of the eastern coastal watershed wetland shrank (Stedman & Dahl, 2008); in Britain, approximately 23% of estuarine wetlands and 50% of the salt marshes have been lost since Roman times (Davidson, et al ., 1991); in China, the lost area of the Naoli River wetlands in the Sanjiang Plain amounted to 13,700 km 2 from 1950 to 2000 (Hou, et al ., 2006); and in the last 50 years, on the Ruoer-gai Plateau of the Qinghai-Tibet Plateau, the total area of wetland has shrunk to about 2760 km 2 (Zhao & Lou, 2006). According to the Millennium Ecosystem Assessment report (2005), the shrinking trend of the world’s wetlands will continue in the future.Historically, the Hai Basin has been rich in wetland resources, with lakes and rivers crisscrossing the plains areas. Since 1949, the wetlands evolution of the basin can be stated in three stages. From 1949 to 1957, these areas have showed a natural growth stage; during the period from 1960 to 1970, the natural wetlands have gradually disappeared; and after 1980, the wetlands have continued to shrink. Since 1960, precipitation has gradually decreased while temperatures have increased (Yuan, et al ., 2009). The population growth trend also is significant. In 1986, the population of the Hai Basin was only 83.24 million, while it reached 109.55 million by the end of 2007. Over the past 21 years, the total population has increased 26.31 million. The population structure also changed with the urbanization process. In 1986, the rural population stood at 61.70 million, accounting for 74.12% of the total population, while it has since decreased to 68.20 million, accounting for 62.25% of the total population. The level of urbanization has improved signifi -cantly. In addition, as China’s major grain production region, from

1986 to 2007, the grain production had been improved greatly,

350Journal of Remote Sensing遥感学报2011,15(2)

increasing from 25.22 million tons to 40.74 million tons. Regional climate changes, population growth, and production activities have brought heavy pressure to the regional wetland ecological environ-ment. At present, only the lakes of Qindianwa, Huangzhuangwa, Qilihai, Dahuangpuwa, Baiyangdian, Tuanbowa, Beidagang, Hengshui, Dalangdian, and Nandagang are able to maintain certain water. Most of the other wetlands have degraded or have disap-peared. The wetlands have declined significantly, with reduced river connectivity, reduced water system stability, and functionality degradation.

In this study, the Landsat MSS/TM/ETM+ series of satellite remote sensing data were used to interpret and map the wetland areas of 1980, 1990, 2000 and 2007. Moreover, the wetland tem-poral and spatial changes and influencing factors of the whole basin, the Grade Ⅲ water resources regions, and landscape scales were analyzed, in order to study the variations in the basin wetland ecosystems of different regions and to provide data and theoretical support for wetland protection and management.

2 DATA AND METHODS

2.1 Data sources and preprocessing

The main data sources used in the study are Landsat MSS/ TM/ETM+ images of less cloud cover, which were obtained from the Chinese Data Sharing Infrastructure of Earth System Science (https://www.doczj.com/doc/1412980991.html,) and the Earth Resources Observation and Sci-ence Center (EROS) of the United States Geological Survey (http:// https://www.doczj.com/doc/1412980991.html,). A total of 81 images from 1974 to 2007 were col-lected. They were divided into four phases: 1980, 1990, 2000, and 2007. In each phase, all the period differences were no more than 5 years, and 96% of the images were acquired from May to October of a year. Images for 1980 are Landsat MSS data with four multi-spectral bands and a spatial resolution of 57 meters. Images for 1990, 2000, and 2007 are Landsat TM/ETM+ data with six multi-spectral bands and a spatial resolution of 30 meters. All the images were geometrically corrected and transformed to a Universal Transverse Mercator (UTM) map projection.

Other statistic data include the following three cat-egories: (1) climate data from 1980 to 2008, including annual temperature and annual precipitation from 42 national weather stations, all of which were interpolated before using the Kriging method; (2) county population data, including total population and rural population, obtained from the Province Statistic Yearbook and Economic Yearbook, county rural economic statistic data of the Hai Basin, and Chinese County Socio-eco-nomic Statistic Yearbook, while some of the county population data were obtained from the Chinese Data Sharing Infrastructure of Earth System Science; (3) county food production data from the county rural economic statistic data of the Hai Basin and the Chinese County Socio-Economic Statistic Yearbook. Some of the county food production data were obtained from the Chinese Data Sharing Infrastructure of Earth System Science.

2.2?Classification?system?and?interpretation?symbols?

By referring to the existing wetland classification system, in particular the Convention on Wetlands of International Importance Especially as Waterfowl Habitat, the national wetland classification results and the national wetland remote sensing classification system generated by Niu, et al. (2009) and Zhao & Niu (2009), a wetland classification system of the Hai Basin was proposed (Table 1). This system is formed by the offshore and coastal wetlands, inland wetlands, and man-made wetlands. The first two categories are natural wet-lands. Among them, the offshore and coastal wetlands consist of shallow waters, estuaries, and intertidal/shallow waters. In this study, the areas of water depth lower than five meters were classified into the shallow waters, by using the distri-bution maps of the Bohai Sea water depth i , since Landsat im-ages can not be used to reflect water depth. Inland wetlands include two subgroups of rivers and river flood plains, and

Table?1?Wetland?classification?system?of?the?Hai?Basin

Primary classes Secondary classes Meaning of the classes

Offshore and coastal wetlands Shallow waters Shallow water area of no permanent vegetation that the depth is less than 5 meters at

low tide and tidal water vegetation layer.

Estuaries and intertidal / shallow bottomlands Gravel beach; sediment, sediment beaches and salt marshes with vegetation or no vegetation; marshes, salinity, tidal brackish and freshwater marshes; brackish to saline lakes with a narrow waterway connecting the sea; permanent or seasonal saline, alkaline lakes, mudflats and marshes; permanent estuarine water areas and delta systems.

River wetlands Rivers Permanent or seasonal rivers, streams, waterfalls and delta; artificial canals and river channels.

River flood plains Seasonal flooding agricultural land (including the intensively used grassland or grazing), seasonal, intermittent flood lands (including flood, flooding valleys, and seasonal flood meadows)

Man-made wetlands Agricultural wetlands Including farm ponds, fish ponds, paddy areas and small ditches or drainage.

Reservoirs Water areas formed by reservoirs, dams, and dikes.

Man-made ditches Straight man-made canals for agricultural irrigation, excluding the canal and the main

river channel.

Marine aquaculture fields / Brine pans Man-made wetlands for aquaculture and salt pond sites for salt production.

Urban landscape and entertainment wetlands Landscape rivers flowing through a city, urban parks with water bodies, and golf courses.

i Marine Science Data Sharing Center, National Scientific Data Sharing Project ([2009-01-20]http://mds.coi.

351

LU Shanlong, et al.: Wetland pattern change in Hai Basin

the man-made wetlands include five subgroups of agri-

cultural wetlands, reservoirs, man-made ditches, marine

aquaculture fields/brine pans, and urban landscape and en-

tertainment wetlands. In order to make different reservoirs

comparable, the seasonal flooding area caused by water level

changes was classified in the reservoirs.

By referring to the field sampling sites and satellite remote

sensing images, a database of wetland interpretation symbols were

developed. In Fig. 1, the yellow rectangles and arrows point to each

type of wetlands in the image.

2.3?Classification?method

Wetland formation and evolution has its own specific laws.

For example, water accumulation is a key factor for formation

and distribution of the wetlands. The states of water accumula-

tion balance with or larger than consumption is the ideal condi-

tion for wetland development. Although the types of wetlands

in the Hai Basin are various and their formations are complex,

their common feature is that they are watered a year round or

seasonally. The wetland classes of the study area were interpret-

ed visually from the remote sensing images based on the water

mapping results, on the platform of ENVI 4.3 and ArcGis9.0

(Fig. 2).

In this study, the wetland classification procedure consisted of two steps. The one is surface water extraction, and the other is non-water wetland interpretation.2.3.1 Surface water extraction

Based on the water index and taking the slope as auxiliary data, the surface water was extracted from the remote sensing images using the threshold segmentation method. For

the

(a)

(e)

(i)

(b)

(f)

(j)

(c)

(g)

(k)

(d)

(h)

Fig. 1 Wetland interpretation symbols of Hai Basin

(a)Estuarine and intertidal/shallow bottomland; (b)Marine aquaculture field/Brine pan; (c)Plain river; (d)Mountain river; (e)Plain river flood plain; (f) Mountain river flood plain; (g)Agricultural wetlands; (h)Man-made ditches; (i)Urban landscape and entertainment wetland; (j)Large-scale reservoir; (k)

Small reservoirs.

Fig. 2 Flow chart of wetland classification: a, b, c and d are water

body threshold values of NDWI, Slope, MNDWI and TCW. Water a

and Water b are water body thematic maps, and Mask Ⅰ and Mask Ⅱ

are mask maps for surface water extraction

352Journal of Remote Sensing遥感学报2011,15(2)

Landsat MSS images from 1980, the Normalized Difference Water Index (NDWI) (McFeeters, 1996) and slope were used. The NDWI was used to extract the initial surface water distribu-tion information, and the slope was used for the mountain shad-ow elimination (Lu, et al., 2008). For the Landsat TM/ETM+ images from 1990, 2000 and 2007, the enhanced Normal-ized Difference Water Index (MNDWI) (Xu, 2005), slope, and tasseled cap wetness index (TCW) (Lu, 2008) were used. The MNDWI was used to extract the initial results of surface water distribution. The TCW was used to improve the extraction precision of the shallow water wetland boundary (Ouma & Tateishi, 2006; Ordoyne & Friedl, 2008), and the slope was use to eliminate the mountain shadow.

The surface water extraction accuracy depends on the boundary threshold (a, b, c, d) choice of NDWI, slope, MNDWI and TCW. During the study period, the terrain of the slope was invariable. Based on the principle of water surface, the slope was relatively lower, and 10° was set to the boundary threshold (b) of the slope data. The threshold values of a, c, and d were determined using a histogram and analyzing the results of NDWI, MNDWI, and TCW thematic maps. The final surface water bodies were obtained by multiplying the mask maps with the water body thematic maps, and by using the Raster Calculator tools in the Spatial analyst mod-ule of the ArcMap 9.3.

2.3.2 Non-water wetland interpretation

Besides water areas, the non-water wetland areas surrounding the water bodies can not be extracted automatically by computer. The regions that are near the water bodies and have different spectral features from the background belong to these areas. We visually interpreted this information in this study. During the interpretation process, the remote sensing interpretation symbols were used as references, and the water extraction results for different periods were overlapped with the corresponding remote sensing images. The wetlands areas greater than 8100 m2 were interpreted by traversing the images, pixel by pixel.

2.3.3 Landscape pattern change analysis method

Landscape pattern refers to the distribution of landscape patches with different sizes and shapes. It is a major aspect of landscape heterogeneity. And it can be used to reflect the changes in various ecological processes at different scales (Wu, 2001). In order to explore the wetland landscape pattern change features of the study area, the mature and widely-applied landscape pattern metrics of patch density as well as many kinds of indexes were calculated such as the largest patch index, interspersion and juxtaposition index, Shannon’s diversity index, and Shannon’s evenness index, based on the wetland distribution characteristics of the Hai Basin. Among them, the patch density is the number of patches per square kilometer. The larger the patch density was, the higher the degree of landscape fragmentation was. The largest patch index is equal to the ratio of the largest patch area and the total area of the ecosystem types. This reflects the extent of the landscape predominance. Both factors were used to reflect the wetland landscape fragmentation changes of the Hai Ba-sin. The interspersion and juxtaposition index is a measure of quantities for ecosystem types adjacent to other types. This index was used to reflect the spatial distribution relationships of different landscape types. The higher the value, the more different types of neighboring patches, and the connectivity will be better. Shannon’s diversity index was used to charac-terize the diversities of the landscape structure, function, and their changes over time. Shannon’s evenness index was used to characterize the distribution uniformity of different eco-systems in one landscape. All calculations were performed using the Fragstats 3.3 platform.

3 RESULTS AND ANALYSIS

3.1?The?classification?accuracy?assessment?

(1) Compared to the 1:100000 national lakes database and the 1:1000000 Chinese marsh wetlands data set ([2008–12–02] www. https://www.doczj.com/doc/1412980991.html,)

The quantities and the locations of the lakes in the classification results are consistent with that of in the 1:100000 national lakes database. In the data set of the 1:1000000 Chinese marsh wetlands developed in 1995, the Hai Basin has 54 marsh wetlands. In the wetland map for 2000 of this study, 36 wetlands are coincident with the marsh wetlands in the data set, with another 18 wetlands that were reclaimed into farmland.

(2) Compared to the classification results from SPOT 5 imagery

The high spatial resolution SPOT 5 that was acquired at a similar time using Landsat TM images in 2007 were selected as reference imagery to obtain the ground truth data. The comparison results show that the wetland classification accuracies in different geographical regions are more than 95% (Table 2).

3.2 The wetland pattern changes of the whole basin

Since 1980, the wetlands of the Hai Basin have experi-enced a complex change process, with high-intensity human disturbance. The total area of the wetlands increased at first and then decreased. The areas of the four years as 1980, 1990, 2000, and 2007 were 8852 km2, 10090 km2, 9206 km2, and 8830 km2, accounting for 3.78%, 4.31%, 3.93%, and 3.77% of the total area of the Hai Basin, respectively.

Table?2?Wetlands?classification?accuracy?assessment?results?with?SPOT?5?imagery

Row/Column Acquired date Regions Total patches Correct patches Accuracy /% 278/277Nov. 3, 2006 Mountain areas1019897 279/270Oct. 28, 2006 Hillsides12011495 280/272Sep. 6, 2006 Plains areas 403895 282/271Dec. 3, 2007 Coastal plains1286126098

353

LU Shanlong, et al .: Wetland pattern change in Hai Basin

Among them, natural wetlands were reduced year by year, with the total area decreasing from 5360 to 4331 km 2 during the period from 1980 to 2007. Man-made wetland areas had spread from 3492 to 5245 km 2 from 1980 to 1990, and then had shrunk to 4499 km 2 until 2007 (Table 3). The trend of overall wetlands changes were influenced mainly by man-made wetlands. For natural wetlands, the area of shallow wa-ters remained unchanged; the estuaries and intertidal/shallow

bottomlands decreased at first and then stabilized; the river flood plains had increased at first and then decreased gradu-ally; and the rivers have significantly decreased before 2000 and then stabilized gradually. For the man-made wetlands, the man-made ditches, marine aquaculture fields/brine pans, and urban landscape and entertainment wetlands increased year by year. However, the agricultural wetlands and reser-voirs increased first and then decreased (Fig. 3).

Table 3 Total area of the primary wetland classes

Classes

Area /km 2

Area percentage /%19801990200020071980199020002007Natural wetlands Offshore and coastal wetlands 205019791956192323.1619.6121.2421.78 Inland wetlands

331028672464240837.3928.4126.7727.27Man-made wetlands

349252454786449939.4551.9851.9850.96Total

8852

10090

9206

8830

100

100

100

100

tural areas in the plains. And the urban landscape and entertain-ment wetlands are mainly located in the urban and rural areas of the large and medium cities, especially in the Beijing-Tianjin city clusters (Fig. 4). The statistical results of the wetland area show that the rivers were the dominant wetland types in 1980, accounting for 27.68% of the total area, followed by reservoirs that accounted for 20.07%; the areas of rivers, agricultural wetlands, and reservoirs were relatively equivalent in 1990, accounting for 19.55%, 19.33% and 18.91% of the total area, respectively. In 2000, the wetland landscape distributing pat-tern was similar to 1990, with relatively large areas of rivers, agricultural wetlands, and reservoirs. However, the area ratio of the aquaculture fields/brine pans rose to 12.76%. In 2007,

The four phases of wetland maps indicate that the shallow waters, the distribution areas of the estuaries and intertidal/shallow bottomlands and the marine aquaculture fields/brine pans are located in the Bohai Bay in the shape of an arc. The rivers are located equably throughout the whole basin. The river flood plains are located mainly in the border zone of the mountains and plains and are partly located in the plains areas of the Sangganhe River, the Yanghe River, the upper reaches of the Yongding River and also in the plains areas upstream from the Hutuohe River. The agricultural wetlands are mainly located in the plains areas downstream from the Beisanhe Riv-er. The reservoirs are located in the far reaches of the sub-river basins. The man-made ditches are located mainly in the agricul-R i v e r s

T o t a l a r e a

N a t u r a l w e t l a n d s

m a n -m a d e w e t l a n d s

S h a l l o w w a t e r s

E s t u a r i e s a n d i n t e r t i d a l /s h a l l o w b o t t o m l a n d

M a r i n e a q u a c u l t u r e fi e l d /b r i n e p a n

U r b a n l a n d s c a p e a n d e n t e r t a i n m e n t w e t l a n d

R i v e r fl o o d p l a i n s

A g r i c u l t u r a l w e t l a n d

M a n -m a d e d i t c h e s

R e s e r v o i r s

1100010000900080007000

600050004000300020001000

A r e a /k m 2

1980

1990

2000

2007

Fig. 3 Area changes of the primary and secondary wetland classes of the Hai Basin

354Journal of Remote Sensing遥感学报2011,15(2)

the rivers, agricultural wetlands, reservoirs, marine aquacul-ture fields/brine pans and shallow waters were becoming the major wetland types, accounting for 19.52%, 13.84%, 18.97%, 13.83%, and 15.30% of the total area, respectively. During the four periods, the areas of man-made ditches and urban land-scape and entertainment wetlands were relatively small, but they spread significantly, especially the urban landscape and entertainment wetlands, which had been spreadng from 0.15% to 1.23% from 1980 to 2007 (Table 4).

Since 1980, the area of shallow waters has remained stable, ac-counting for 15% of the total wetlands area. From 2000 to 2007, shal-low waters had decreased by about 13 km2, which was caused mainly by the construction of the Tianjin and Caofeidian ports. The decreas-ing trend of the estuaries and intertidal/shallow bottomlands is clear. The shrinking areas of the four periods were 682 km2, 612 km2, 592 km2, and 572 km2, repectively. The main reason is human activities, such as land reclamation, aquaculture and levee construction.

In 1980, rivers made up the largest wetland areas, with a total area of 2450 km2. Since then, the areas have declined continually; however, they had stabilized to 1720 km2 during the period from 2000 to 2007. The abruptly changed areas are located upstream of the Zhangweihe River, in the plains area near the mountains of the Fuyanghe River, the river courses between Sanjiadian of the Yongdinghe River and Yongdingxinhe River, the river courses between Baigouyinhe River and Daqinghe River, and the middle-stream of the Jiyunhe River and Yanghe River. The main reason is the reduced upstream runoff.

The total area of the river flood plains was about 860 km2 in 1980, accounting for 9.71% of the total wetland area. In 1990, it increased to 894 km2, and then it has decreased gradually. The total area in 2000 and 2007 was 743 km2 and 684 km2, respectively. The main reason leading to this trend was the reduction of river water bodies and the arable land expansion.

The area of the agricultural wetlands had increased from 849 to 1949 km2 from 1980 to 1990, and it had decreased to 1546 km2 and 1222 km2 in 2000 and 2007, respectively. The dramatically

(a) 1980 (c) 2000(b) 1990

(d) 2007

Wetland classes

Man-made ditches

Agricultural wetland

Urban landscape and entertainment wetland

Reservoirs

Estuaries and intertidal/shallow bottomland

River flood plains

Rivers

Shallow waters

Marine a quaculture field/Brine pan

0 50 100

km

Fig. 4 Wetland classification maps in 1980, 1990, 2000, and 2007

355

LU Shanlong, et al .: Wetland pattern change in Hai Basin

changed areas in the plains areas, due to intensive human activi-ties, include the areas downstream of the Beisanhe Rivers and the east part of the Daqinghe River and an area near the moun-tains in downstream of Yanghe River. The main cause of these changes is the adjustment of the crop planting structure.

In 1980, the total area of the reservoirs was about 1776 km 2, accounting for 20.07% of the total wetlands area. In 1990, it increased to 1908 km 2, and it had gradually decreased from 1743 to 1675 km 2 from 2000 to 2007. The main reason for the increase of reservoirs from 1980 to 1990 was reservoir construc-tion. During this period, eight large-sized and medium-sized reservoirs were constructed, including the Baihebao Reservoir, the Yaoqiaoyu Reservoir, the Erwangzhuang Reservoir, the Xiaonanhai Reservoir, the Qunying Reservoir, the Dongshiling Reservoir, the Zhanghewan Reservoir, and the Siliyan Reservoir. Since 1980, man-made ditches have showed an increasing trend. At the same time, marine aquaculture fields/brine pans also showed a increasing trend, with an area of 681.84 km 2, 1089.45 km 2, 1174.74 km 2, 1220.83 km 2, respectively. Similarly, an increasing trend was seen in

urban landscape and entertainment wetlands, with areas of 13.55 km 2, 33.50 km 2, 52.77 km 2, 108.44 km 2, respectively. Based on the results of the image interpretations, the main reason for this type of wetland increases from 2000 to 2007 is the construction of a large number of golf courses and rubber dams (Table 4).

3.3 T he wetland pattern changes of plains and

mountains

During the study period, only small changes occurred to the area and spatial distribution of the shallow waters and estuaries and intertidal/shallow bottomlands, so these two types of wetlands are not considered in the following analy-sis. In the plains and mountains, the spatial distribution of various wetland types is significantly different. The plains wetland areas are far greater than mountain wetland areas. In the plains, the reservoirs decreased gradually. This change trend is different with that of type in the whole basin. How-ever, the change trend of the other wetland types is similar to that of the whole basin (Fig. 5). In the mountain areas, the

Table 4 Total areas of the secondary wetland classes

Classes

2

Shallow waters

136813671364135115.4613.5514.8115.30Estuaries and intertidal/shallow bottomlands 6826125925727.70 6.06 6.43 6.48Rivers

245019731721172427.6819.5518.7019.52River flood plains 8608947436849.718.868.077.75Agricultural wetlands 8491949154612229.5919.3116.7913.84Reservoirs 177619081743167520.0718.9118.9318.97Man-made ditches

234265269273 2.65 2.63 2.93 3.09Marine aquaculture fields/brine pans 619108911751221 6.9910.8012.7613.83Urban landscape and entertainment wetland 1434531080.150.330.57 1.23Total

8852

10090

9206

8830

100.00

100.00

100.00

100.00

Fig. 5 Area changes of the primary and secondary wetland classes in the plains areas of the Hai Basin

60005000

40003000200010000

A r e a /k m 2

1980

1990

2000

2007

R i v e r s

T o t a l a r e a o f w e t l a n d s i n p l a i n s

N a t u r a l w e t l a n d s

M a n -m a d e w e t l a n d s

M a r i n e a q u a c u l t u r e fi e l d /b r i n e p a n

U r b a n l a n d s c a p e a n d e n t e r t a i n m e n t w e t l a n d

R i v e r fl o o d p l a i n s

A g r i c u l t u r a l w e t l a n d

M a n -m a d e d i t c h e s

R e s e r v o i r s

356Journal of Remote Sensing 遥感学报 2011,15(2)

reservoirs and river flood plains decreased year by year. The agricultural wetlands and reservoirs first increased and then decreased, while no significant changes occurred to the man-made ditches and the urban landscape and entertainment wet-lands due to their small size. The total area of the mountain wetlands shows a decreasing trend since 1990 (Fig. 6).

3.4 T he wetland pattern changes in the Grade Ⅲ

water resources regions

During the study period, all the wetlands in different Grade Ⅲ water resources regions also had different spatial variation features. The natural wetlands in the plains decreased gradually from 1980 to 2007 (Fig. 6). The most dramatic change area is the downstream plains area of the Ziyahe River (Fig. 7(a)). The largest change oc-curred in the reduction of rivers, especially for the water area of the tributary rivers upstream of the Fuyanghe Rivers. The cause of this change may be related to the higher multi-year average agricultural water consumption of this region (Ma, et al ., 2011). The man-made wetlands in the plains increased from 1980 to 1990. After that time,

they decreased year by year (Fig. 6). The most obvious changed area is located downstream of the Beisanhe River. The main reason for this is the changes in the paddy field areas. The remote sensing interpretation results showed that the regional paddy field areas were approximately 220.66 km 2 in 1980. They increased to 755.76 km 2 in 1990. However, these areas were only 210.17 km 2 by the end of 2007. Furthermore, the changes in the man-made wetlands in the plains area of the Heilonggangyundong River also are significant. From 1980 to 2007, these increased year by year, due to the con-struction of man-made ditches and marine aquaculture fields/brine pans (Fig. 7(b)).

The natural wetlands in the mountains decreased significantly from 1980 to 2000, followed by a low rate of decrease after that time (Fig. 6). The key changed regions are located in the mountain areas of the Yongdinghe River, the Ziyahe River, and the Daqinghe River (Fig. 8(a)). The main changes are reduction of the rivers and river flood plains. The reasons for the changes are sharply increased agricultural land and agricultural water demands after the land reform in 1978 (Yang & Tian, 2009). The man-made wetlands in

Fig. 6 Area changes of the primary and secondary wetland classes in the mountain areas of the Hai Basin

25002000

150010005000

A r e a /k m 2

1980199020002007

T o t a l a r e a o f w e t l a n d s i n m o u n t a i n s

N a t u r a l w e t l a n d s

M a n -m a d e w e t l a n d s

M a r i n e a q u a c u l t u r e fi e l d /b r i n e p a n

U r b a n l a n d s c a p e a n d e n t e r t a i n m e n t w e t l a n d

R i v e r fl o o d p l a i n s

R i v e r s

A g r i c u l t u r a l w e t l a n d

M a n -m a d e d i t c h e s

R e s e r v o i r s

Fig. 7 Area changes of the natural and man-made wetlands in the mountain area in the Grade Ⅲ water resources regions

(a) Natural wetlands; (b) Man-made wetlands

A r e a /k m 2

A r e a /k m 2

6005004003002001000

16001400120010008006004002000

1980

1990

2000

2007

1980

1990

2000

2007

Beisanhe River Daqinghe River Ziyahe River

Zhangweihe River Heilonggangyundong

(a)

(b)

357

LU Shanlong, et al .: Wetland pattern change in Hai Basin the mountains showed an increasing trend from 1980 to 1990 and then decreased year by year (Fig. 6). The changes were caused mainly by the construction of water conservancies in the mountain areas of the Yongdinghe River, the Beisanhe River, and the Daqing-he River. For the mountain areas of the Zhangweihe River and the Ziyahe River, continually increasing numbers of water conservan-cies are the main reason for the man-made wetlands increasing year by year (Fig. 8(b)).

3.5 The Landscape pattern changes

Since 1980, the patch density index of the wetland ecosys-tems continually has increased, and the fragmentation degree had increased gradually before 2000. The largest patch index has fell from 15.47% to 13.56% during the period from 1980 to 1990. After 1990, it increased gradually once again. Up to 2007, the index recovered to 15.30%. This index indicates

that the dominant wetland types were changed. Combining this information with the data displayed in Fig. 4, it can be seen that the quantities of the large patches of the rivers and reservoirs are reduced, and the marine aquaculture fields/brine pans and urban landscape and entertainment wetlands are increased. The inter-spersion and juxtaposition index had increased from 26.97% to 48%, from 1980 to 2000. The relations among different wetland types became complex during this period. However, from 2000 to 2007, the index had decreased sharply, which means that the wetland ecosystems tended to isolate during this period. Shannon’s diversity index and Shannon’s evenness index have increased continually since 1980. The values were 1.91 and 0.87, respectively, in 1980, and they increased to 2.00 and 0.91 in 2007, respectively. The two indices indicate that the landscape of the wetland ecosystems of the Hai Basin are becoming more diversified and homogenized (Table 5).

Fig. 8 Area changes of the natural and man-made wetlands in the plain areas of the Grade Ⅲ water resources regions

(a) Natural wetlands; (b) Man-made wetlands

Table 5 Landscape pattern metrics of the Hai Basin

Year Patch Density Index

(patch/km 2)

Largest Patch Index

/ %

Interspersion and Juxtaposition Index

/ %

Shannon’s diversity

index

Shannon’s evenness

index

1980 1.415.4726.97 1.90570.86731990 1.913.5638.90 1.96220.8932000 2.614.8248.00 1.98650.90412007

2.3

15.30

5.87

2.0048

0.9124

3.6 T he influencing factors of wetland pattern

changes

As described in the previous sections, many factors may affect wetland landscape pattern evolution. In this study, the possible causes of climate change and human activities are analyzed. The climatic factors (annual average temperature and annual average rainfall), human activities of the total population and grain production are selected. Because of the asymmetric and nonlinear changes of the wetlands landscape areas from 1980 to 2007 in the Hai Basin, the linearization of different

curves was used to establish the piecewise difference in order to obtain the area-time series of the spatial distribution pattern of the main wetland landscape types to correlate the results with the sequential climate and human activities data (Li, et al ., 2009a, 2009b). Using the tools of SPSS 11.5, the correlation between wetland landscape areas and the climatic and human activities factors are analyzed (Table 6).

Regression analysis shows that the impacts to areas of differ-ent wetlands types from precipitation, temperature, population growth, and food production activities are quite different. On

A r e a /k m 2

A r e a /k m 2

6005004003002001000

400350300250200150100500

1980

1990

2000

2007

1980

1990

2000

2007

(a)

(b)

Yongdinghe River Beisanhe River Daqinghe River Ziyahe River Zhangweihe River

358Journal of Remote Sensing 遥感学报 2011,15(2)

Table 6 Correlation between wetland landscape area and climatic and human activities factors

Classes Pearson Co.Pearson Co.Pearson Co.Pearson Co.SW -0.711**0.0000.1840.347-0.887**0.000-0.777**0.000ES -0.774**0.0000.0250.900-0.965**0.000-0.998**0.000RI -0.754**0.0000.0020.994-0.941**0.000-0.990**0.000RP -0.756**0.0000.1680.392-0.935**0.000-0.845**0.000AW 0.1780.3640.2150.2710.2340.2310.425*0.024RE -0.567**0.0020.2350.228-0.695**0.000-0.537**0.003MD 0.730**0.0000.190.9230.914**0.0000.977**0.000MB 0.733**0.0000.0160.9340.916**0.0000.978**0.000UE 0.779**0.000-0.1490.4490.964**0.0000.892**0.000Total area

-0.518**

0.005

0.328

0.880

-0.564**

0.002

-0.409*

0.031

the basin scale, negative correlations were found between the total area of wetlands and temperature, the total population, and grain yield, and the correlation coefficients were –0.518, –0.564 and –0.409, respectively. This indicates that natural factors have a certain influence on wetland landscape changes. However, these factors played a relatively weak role compared to the human activities. The significant negative correlation between natural wetlands landscape areas (including shallow waters, estuaries and intertidal/shallow bottomlands, rivers and river flood plains) and the annual average temperature indicates that climate warming played a role in accel-erating the contraction of the natural wetlands areas. The significant positive correlation between the man-made wetlands (including man-made ditches, marine aquaculture fields/brine pans, and urban landscape and entertainment wetlands) and the temperature shows a growth trend in these types of wetland areas as temperatures rises. The water storage capacities of the reservoirs responded to the climate changes, with a weak negative correlation to temperature changes. No significant correlation was found between agricultural wetlands and temperature changes.

In addition to the agricultural wetlands and reservoirs, the areas of other wetland types have significant correlation with total popula -tion and food production. The significant negative correlation among

wetland landscape areas of shallow waters, estuaries and intertidal/shallow bottomlands, rivers, and river flood plains and total popula -tion and grain production indicates that population growth and grain production had a large negative impact on these wetlands. The cor-relation of estuaries and intertidal/shallow bottomlands and rivers with rural population and grain production is larger than that of the total population, which reflects the phenomenon that agricultural production activities had relatively more significant influence on marine aquacul -ture fields/brine pans and rivers. The significantly positive correlation between man-made wetlands (including man-made ditches, estuaries and intertidal/shallow bottomlands, urban landscape and entertainment wetlands) and human activities factors (including total population and grain production) demonstrates that the population growth and grain production activities promoted the area expansion of man-made wetlands. No obvious correlation was found between agricultural wet-land landscape areas and the total population. However, a relatively significant positive correlation exists between agricultural wetland landscape areas and grain production. This phenomenon reflects the impact of grain production on the agricultural wetlands. Reservoir ar-eas have a negative correlation with total population and grain produc-tion, which shows the impact of population growth and agricultural production on reservoir water (Table 6).

4 CONCLUSIONS

By integrating the use of remote sensing and GIS technology in this study, we analyzed the process of wetland pattern changes of the Hai Basin. The impact of climate changes and human activities on wetland also were evaluated.

(1) Since 1980, wetland patterns of the Hai Basin have changed dramatically. The trend of natural wetlands shrinking is significant, with the total area decreasing from 5360 to 4331 km 2. Man-made wetlands had increased from 3492 to 5245 km 2 from 1980 to 1990 and then had decreased to 4499 km 2 until 2007.** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed).SW: Shallow waters; ES: Estuaries and intertidal/shallow; RI: Rivers; RP: River flood plains,

AW: Agricultural wetlands; RE: Reservoirs; MD: Man-made ditches; MB: Marine aquaculture field/brine pan; UE: Urban landscape and entertainment wetland

(2) The wetland areas of the plains increased at first and then decreased. Among them, natural wetlands had decreased gradually. The main reason for this change is the decreasing of the rivers year by year. However, man-made wetlands increased at first and then decreased. This change was affected mainly by agricultural wetland changes. Influenced by the reduction in the area of rivers and river flood plains, the natural wetlands in the mountains had decreased year by year. Influenced by construction of the reservoirs, the man-made wetlands in the mountains increased at first and then decreased. During the study period, the total area of mountain wetlands showed a decreasing trend.

359 LU Shanlong, et al.: Wetland pattern change in Hai Basin

(3) In the Grade Ⅲ water resources regions, the most dra-maticly-changed region of the rivers was located in the plains area downstream of the Ziyahe River, due to an increase in regional agricultural water consumption. The most obviously-changed region of natural wetlands was in the plains-located downstream of the Beisanhe River, due to the paddy field area changes. In the mountain areas of the upstream of the Yongdinghe River, the Ziya-he River and the Daqinghe River, the area of rivers and river flood plains significantly decreased, due to an increase in agricultural land and agricultural water demand. In the mountain areas of the Yongdinghe River, the Beisanhe River, and the Daqinghe River, the wetland type of reservoirs changed significantly. It mainly caused by the number of reservoirs constructed during different periods.

(4) Until 1980, the rivers wetlands have been found widely distrib-uted, and afterwards reducing, comparing with the spreading of the other wetland types such as agricultural, reservoirs, marine aquaculture fields and brine pans as well as the shallow waters. Overall, the wet-land landscape patches are becoming fragmented, and their spatial distribution is becoming homogenized and isolated.

(5) Though both natural factors and human activity factors play a role in causing the above-mentioned wetland pattern changes, hu-man activity is the most dominant. Among the factors, temperature is the main natural factor to influence wetland changes, and total popula-tion change and grain production are the main human activity factors.

During this study, the early satellite remote sensing images were used to obtain wetland areas and pattern changes during different periods. However, due to the limited number of early archive satellite remote sensing images, the impact of the seasonal differences in dif-ferent years on the classification results can not be eliminated. With the continued sharing of early archived data, additional sources of satellite remote sensing data can be used to optimize the early wetland clas-sification results. Moreover, in recent years, the Chinese resource and environmental monitoring satellites, with independent intellectual property (i.e., BJ-1, HJ-1A/B, and FY-3) can provide different spatial resolution data sources. In particular, the high spatial and temporal resolution of HJ-1A/B multi-spectral data can provide high quality data sources for wetlands dynamic change monitoring. Therefore, the im-pact of different seasons on wetland change detection study is expected to decline in the future. In this study, only two aspects of population and grain production were considered when we analyzed the human activities’ impacts on wetland changes. The impact of industrial pro-duction will be discussed in a further study. Acknowledgements We would like to thank Dr. NIU Zheng-guo for his advice on wetland information extraction, accuracy ver-ification, and data analysis. We are also very grateful to Professor XIA Fu-chuan for his help on wetland classification and validation.

REFERENCES

Davidson N C, Laffoley D, Doody J P, Way L S, Gordon J, Key R, Pienkowski M W, Mitchell R and Duff K L. 1991. Nature Conservation and Estuaries in Great Britain. Peterborough: Nature Conservancy Council

Hou W, Kuang W H, Zhang S W, Zhang Y Z and Li Y. 2006.Analysis of cultivated land reclamation process and the ecological effects in north of Sanjiang Plain from 1950’s. Ecology and Environ-

ment, 15(4): 752–756

Li S N, Wang G X, Deng W and Hu Y M. 2009. Effects of runoff and sediment variation on landscape pattern in the Yellow River Delta of China. Advances in Water Science, 20(3): 325–331

Li S N, Wang G X, Deng W, Hu Y M and Hu W W. 2009. Influ-ence of hydrology process on wetland landscape pattern: a case study in the Yellow River Delta. Ecological Engineering. DOI:

10.1016/j.ecoleng. 2009.07.009

Lu S L. 2008. Numerical environment modeling of Jinqu basin based on the geological factors. Zhe Jiang: Zhejiang University

Ma L, Yan Y M, Yang Y H, Xiao D P and Bi S J. 2011. The distribu-tion and driving factors of irrigation water requirements in the North China Plain. Journal of Remote Sensing, 15(2): 324–339 McFeeters S K. 1996. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425–1432

Millennium Ecosystem Assessment. 2005. Ecosystems and human wel-being: wetlands and water synthesis. A Report of the Millennium Ecosystem Assessment. Washington DC :World Resources Institute Niu Z G, Gong P, Cheng X, Guo J H, Wang L, Huang H B, Shen S Q, Wu J Z, Wang X F, Wang X W, Ying Q, Liang L, Zhang L N, Wang L, Yao Q, Yang Z Z, Guo Z Q and Dai Y J. 2009. Chinese wetlands mapping by remote sensing and its geographical features analysis.

Science in China Series D: Earth Sciences, 39(2): 188–203 Ordoyne C and Friedl M. A. 2008. Using MODIS data to characterize seasonal inundation patterns in the Florida Everglades. Remote Sensing of Environment, 112: 4107–4119

Ouma Y O and Tateishi R. 2006. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an em-pirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, 27(15): 3153–3181

Stedman S and Dahl T E. 2008. Status and trends of wetlands in the coastal watersheds of the Eastern United States 1998 to 2004.

Washington, D.C.: National Oceanic and Atmospheric Adminis-tration, National Marine Fisheries Service and U.S. Department of the Interior, Fish and Wildlife Service: 5

Wu J G. 2001. Landscape Ecology: Pattern, process, scale and level.

Beijing: Higher education press

Xu H Q. 2005. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDW1). Journal of Remote Sensing, 9(5): 589–595

Yang Y and Tian F. 2009. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. Journal of Hydrology, doi:10. 1016/j.jhydrol. 2009.06.040

Yuan Z J, Shen Y J, Chu Y M and Qi Y Q. 2009. Variations and Dis-tribution of Temperature and Precipitation of Haihe River Basin in Recent 40 Years. Research of Soil and Water Conservation, 16(3): 24–26

Zhao H and Niu Z G. 2009. Wetland zoning for remote-sensing based monitoring. Wetland Science & Management, 5(2): 44–47 Zhao K Y and Lou Y J. 2006. Wetland degradation and biodiversity restoration in Ruoergai(ZOIGE) Qinghai-Xizang(TIBET) Plateau.

The seventh seminar of the National biodiversity conservation and sustainable use. China Meteorological Press: 310–315

Zheng S Z and Li X L. 2009. Study on water resources and its sus-tainable use in the Haihe River Basin. South-to-North Water Transfers and Water Science& Technology, 7(2): 45–46

360Journal of Remote Sensing 遥感学报 2011,15(2)

海河流域湿地格局变化分析

卢善龙1,吴炳方1,李发鹏2

1.中国科学院 遥感应用研究所,北京 100101;

2.北京师范大学 水科学研究院,北京 100875

摘?要:利用遥感和G IS 技术,制作了海河流域1980年、1990年、2000年和2007年4期湿地分布图,分析了湿地格局变化过程与区域气候变化以及人类活动的影响。结果表明:(1)流域内天然湿地面积萎缩趋势明显,由1980年的5360 km 2降至2007年的4331 km 2;人工湿地面积先增加后减小,由1980年的3492 km 2增至1990年的5245 km 2,之后逐渐减小,至2007年降为4499 km 2;(2)平原区湿地面积先增加后减少,其主要影响因素为农用湿地的变化。山区湿地面积呈递减趋势,主要受河流湿地和河流洪泛湿地面积递减的影响;(3)在流域水资源三级区尺度,子牙河下游平原河流湿地和北三河下游平原农用湿地是平原区变化最为剧烈的天然和人工湿地,永定河、子牙河及大清河上游山区河流湿地及河流洪泛湿地是山区变化最为剧烈的天然湿地,而永定河、北三河及大清河山区水库/库区湿地分别是山区变化最为剧烈的人工湿地;(4)1980年,流域内河流湿地面积分布最广,之后河流湿地逐渐萎缩,而农用湿地、水库/库区湿地、海水养殖场/盐田和浅海水域湿地面积逐渐增加;(5)受气候变化和人类活动影响,湿地格局呈斑块破碎化和空间分布均匀化与孤立化的演变趋势。其中,气温升高是主要的自然影响因素,总人口变化和粮食生产是主要的人类活动影响因素。关键词:湿地,景观格局,影响因素,遥感监测,海河流域中图分类号:TP79 文献标志码: A

1 引 言

湿地是地球上最丰富的生态系统,与海洋和森林一起并列为全球三大生态系统,它具有稳定环境、物种和资源保护功能。随着人口增长和经济发展,湿地围垦、淤积、过度开发和污染等现象频发,湿地萎缩趋势越来越明显。美国仅东部滨海流域的湿地面积在1998年—2004年间净萎缩了1462 km 2(Stedman 和Dahl ,2008);英国自罗马时代以来大约有23%的河口湿地、50%的盐生沼泽丧失(Davidson 等,1991);中国三江平原仅其北部挠力河流域1950年—2000年湿地面积损失就达1.37 万km 2 (侯伟 等,2006)。中国的另一重要湿地分布区青藏高原,近50年内仅若尔盖高原的湿地面积就萎缩了约2760 km 2(赵魁义和娄彦景,2006)。据千年生态评估报告

称湿地面积萎缩的趋势还有持续的迹象(Millennium Ecosystem Assessment ,2005)。

历史上海河流域湿地资源十分丰富,平原区湖泊洼淀密布、湿地连片。1949年后,流域内湿地的演变经历了自然发育(1949年—1957年)、天然湿地逐步消亡(1960年—1970年)和湿地持续萎缩(1980年以后)3个阶段。1960年以来,流域降水呈下降趋势,而气温则呈上升趋势(袁再健 等,2009)。人口增长趋势也非常明显。1986年海河流域人口仅8324 万人,而到2007年总人口达到了10955 万人,21年间总人口增长了2631万人。人口结构随着城镇化进程也发生了较大的变化,乡村人口在1986年为6170 万人,占总人口的比例达74.12%,而到2007年乡村人口数为6820 万人,占总人口的比例下降至62.25%,城镇化水平得到了显著提升。此外,作为中国重

收稿日期:2010-01-06;修订日期:2010-08-10

基金项目:中国科学院知识创新工程重大项目“重大工程生态环境效应遥感监测与评估”(编号:KZCX1-YW-08-03)。

第一作者简介:卢善龙(1979— ),男,博士,助理研究员,主要研究方向为水资源遥感和湿地生态研究与应用。E-mail:lusl@https://www.doczj.com/doc/1412980991.html, 。通信作者:吴炳方, E-mail:wubf@https://www.doczj.com/doc/1412980991.html,

361卢善龙?等:海河流域湿地格局变化分析

要的粮食生产基地之一,1986年—2007年间粮食生产能力得到了大幅度提高,粮食年产量由2522万t增长至4074万t。区域气候变化、人口增长及生产活动给区域湿地生态环境带来了沉重的压力。目前,流域内尚能维持一定水面的主要湿地有青甸洼、黄庄洼、七里海、大黄堡洼、白洋淀、团泊洼、北大港、衡水湖、大浪淀和南大港等,其他大部分湿地都已退化或消失。流域内湿地面积严重萎缩,河网连通性减弱,水系统稳定性降低、功能退化。

本文利用研究区Landsat MSS/TM/ETM+系列卫星遥感数据,解译并制作了1980年、1990年、2000年和2007年4期湿地分布图,从全流域、流域水资源三级区和景观尺度上分析了湿地多年时空变化特征及其影响因素,以剖析流域内湿地生态系统在不同区域的变化规律,为流域湿地保护和治理提供数据和理论支持。

2 数据与方法

2.1?数据源及预处理

研究使用的主要数据源为云覆盖少、季节一致性较好的Landsat MSS/TM/ETM+数据,主要来源于地球系统科学数据共享网i和美国地质调查局地球资源观测与科学中心(EROS)ii。共收集了81景影像,时间跨度为1974年—2007年,分为1980年、1990年、2000年和2007年4期,每期内年份相差不超过5年,96%的影像分布于5月份—10月份。其中,1980期使用的影像为Landsat MSS数据,包括4个多光谱波段,重采样空间分辨率为57 m。1990年、2000年和2007年3期影像均为Landsat TM数据,包括6个多光谱波段,重采样空间分辨率为30 m。数据使用前均做了几何精纠正,影像拼接和裁剪等预处理。影像纠正选用W G S 1984坐标系和横轴摩卡托投影。

研究中用到的统计数据包括以下3类:(1)1980年—2008年气候要素数据集iii。使用前对研究区内及周边42个国家基本气象站的气温和降水资料,采用Kriging方法做了空间插值处理;(2)县级人口数据,包括总人口和乡村人口,数据源自海河流域各省统计年鉴或经济年鉴、城市统计年鉴、分县农村经济统计数据和中国县(市)社会经济统计年鉴,部分县级人口数据由地球系统科学数据共享网提供;(3)分县粮食产量,数据源自海河流域各省分县农村经济统计数据和中国县(市)社会经济统计年鉴,部分县级粮食产量数据由地球系统科学数据共享网提供。

2.2?分类系统与解译标志

借鉴已有湿地分类系统,尤其是湿地公约和中国湿地调查的分类成果,并参考牛振国等人制定的基于遥感的全国湿地分类系统(牛振国等,2009;赵惠和牛振国,2009),结合海河流域无典型湖泊和沼泽发育程度低等特点,提出了海河流域湿地分类系统(表1)。该系统共分近海和海岸湿地、内陆湿地以及人工湿地3大类,前两类属于天然湿地范畴。其中,近海和海岸湿地包括浅海水域和河口以及潮间带/浅滩2个亚类。由于Landsat影像无法反映海水深度,研究中

表1 基于遥感的海河流域湿地分类系统

大类亚类涵义

近海和海岸湿地浅海水域低潮时水深不足5 m的永久性无植被生长的浅水水域;潮下水生植被层

河口及潮间带 / 浅滩碎石海滩;有植被与无植被的泥沙、沉积滩和盐碱滩;沼泽、盐碱、潮汐半咸水和淡水沼

泽;半咸水至咸水湖,有狭窄水道与海相通;永久性或季节性盐水、碱水湖、泥滩和沼泽;

永久性河口水域和三角洲系统

内陆湿地河流湿地永久性或季节性的河流、溪流、瀑布和三角洲;人工开挖的运河及主干型河道河流洪泛湿地季节性泛滥的农用地(包括集约管理或放牧的草地);季节性和间歇性洪泛地(包括河滩、

洪泛河谷和季节性洪泛草地)

人工湿地农用湿地包括农用的水塘、蓄水池和小型水池;水产池塘;稻田;小型水沟/渠

水库/库区湿地水库、拦河坝和堤坝形成的蓄水区

人工河渠人工开挖的顺直型水渠,不包括运河和人工开挖的主干河道

海水养殖场/盐田以海水养殖为主要目的修建的人工湿地,以及为获取盐业资源而修建的晒盐场或盐池

城市景观和娱乐型湿地流经城市的景观河流、水体、城市小型有水公园和高尔夫球场

i 数据源自国家科技基础条件平台建设项目:地球系统科学数据共享网([2008-12-02]https://www.doczj.com/doc/1412980991.html,)

ii 数据源自美国地址调查局地球资源观测与科学中心([2008-11-20] https://www.doczj.com/doc/1412980991.html,)

iii 数据源自中国气象科学数据共享服务网([2009-01-15]https://www.doczj.com/doc/1412980991.html,)

362Journal of Remote Sensing 遥感学报 2011,15(2)

根据渤海等水深分布图i 将水深低于5 m 的区域计入浅海水域湿地。内陆湿地则包括河流湿地和河流洪泛湿地2个亚类。人工湿地则包括农用湿地、水库及库区湿地、人工河渠、海水养殖场及盐田以及城市景观和娱乐型湿地5个亚类。为了使水库湿地面积具有可比性,研究中将因蓄水水位变动引起的季节性淹水部分也纳入湿地范畴。

卫星影像解译前,参照野外调查样点及卫星遥感影像,建立了海河流域湿地遥感解译标志库(图1),图中黄色矩形框及箭头标识了各湿地类型在影像上的位置。2.3?分类方法

湿地发育和演变具有其自身特殊的规律,其中水分聚集是湿地形成和分布的关键因素,水分的聚集和消耗达到平衡或略有积累的状态是湿地发育的理想条件。虽然海河流域湿地类型多样、成因复杂,但常年

或季节性有水无疑是湿地存在并发育的共同特征之

(a)(e)(i)(b)(f)(j)

(c)(g)(k)

(d)

(h)

图1 海河流域湿地解译标志

(a)河口及潮间带/浅滩;(b)海水养殖场/盐田;(c)平原区河流湿地;(d)山区河流湿地;(e)平原河流洪泛湿地;(f)山区河

流洪泛湿地;(g)农用湿地;(h)人工河渠;(i)城市景观和娱乐型湿地;(j)水库/坝区湿地;(k)水库/坝区湿地

一。本文湿地遥感解译即在水体信息遥感提取的基础上,以人工目视解译的方式来实现(图2)。影像解

i 数据源自国家科学数据共享工程:海洋科学数据共享中心([2009-01-20]https://www.doczj.com/doc/1412980991.html, )

图2 海河流域湿地遥感分类流程图

a 、

b 、

c 、

d 分别为NDWI、Slope、MNDWI和TCW水体提取边界阈值,Water a、Mask Ⅰ、Water b和Mask Ⅱ分别为阈值分割后的专题结果图

363卢善龙?等:海河流域湿地格局变化分析

译所使用的平台为ENVI 4.3和Arc G IS9.0。

本研究中湿地分类分为地表水体提取和非水湿地解译两个步骤。

2.3.1?地表水体提取

以遥感水体指数为基础,地形坡度为辅助数据,采用阈值分割的方式从研究区影像上提取水体分布信息。其中,Landsat MSS影像上的水体提取使用的数据为归一化差异水体指数(NDWI)(McFeeters,1996)和地形坡度,前者用于提取地表水体分布初始结果,地形坡度用于消除山体阴影区域对水体结果的影响。而Landsat TM/ETM+影像上的水体提取使用的参考数据为增强型归一化差异水体指数(MNDWI)(徐涵秋,2005)和地形坡度和缨帽变换湿度指数(TCW)(卢善龙,2008)。三者分别用于提取地表水体分布初始结果,提高浅水湿地区域水体边界提取精度(Ouma 和Tateishi,2006;Ordoyne和Friedl,2008)和消除山体阴影区域对水体结果的影响。

上述水体提取方法精度的高低取决于NDWI、Slope、MNDWI和TCW边界阈值(a、b、c、d)的选择。研究时段内,研究区地形坡度是一个不变的量,根据地表水面坡度较小的原理,选用10°为水体分布边界阈值;a、c、d三个阈值与NDWI、MNDWI和TCW专题图值域分布特征密切相关,其值根据单景影像对应的专题图直方图来确定。最后,将Water a与坡度掩膜Mask Ⅰ相乘,得到基于MSS影像的水体结果;将Water b与坡度掩膜Mask Ⅰ和缨帽变换湿度分量掩膜Mask Ⅱ相乘,得到基于TM/ETM+影像的水体结果。

2.3.2?非水湿地解译

除了水体区域外,水体周边的非水面湿地区域无法用计算机批量处理的方式提取,研究中主要以人工目视判读的方式,采用“与水体区域临近、与周围大类地物相异”的原则进行解译。具体方法为参照湿地解译标志,叠合不同时期水体提取结果与相应的遥感影像,以面积大于90 m×90 m的水体作为最小湿地解译参考图斑,逐一遍历影像,并手工勾绘相应的非水湿地区域。2.4?景观格局变化分析方法

景观格局是指不同大小和形状的景观斑块在空间上的排列状况,是景观异质性的重要表现,反映各种生态过程在不同尺度上的作用结果(邬建国,2001)。本文根据海河流域湿地分布的特点,选用了斑块密度、最大斑块指数、散布与并列指数、Shannon多样性指数和Shannon均匀度指数等较为成熟且应用较广泛的景观格局度量指标,探讨研究区内湿地景观格局演变特征。其中,斑块密度是指每平方公里的斑块数,斑块密度越大,景观的破碎程度越高。最大斑块指数是指最大斑块面积占生态系统类型总面积的比例,反映了景观优势程度。两者用于反映海河流域湿地的景观破碎度变化情况。散布与并列指数测量的是与某生态系统类型相邻的其他类型数量多少,以此反映不同景观类型的空间分布关系,其值越高,表明与该类型相邻的类型越多。Shannon多样性指数用于表征景观在结构、功能以及它们随时间变化的多样性,而Shannon均匀度指数表征了景观里不同生态系统的分布均匀程度。计算使用的软件为Fragstats 3.3。

3 结果与分析

3.1?湿地分类精度评价

(1)与中国1∶10万湖泊数据库i数据的对比

分类结果中的湖泊湿地与中国1∶10万湖泊数据库中海河流域范围内的湖泊数量和地理位置一致。

(2)与中国1∶100万沼泽湿地数据集ii的对比

中国1∶100万沼泽湿地数据集是在1995年全国沼泽湿图的基础上,利用ETM+影像更新后的数据。对比结果表明,沼泽湿地数据集中涵盖的54个沼泽湿地中,有36个沼泽湿地与2000年结果一致。其余18个沼泽湿地则均被开垦成了耕地。

(3)与SPOT 5分类结果对比

选取与2007年分类结果时间相近的高空间分辨率SPOT 5影像,对SPOT影像覆盖范围内的湿地图斑进行逐一检验,结果表明不同地理特征区域的湿地提取精度都达到95%以上(表2)。

i 数据源自国家科技基础条件平台建设项目:地球系统科学数据共享网([2008-12-02]https://www.doczj.com/doc/1412980991.html,)ii 数据源自国家科技基础条件平台建设项目:地球系统科学数据共享网([2008-12-02]https://www.doczj.com/doc/1412980991.html,)

364Journal of Remote Sensing 遥感学报 2011,15(2)

3.2?全流域湿地格局分析

受高强度人类活动的干扰,自1980年以来,流域内湿地经历了复杂的变化过程。海河流域湿地总面积先增加后减少。1980年、1990年、2000年和2007年4期湿地总面积分别为8852 km 2、10090 km 2、9206 km 2和8830 km 2,分别占海河流域总面积的3.78%、4.31%、3.93%和3.77%。其中,天然湿地逐年减少,由1980年的5360 km 2降至2007年的4331 km 2;人工湿地面积先增加后减小,由1980年的3492 km 2增至1990年的5245 km 2,

之后逐渐减小,至2007年降为4499 km 2(表3)。湿地面积整体变化趋势受人工湿地影响明显。天然湿地中的浅海湿地面积基本保持不变,河口及潮间带/浅滩湿地先减少后趋于稳定,河流洪泛湿地先少量增加后逐年减少,而河流湿地2000年以前减少趋势明显,之后逐渐趋于稳定。人工湿地中的人工河渠、海水养殖场/盐田、城市景观和娱乐型湿地逐年增加,而农用湿地和水库/库区湿地面积先增后减少(图3)。

流域内4期湿地分布图(图4)显示,浅海水域、

表3 海河流域湿地一级分类面积及其所占百分比

类型面积/km 2

占湿地总面积的百分比/天然湿地近海和海岸湿地205019791956192323.1619.6121.2421.78内陆湿地

331028672464240837.3928.4126.7727.27人工湿地

3492

52454786449939.4551.9851.9850.96总计

8852

10090

9206

8830

100

100

100

100

表2 S PO T 影像验证湿地提取分类精度

SPOT影像编号影像日期区域特征湿地斑块数

正确分类斑块数

斑块分类正确的比例

278-2772006-11-03 山区101 9897%279-2702006-10-28山前平原12011495%280-2722006-09-06平原 40 3895%282-271

2007-12-03

滨海平原

1286

1260

98%

湿地总面积

天然湿地

人工湿地

浅海水域

河口及潮间带 浅滩

河流湿地

河流洪泛湿地

农用湿地

水库 库区湿地

人工河渠

海水养殖场 盐田

城市景观和娱乐型湿地

11000100009000800070006000500040003000200010000

面积/k m 2

1980年

1990年

2000年

2007年

图3 海河流域一、二级湿地面积变化

/

/

/

365卢善龙?等:海河流域湿地格局变化分析

河口及潮间带/浅滩和海水养殖场/盐田,呈弧形分布于渤海湾;河流湿地分布较为均匀,河流洪泛湿地主要分布于山区与平原交界地带,部分分布于永定河上游桑干河以及洋河流经的平原区和滹沱河上游平原区;农用湿地主要分布在北三河下游平原区;水库及库区湿地分布于河流出山口;人工河渠主要分布在平原农业区;城市景观和娱乐型湿地主要分布于流域内大中型城市城区或郊区,典型区为京津城市群区域。同期湿地面积统计结果表明,1980年河流湿地是主要的湿地类型,占湿地总面积的比例为27.68%,其次是水库/库区湿地,占20.07%。1990年河流湿地、农用湿地和水库/库区湿地面积所占湿地总面积的比例相当,分别为19.55%、19.33%和18.91%。2000年湿地的类型组成基本延续了1990年的格局,河流湿地、农用湿地和水库/库区湿地面积所占湿地总面积的比例仍然较大,海水养殖场/盐田湿地面积所占湿地总面积的比例升至12.76%。2007年,河流湿地、农用湿地、水库/库区湿地、海水养殖场/盐田和浅海水域湿地成为主要湿地类型,占湿地总面积的比例分别为19.52%、13.84%、18.97%、13.83%和15.30%。4个时期中,人工河渠、城市景观和娱乐型湿地虽然占湿地总面积比例较小,但增幅很明显,尤其是城市景观和娱乐型湿地,面积百分比由1980年的0.15%增至2007年的1.23%(表4)。

1980年以来,海河流域浅海水域湿地基本保持

(a)1980年(c)2000年(b)1990年

(d)2007年

图 例

人工河渠

农用湿地

城市景观和娱乐型湿地

水库/坝区湿地

河口及潮间带/浅滩

河流洪泛湿地

河流湿地

浅海水域

海水养殖场/盐田

0 50 100

km

图 4 海河流域1980年、1990年、 2000年和2007年4期湿地分布图

366Journal of Remote Sensing遥感学报2011,15(2)

稳定,占流域湿地总面积的比例基本稳定在15%。2000年—2007年间,浅海水域湿地面积变化稍大,2007年浅海水域湿地面积比2000年降低了约13 km2,主要是受天津港和曹妃甸等港口建设侵占所致。河口及潮间带/浅滩湿地面积的降低趋势非常明显,4个时期的面积分别为682 km2、612 km2、592 km2和572 km2。其主要原因是填海造陆、海水养殖和堤防建设等人类活动逐步占用了河口及潮间带/浅滩的面积。河流湿地面积1980年最大,达2450 km2,此后,面积持续下降,至2000年—2007年基本稳定在1720 km2。河流湿地变化明显的区域主要分布于漳卫河上游、滏阳河山前平原、永定河三家店至永定新河区间、白沟引河至大清河干流区间、蓟运河中游以及洋河中游,其主要原因是上流来水减少。河流洪泛湿地1980年总面积约860 km2,占流域湿地总面积的9.71%,1990年增至894 km2,至2000年、2007年,面积又持续降低,分别为743 km2和684 km2。导致这一变化趋势的主要原因是河流水面减少和耕地的扩张。农用湿地在1980年的面积约849 km2,至1990年,面积增至1949 km2,占流域湿地总面积的19.31%。到2000年、2007年,面积持续降低,分别降至1546 km2和1222 km2。农用湿地发生剧烈变动的区域主要分布在人类活动剧烈的平原区,包括北三河下游平原、大清河淀东平原和洋河下游山前平原,其主要原因是农作物种植结构的调整。水库/库区湿地主要分布在山区,1980年面积约1776 km2;至1990年,水库/库区湿地面积达到1908 km2;至2000年、2007年,水库/库区湿地面积持续降低,分别为1743 km2和1675 km2。水库/库区湿地面积在1980年—1990年期间呈增长趋势的原因是流域内大量水库的兴建,该时期兴建的大中型水库有8座,包括白河堡水库、遥桥峪水库、尔王庄水库、小南海水库、群英水库、东石岭水库、张河湾水库和四里岩水库。自1980年以来,人工河渠面积呈明显增加的趋势。1980年—2007年海水养殖场/盐田湿地面积呈增加趋势,分别为681.84 km2、1089.45 km2、1174.74 km2和1220.83 km2。同样,城市景观和娱乐型湿地面积增加趋势也十分明显,分别为13.55 km2、33.50 km2、52.77 km2和108.44 km2。根据影像解译结果可知,2000年—2007年,流域内建设的大量高尔夫球场和橡胶坝等城市娱乐和景观水体是该类型湿地面积增加的主要原因(表4)。

3.3?平原和山区湿地格局分析

由于浅海水域和河口及潮间带/浅滩在研究时段内面积和空间分布特征变化不大,后续的分析均未考虑这两类湿地。按平原和山区来划分,海河流域平原区湿地面积远大于山区湿地面积,且各湿地类型空间分布规律差异明显。平原区各湿地类型中,除水库/库区湿地面积逐年减少与全流域该类湿地变化趋势不同外,图5中的其他湿地类型变化规律均与全流域变化规律一致。山区各湿地类型中,河流湿地和河流洪泛湿地逐年减少,农用湿地和水库/库区湿地先增加后减少,而人工河渠和城市景观和娱乐型湿地因面积很小,变化规律不明显。湿地总面积1990年以后呈递减趋势(图6)。

表 4 海河流域二级分类湿地面积及其所占百分比

编号类型

面积/km2占湿地总面积的百分比/% 1980年

11浅海水域136813671364135115.4613.5514.8115.30 12河口及潮间带/浅滩 682 612 592 572 7.70 6.06 6.43 6.48 21河流湿地245019731721172427.6819.5518.7019.52 22河流洪泛湿地 860 894 743 684 9.718.868.077.75 31农用湿地 849194915461222 9.5919.3116.7913.84 32水库/库区湿地1776190817431675 20.0718.9118.9318.97 33人工河渠 234 265 269 273 2.65 2.63 2.93 3.09 34海水养殖场/盐田 619108911751221 6.9910.8012.7613.83 35城市景观和娱乐型湿地 14 34 53 108 0.150.330.57 1.23总计88521009092068830 100100100100

367

卢善龙?等:海河流域湿地格局变化分析

3.4?流域水资源三级区湿地格局分析

研究时段内,各湿地类型在各水资源三级区同样具有不同的空间变化特征。平原区天然湿地1980年—2007年间逐年递减(图6)。变化最为剧烈的是子牙河下游平原区(图7(a)),其主要变化为河流湿地面积减少。区域内滏阳河上游各支流河流水面逐年减少。根据马林等(2011)的研究,引起这一变化的主要原因可能与该区域多年平均农业耗水量高于周边地区有关。平原区人工湿地面积1980年—

1990年呈增加趋势,之后逐年减少(图6)。变化最为明显的是北三河下游区域,其主要影响因素为水田分布面积的变化,研究中遥感解译结果显示,1980年区域水田面积约为220.66 km 2,到1990年时面积增至755.76 km 2,而到2007年时,面积降为210.17 km 2。其次,黑龙港及运东平原区人工湿地变化也较为明显,1980年—2007年,受人工河渠和海水养殖场/盐田建设的影响,该区域的人工湿地逐年递增(图7(b))。

图5 海河流域平原区一、二级湿地面积变化

平原区湿地总面积

天然湿地

人工湿地

河流湿地

河流洪泛湿地

农用湿地

水库 库区湿地

人工河渠

海水养殖场 盐田

城市景观和娱乐型湿地

60005000

40003000200010000

面积/k m 2

1980年1990年2000年2007年

/

/

山区湿地总面积

天然湿地

人工湿地

河流湿地

河流洪泛湿地

农用湿地

水库 库区湿地

人工河渠

海水养殖场 盐田

城市景观和娱乐型湿地

2500

2000

150010005000

面积/k m 2

1980年

1990年

2000年

2007年

图6 海河流域山区一、二级湿地面积变化

/

/

368Journal of Remote Sensing 遥感学报 2011,15(2)

山区天然湿地1980年—2000年递减趋势明显,之后递减速度减小(图6)。变化的重点区域在永定河、子牙河及大清河上游山区(图8(a)),主要表现为河流湿地和河流洪泛湿地减少。引起这一变化的原因可能是区域内1978年土地改革后急剧增加的农业用地和农业需水量(Yang 和Tian ,2009)。而山区人工湿地面积1980年—1990年呈增加趋势,之后逐年减少(图6)。这一变化主要受永定河、北三河及大清河山区水利工程建设影响。对于子牙河和漳卫河山区,仍在增加的水利工程是该区域人工湿地逐年增加的主要原因(图8(b))。?3.5?景观格局分析

研究区湿地生态系统的斑块密度自1980以来持

续增加,破碎化程度逐渐加重。2000年以后,这一趋势有所好转;最大斑块指数由1980年的15.47%降至1990年的13.56%,1990年以后又逐渐增加,至2007年恢复至15.30%,表明湿地景观的优势度发生了较大的变化,结合图4可知,区域河流和水库湿地最大斑块数在减小,而海水养殖场/盐田和城市景观和娱乐型湿地斑块数在增加;散布与并列指数由1980年的26.97%,增至2000年的48.00%,说明不同类型湿地在1980年—2000年间,连通性较好。但从2000年至2007年,该指数急剧降至5.87%,表明湿地生态系统在此期间的相互连通性呈加速递减趋势。Shannon 多样性指数与Shannon 均匀度指数自1980年以来持续增加,分别由1980年的1.91和0.87增长至2007年的2.00和0.91,这表明海河流域湿地

图7 海河流域水资源三级区平原面积变化

(a)天然湿地;(b)人工湿地

面积/k m 2

面积/k m 2

600500400

3002001000

16001400120010008006004002000

1980

1990

2000

2007

1980

1990 2000

2007

北三河平原大清河平原

子牙河平原

漳卫河平原黑龙港平原

(a)

年份

(b)

年份图8 海河流域水资源三级区山区面积变化

(a)天然湿地;(b)人工湿地

面积/k m 2

面积/k m 2

600500400

3002001000

400350300250200150100500

1980

1990

2000

2007

1980

1990 2000

2007

(a)

(b)

永定河山区北三河山区大清河山区

子牙河山区

漳卫河山区

湿地公园旅游规划

城市湿地旅游景观规划设计初探 姜健 12S034062 摘要:湿地拥有巨大的生态功能和效益,是自然界最富生物多样性的生态系统之一,国际上通常把它与森林和海洋并称为全球三大生态系统。湿地公园在保持水源、抵御洪水、蓄洪防早、调节空气、保护生物多样性等方面都有其他生态系统所不能替代的作用,因此也被称为“地球之肾”、天然物种库等。在生态日益恶化的今天,城市湿地以其特有的功能在城市的发展中发挥着重要的作用。城市湿地不仅具有维持区域水文生态平衡,保护生物多样性的功能,提供野生物种的栖息地及娱乐、教育和美学欣赏场所。这些功能在城市这个鲜有自然栖息地的地方显得特别重要。通过保护和建设,城市湿地可以产生类似于的大自然的环境。城市湿地景观往往会成为城市中最让人流连忘返地方,让人有一种复得返自然的诗意和情趣。关键字:湿地;城市湿地;景观;生态 1绪论 1.1研究背景 湿地是地球上水陆相互作用形成的独特生态系统与人类的生存、繁衍、发展息息相关,是自然界最富生物多样性的生态系统和人类最重要的生态环境之一,它具有巨大的资源潜力和环境调节功能,被誉为“地球之肾”。它在保持水源、抵御洪水、蓄洪防早、调节空气、保护生物多样性等方面起到了其他生态系统所不能替代的作用。 湿地公园因其公园的特殊属性,使其比一般的湿地自然保护区在功能定位上更加强调休闲游憩等功能。科学合理的游憩空间规划设计,能吸引更多的人们前来湿地公园游憩观光,接受科普教育,提升保护湿地、保护环境的意识,是湿地保护和可持续的开发利用的探索中一个重要的环节。 湿地公园(图1)游憩空间设计是寻求湿地保护、开发、利用的一个科学的、合理的、动态的平衡点的过程,需从景观设计、环境科学、生态学多方面探索和研究,以达到可持续发展的目的。湿地集中了大自然的精华,保存着良好的生态环境,拥有地球上独特而难得的优美景观,是人类回归大自然的理想场所。因此,许多大城市湿地的很大一部分原生态湿地已经不复存在了。所以,恢复城市中原有的湿地体系己经刻不容缓。 图1 湿地景观 1.2湿地研究的内容和意义

气候变化对湿地生态环境及生物多样性的影响

气候变化对湿地生态环境及生物多样性的影响 发表时间:2018-12-17T16:22:28.123Z 来源:《防护工程》2018年第27期作者:邓绮华 [导读] 从全球的湿地分布情况来看,湿地的数量十分稀缺,但是分布却十分广泛,再加上其属于最具生物多样性的生态系统。 广东博阳建筑规划设计有限公司 528251 摘要:湿地生态系统属于重要的研究对象,同时也属于地球上的宝贵生态系统之一,其生物多样性的特点不仅具有极高的生物研究价值,而且还可以为人类的生活和生产活动提供一些基础性物质支撑,另外湿地系统具有特殊水调节功能,比如贮藏水源功能、调节洪水功能以及充给地下水等诸多功能,对于自然生态系统的调节和优化具有重要意义。近些年来由于人类某些破坏性的生产经营活动,对于气候造成了一定的影响,而气候条件的变化直接对湿地的生态环境造成了严重影响,轻者使得其生物多样性明显的缩减,重者甚至让某些湿地有消失退化的趋势。为了有效缓解和杜绝上述情况的发生,本文主要对气候变化与湿地生态环境及生物多样性之间的关系和影响进行分析研究。 关键词:气候变化;湿地生态系统;生态环境;生物多样性 从全球的湿地分布情况来看,湿地的数量十分稀缺,但是分布却十分广泛,再加上其属于最具生物多样性的生态系统,因此综合以上几点,使得如今湿地生态环境以及湿地生物多样性的保护工作已经在全球范围内达成共识。 1.研究气候变化与湿地生态环境及生物多样性的必要性分析 从广义的层面对湿地环境进行分类,可以将其分为天然形成、人工制造两种,其基础地貌无外乎沼泽地、湿原、泥炭地或水域地带集中情况,一般情况下会伴有淡水或者半咸水,但是只有深度不超过六米的情况下才属于湿地。据不完全统计,全球大约有八百万平方公里的湿地,其在地球陆地面积中近乎占据二十分之一。湿地属于一种区域性的微型生态系统,其对于生态系统的平衡维持具有重要作用,除此之外还具有多种生态服务功能。许多专家普遍认为,湿地生态系统与热带雨林生态系统属于地球上最为丰富的生态系统。湿地的丰富多样性特征,具有丰富的生物物种和生态系统研究价值,此外其独特的水处理功能,更是被誉为地球之肾。湿地生态系统是唯一被纳入国际公约保护的生态系统对象,但是在很多地方湿地还在遭受着人类有意和无意的侵害,其中湿地围垦、生物物种资源的过度利用、湿地环境的污染破坏以及湿地水资源不合理利用等诸多行为都对湿地生态系统造成了严重的损害,直接导致了湿地生态系统的消退和退化,如今的湿地面积日趋缩减、水质量明显下降、水资源被过度开发、生物的多样性也在逐渐降低,当然湿地的功能也在明显的下降甚至消退。除此之外,环境气候也是影响湿地面积消退的重要因素之一,气候条件的变化对湿地的物质循环、能量传递、湿地生产、生物地、湿地动植物以及湿地生态系统功能都有密切的影响,因此加强气候变化对湿地生态环境以及生物多样性的影响,对于湿地系统的保护十分有必要。 2.气候变化对湿地生态环境的影响分析 概括的讲,气候变化与湿地的生态环境之间有着密切的联系,因为其对于湿地的水文情况以及营养物质水平发挥着决定性作用,而水文情况的细微改变都会对整个湿地系统造成严重的影响。而气候变化对湿地生态环境的影响作用还可以通过改变水文循环,借助于水文循环系统的改变,其可以实现水资源在时空和地理位置上的重新分布,从降水的位置、形式以及量上造成影响,从而进一步对湿地生态系统造成影响。除此之外,气候的变化还会对气温、辐射、风速以及干旱洪涝极端水文事件发生频率和强度造成直接影响,从而也就会对湿地的蒸发、径流、水位、水文周期等关键水文过程造成影响,那么最终湿地的生态系统结构和功能自然也会受到严重的影响。另外也有某些特殊情况的发生,诸如不可预知的生态变化,生物学上的外来物种入侵以及有害藻华的影响,也会对生态湿地造成严重的威胁,从而影响其正常运转以及各种功能的施展。简而言之,由气候变化引起的海平面升高、水文变化情况、水温变化、水系营养成分变化、生物学外来物种入侵、降雨形式变化、恶劣天气情况以及土地利用变化等诸多问题,都会对湿地生态环境造成严重的影响。 3.气候变化对湿地生物多样性的影响分析 3. 1 气候变化对湿地动物的影响分析 众所周知,湿地具有丰富的生物多样性,因此该生态系统属于许多动物赖以生存的环境,也是许多生物链能够维持的重要支撑。然而一些重点保护的湿地动物,例如基本的鱼虾、鸟类以及毛皮动物等,由于无法适应气候条件的剧烈变化,数量正在逐渐的消减甚至濒临灭绝。概括地讲气候变化对生物的影响分为直接影响和简介影响两个方面,其中直接影响是指气候变化对非生物环境的影响,例如由于不可抗拒的恶劣天气影响,会对动物群的生殖率和死亡率造成直接的影响,而所谓的间接影响则是指的气候变化对生物生存环境的影响,例如环境变化对食物链中的食物、捕食者和竞争者关系的影响。据有关科研调查分析得知,由气候变化所引发的温度上升,会对水质造成严重的不良影响,而水质的恶化会对水中的微生物以及底栖无脊椎动物产生消极影响。另外温度的变化还会使得浮游生物群落及其相关食物网构成情况也会发生关联性的变化,进而与之相关的水生物分布情况也会相应的发生变化,有些生物甚至有灭绝的危险。再者,水温的升高或者降水量的变化会直接导致湿地与水路之间的消退,湿地和水系统中的生物无法在两者之间自由转移,这也会对其生存造成一定的威胁。尤其是两栖类动物,因为其属于冷血动物,所以由于生物自身的特性影响制约,决定了其对于生存环境以及气候条件的要求更加的苛刻,最为直接的就是其对体温和生理机制都与合适的环境条件息息相关。最后就是迁徙类鸟类,地球气候变化会直接的影响着水鸟类的正常生活和生存,因为鸟类会根据温度的变化而选择迁徙、繁殖时机和地点,可以说湿地属于鸟类栖息或者停留的重要区域,如果这些地区的环境遭到了破坏,那么后果可想而知。综上所述,随着湿地受气候变化的影响会存在逐渐退化甚至消失的危险,许多与之相关的动物也将会失去栖息地和停留地。 3. 2 气候变化对湿地植物的影响分析 不仅湿地的动物会受气候变化的影响制约,湿地的植物亦是如此。经过研究发先,大量的湿地植物在繁殖的过程中需要依赖一段时期的低水环境。而低水环境的维持自然会与环境的温度以及降水量的影响,因此受气候和季节的影响水量的变化都会直接关乎植物的生长和繁殖。与此同时,温度的升高还会对原有生态系统造成影响,尤其是一些喜温的水植物会在该地区存活甚至大量繁殖,这些植物由于缺乏天敌或者食物链的上端,就会迅速地占据湿地,与湿地原有的植物争夺生存空间、养料以及氧气等,从而引发环境问题。例如常见的水葫芦,如果湿地发生水葫芦的大面积繁殖,那么它们的存在会明显降低浮游植物的生产率,不仅争夺各种资源,而且还会遮挡阳光,从而导致水下的植物无法正常的接收阳光进行光合作用,不仅植物种类和群体的生存遭到威胁,而且整个生态也会遭受严重的破坏。最后,大气

大庆市龙凤湿地公园景观规划设计探析

□ 张金生,盛 江,郭立伟,付 燕,曹 宇 大庆市龙凤湿地公园景观规划设计探析 [摘 要]龙凤湿地公园景观规划设计运用生态学原理,遵循整体环境开发与环境保护协调发展的原则,构建“一带、一谷、一湾、一滩、三个主题公园”的总体格局,通过道路系统规划、景观空间格局规划、视线廊道规划等,打造“水舞绿绸带、心泊湿地湾”的城市绿洲,使龙凤湿地公园成为独具个性和魅力的,可供公众游览、休闲或进行科学、文化和教育活动的生态湿地公园,满足了人们不断增长的生态旅游的需求,推动园区的可持续利用。[关键词]城市湿地公园;景观规划设计;大庆市 [文章编号]1006-0022(2012)05-0068-08 [中图分类号]TU984.181 [文献标识码]B Longfeng Wetland Park Design In Daqing/Zhang Jinsheng, Sheng Jiang, Guo Liwei, Fu Yan, Cao Yu [Abstract] Longfeng wetland park design uses ecology theories, follows holistic environmental development and preservation coordi-nation rules, builds “one belt, one valley, one bay, one beach, three theme parks” layout, plans road network, landscape layout, visual corridors, and creates an poetic urban oasis. The Longfeng wetland park will become a unique, characteristic park for public tour,recreation, education, satisfies ecological tourism demand, and pushes sustainable development of the park.[Key words] Urban wetland park, Landscape planning and design, Daqing city 湿地是介于陆地和水域自然生态系统间的过渡地带,是自然环境的重要组成部分,与森林、海洋并称为全球三大生态系统。根据《湿地公约》的定义,湿地是指包括沼泽地、泥炭地、湿草甸、湖泊、河流、滞蓄洪 区、河口三角洲、滩涂、水库、池塘、水稻田以及低潮时水深不超过6 m的水域。湿地具有涵养水源、净化水质、调蓄洪水、控制土壤侵蚀、补充地下水、美化环境、调节气候、维持碳循环和保护海岸等极为重要的生态功 [作者简介] 张金生,高级规划师,注册规划师,大庆市规划建筑设计研究院院长。 盛 江,硕士,高级规划师,注册规划师,大庆市规划建筑设计研究院副总规划师。郭立伟,注册规划师,东北石油大学副教授。 付 燕,硕士,工程师,大庆市规划建筑设计研究院环境分院副院长。 曹 宇,大庆市规划建筑设计研究院助理工程师。

湿地公园优秀案例分析:杭州西溪湿地

湿地公园优秀案例分析:杭州西溪湿地 第一章:序言——案例筛选理由 大黄堡湿地位于京津发展轴上的武清区,是京津之间一处重要的生态湿地资源。该湿地具备地域广阔、水量丰沛、景观优美、交通便利等特性,大黄堡湿地公园的科学建设、合理发展对京津地区之间生态旅游产业的发展、融合具有非常重要的意义。 西溪国家湿地公园位于杭州市区西部,同样属于典型的位于城市边缘的次生态城市湿地。近年来该湿地的生态保护与旅游开发和谐发展的先进经验引起了极大关注。项目的科学规划、成功运营,在很好的保护了湿地环境的同时为杭州的旅游业发展起到了良好的拉动作用。 该项目在湿地条件等各方面上的相似度上与大黄堡项目十分接近,且发展较为成功。因此,经过考察研究,我们决定选取杭州西溪湿地作为湿地公园优秀案例。 在此次案例分析中我们将在前三章详细阐述项目各期期发展概况的同时,在第四章对西溪湿地在湿地开发模式及尺度、湿地公园规划及开发方案、湿地保护与旅游产业开发和谐发展、周边建设控制规划等四方面的成功经验予以剖析总结,为日后大黄堡湿地公园的开发规划提供借鉴依据。 第二章:项目概况 一、项目概况 (一)概况 西溪国家湿地公园位于杭州市区西部,为罕见的城中次 生湿地。东起紫金港路西侧,西至绕城公路东侧,南起 沿山河,北至文二路延伸段,总面积约为11.64平方公 里为保护区范围,共分三期建设,总投资88.4亿元人民 币,建设期六年。 在保护区界线以外为外围保护地带,东至紫金港,南至 老和山麓,西至绕城公路西侧绿带,北至余杭塘河,用 地面积15.7平方公里;外围保护地带以外的周边景区 控制区,主要涉及五常乡、闲林镇的两湿地水网区域, 用地面积约为50平方公里。距西湖不到5公里,是罕见 的城中次生湿地。其生态资源丰富、自然景观质朴、文 化积淀深厚,曾与西湖、西泠并称杭州“三西”,是目前

湿地公园案例总结

湿地公园案例分析

目录 第一部分 01. 群力国家城市湿地公园 02. 石嘴山星海湖国家湿地公园 03. 彩云湖国家湿地公园 04. 东鄱阳湖国家湿地公园 05. 安邦河国家湿地公园 06. 白渔泡国家湿地公园 07. 苏州太湖国家湿地公园 08.DDON作品:西安泾河湿地公园景观概念性设计 09.香港湿地公园规划设计 10.厦门马銮湾湿地分析与评价 第二部分 11.生态德阳启动-市区湿地绿道慢行规划 12.淀山湖慢行交通系统 13.西溪湿地慢行交通系统 14.成都环城生态区综合交通系统 15.泉州建滨海旅游慢行交通系统 16.花溪湿地公园慢行系统

01群力国家城市湿地公园 群力国家城市湿地公园鸟瞰图 近年来,城市涝灾已成为困扰着中国各大城市,北京、上海、杭州等地的雨后“看海”已成雨季无奈风景。涝灾给城市带来严重的社会经济损害,并危及生命。城市雨洪公园的诞生,为解决城市涝灾指明了一条出路,一条通过生态和景观设计来解决常规市政工程所没能解决的更有效的途径。在这样的背景下,中国首个雨水公园在哈尔滨群力新区出现了。 从2006年开始,位于哈尔滨东部的群力新区开始键设,总占地27平方公里,建筑面积大3200万平米,规划13-15年时间全部建成。将近有30万人口。新区绿地面积占16.4%,而大部分土地将是城市的硬化地面。而当地的年降雨量是567毫米,却集中在6至8月(占60-70%)。本地处于低洼平原地带,历史上洪涝频繁。 2009年中,受当地政府委托,北京土人景观与建筑规划设计研究院,承担了群力新区的一个主要公园设计。公园占地34公顷,为城市的一个绿心。场地原为湿地,但由于周边的道路建设和高密度城市的发展,导致该湿地面临水源枯竭,湿地退化,并将消失的危险。土人的策略是将该面临消失的湿地转化为雨洪公园,一方面解决新区雨洪的排放和滞留,使城市免受涝灾威胁,同时,利用城

东滩湿地公园案例分析

东滩湿地公园案例分析 王丽 园林(1)班 N101001118 摘要:通过崇明东滩湿地公园建设的实践,在基地环境质量优劣势分析的基础上,总结湿地公园的功能定位、规划内容以及水体与土壤、种植设计、引鸟设计等生境设计与创造方法等,以期对正在进行和将要进行的湿地建设提供有益的借鉴。 关键词:风景园林;湿地公园;规划设计;生态系统; 1现状概述 东滩湿地公园位于崇明岛东 端,上海市区东北方向40km 处。规划面积为10km2,湿地 类型属于河口滨海湿地类型 中的潮间带和沙洲离岛湿地, 植被类型为草本植物潮滩湿 地。围垦后,大部分原有自然 是滴逐步向人工湿地转变,但 也有相当数量的芦苇湿地得 以保存。耕地、林地、鱼塘为 区内的主要景观。由于形成时 间短、交通不便等原因,所受 人为干扰不大,其自然环境基 本保持原始状态,它以其适宜 的气候、良好的栖息地环境和 饵料状况而成为亚太候鸟迁 徙路线上的重要驿站和水禽 的主要越冬栖息地之一。因 此,也是一个以水鸟群落为特 点的湿地生态系统。 从最新的监测情况来看,目 前湿地公园内已经发现了112 种野生鸟类,包括国家二级保护动物小鸦鹃、白胸苦恶鸟、黑水鸡等,数量也很大。湿地公园还将建设一个面积为6.3万平方米的光滩,并在光滩上投放大量螃蜞等底栖动物,以吸引涉禽来此栖息和觅食,把湿地公园打造成一个鸟儿的天堂。 2湿地公园的构建 湿地公园是以湿地的自然或人文景观来为人类提供浏览、休闲和欣赏大自然的场所。根据具体条件规划设计出各种湿地生境,从而引导、培育遭到破坏的原始乡土动植物资源,最终形成丰富、多样、自然的湿地生态群落。1.生态旅游及休闲区

全球变暖对湿地生态环境的影响

课程论文 题目全球变暖对湿地生态环境的影响 学生姓名 学 号 院系 专业 指导教师 二O一四年五月二十九日

目录 1引言 (3) 2 湿地及其在全球变化中的作用 (4) 湿地生态系统是CO2的“源”与“汇” (4) 湿地生态系统是甲烷(CH4) 的重要“源” (4) 湿地生态系统是氧化亚氮(N2O) 的“源” (4) 湿地开发对全球变化的影响 (5) 3 全球变暖对湿地的可能影响 (5) 对湿地水资源面积的影响 (5) 对湿地生态系统结构和功能的影响 (6) 4 全球变暖对湿地生态系统影响的研究展望 (6)

CO2等温室气体浓度增加对湿地生态系统的直接影响 (7) 湿地生态系统中碳、氮循环的研究 (7) 湿地生态系统动力学模型的发展与应用 (7) 湿地生态系统的阈值研究 (7) 极端事件对湿地生态系统的影响 (8) 全球变暖对湿地生态系统的综合研究 (8) 适应性对策研究 (8) 5 结果与展望 (8) 参考文献 (9) 全球变暖对湿地生态环境的影响 摘要:湿地作为一种独特的生态系统是各种主要温室气体的“源”与“汇”, 因而在全球气候变化中有着特殊的地位与作用。另一方面,

全球气候变化又有可能对湿地生态系统的面积、分布、结构、功能等造成巨大的影响, 并有可能引起温室气体的源汇转化, 从而对气候系统形成反馈。本文综述了国内外这两个方面的研究进展, 指出了近期全球变化与湿地生态系统研究的重点方向和领域。 关键词:湿地;全球气候变化;影响;综述 1引言 作为地球重要的生态系统之一,湿地足由陆地和水生生态系统各种生态过程在不同尺度上综合作用的结果,具有显着的空间异质性[1]。景观格局是指大小和形状不一的景观斑块在窄间上的配置,是景观形成因素与景观生态过程长期共同作用的结果,反映了景观形成过程和景观生态功能的外在属性。景观类型与格局的完整性是湿地生态系统健康的基础,湿地景观格局的变化将会影响湿地景观的演变过程及湿地生态系统的结构与功能。因此,研究湿地景观格局的动态变化可以把握湿地景观在结构单元和功能方面随时问的变化,探明其内部景观组合特征及整体性特征,为湿地的保护、修复和管理提供理论依据。 全球性的气候变化已成为不争的事实,主要表现为气温升高、全

湿地公园旅游规划

湿地公园旅游规划 Hessen was revised in January 2021

城市湿地旅游景观规划设计初探 姜健 12S034062 摘要:湿地拥有巨大的生态功能和效益,是自然界最富生物多样性的生态系统之一,国际上通常把它与森林和海洋并称为全球三大生态系统。湿地公园在保持水源、抵御洪水、蓄洪防早、调节空气、保护生物多样性等方面都有其他生态系统所不能替代的作用,因此也被称为“地球之肾”、天然物种库等。在生态日益恶化的今天,城市湿地以其特有的功能在城市的发展中发挥着重要的作用。城市湿地不仅具有维持区域水文生态平衡,保护生物多样性的功能,提供野生物种的栖息地及娱乐、教育和美学欣赏场所。这些功能在城市这个鲜有自然栖息地的地方显得特别重要。通过保护和建设,城市湿地可以产生类似于的大自然的环境。城市湿地景观往往会成为城市中最让人流连忘返地方,让人有一种复得返自然的诗意和情趣。 关键字:湿地;城市湿地;景观;生态 1绪论 研究背景 湿地是地球上水陆相互作用形成的独特生态系统与人类的生存、繁衍、发展息息相关,是自然界最富生物多样性的生态系统和人类最重要的生态环境之一,它具有巨大的资源潜力和环境调节功能,被誉为“地球之肾”。它在保持水源、抵御洪水、蓄洪防早、调节空气、保护生物多样性等方面起到了其他生态系统所不能替代的作用。 湿地公园因其公园的特殊属性,使其比一般的湿地自然保护区在功能定位上更加强调休闲游憩等功能。科学合理的游憩空间规划设计,能吸引更多的人们前来湿地公园游憩观光,接受科普教育,提升保护湿地、保护环境的意识,是湿地保护和可持续的开发利用的探索中一个重要的环节。 湿地公园(图1)游憩空间设计是寻求湿地保护、开发、利用的一个科学的、合理的、动态的平衡点的过程,需从景观设计、环境科学、生态学多方面探索和研究,以达到可持续发展的目的。湿地集中了大自然的精华,保存着良好的生态环境,拥有地球上独特而难得的优美景观,是人类回归大自然的理想场所。因此,许多大城市湿地的很大一部分原生态湿地已经不复存在了。所以,恢复城市中原有的湿地体系己经刻不容缓。

鹰潭市西湖湿地公园景观规划设计

4鹰潭市西湖湿地公园景观规划设计 公司于2013年开始准备该项目,在项目设计中,基于上述理论及需要注意的问题,遵循了生态性、自然性、主题性的理念和原则,对于鹰潭市西湖湿地公园的景观规划制定了如下设计规划。 4.1建设条件及发展趋势分析 鹰潭市位于江西省的东北部,信江中下游,因“涟漪旋其中,雄鹰舞其上”而得名,地理位置优越,为省级历史文化名城,是赣北经济、文化、旅游、交通中心,境内旅游资源十分丰富。鹰潭西湖湿地公园位于主城区西部,东至白露河,南至浙赣铁路线,西至西湖路东侧,北至老206国道,规划面积约100.8hmzo 本着“扬优成势、以特取胜”的发展理念,鹰潭市把新型城镇化的主攻方向放在城市扩容上,力求构建“一体两翼、一江两岸、四区合一”的大框架城市发展格局。设计时明确提出,在鹰潭西湖湿地公园规划中必须契合总体规划布局,分析周边用地性质,抓住城市大环境景观轴线,掌握游人、居住者视线范围,通过预测周边人流量以及使用率来合理设置地标性景观、集散性景观、生态教育景观以及运动休闲廊道、绿道景观等。 4.2生态理念在鹰潭市西湖湿地公园景观规划设计中的体现 在公园生态景观规划中,力求以湿地保护为基础,景观以水为主题,与丰富多彩的森林景观交相辉映,运用最新生态建设理念,建设生态廊道,突出建筑的地域文化和历史文化特色,使湿地生态系统保护与游憩观览达到和谐统一的效果;始终秉承将“城回信江”理念融合到湿地公园生态景观规划设计中,融人滨水生态风光、江南文化风貌,成为城市生态绿肺,带动旅游发展,引领绿色环保理念,宣传健康运动生活,塑造休闲阳光环境。 4.2.1生态建设规划。城市的发展建设已经使原有的大片湿地退化萎缩, 如何确保湿地由退化到健康的转变,同时使其长足可持续发展,是保护湿地、发挥其长久生态功能的意义所在。我们充分考虑到这一点,在湿地公园建设过程中依据现状生境评价中的分级分类型评定结果和生态水网布局规划,制定天然湿地核心区的生境修复战略。确定需修复的典型生境的位置、类型(含:原水域生境、新增水域生境、间歇性生境、苇地生境)及重要的水系廊道。在具体生境的修复过程中采用动植物等生物措施和工程措施相结合的方法:加强植被多样性恢复,大量栽植乡土树种,针叶、阔叶、落叶、常绿搭配,组合成景观高低错落、层次明显的森林景观;利用现有水系和乡土植物构建陆地生态廊道系统和水体生态廊道系统,即绿网和蓝网,从而形成水陆交融的生态网络结构,同时又与园外水体生态系统相联系。在城市湿地公园生态建设规划中,必须实行保护优先,恢复先行,建立湿地与城市之间良性、有序的发展模式,恢复场地记忆,保护原生态湿地风貌,构建一个人与自然和谐发展的城市湿地公园。 4.2.2设计理念—“莺飞庆天,鱼跃于渊”。鹰在天空飞翔,鱼在水中腾跃。设计结合该理念,我们以“莺飞鱼跃”为主题谓万物各得其所,构成独特的结构,旨在建设集功能性、生态性、景观性于一体的湿地核心区域。 4.2.3湿地公园景观之水体设计及水生态处理。本次设计一的垂点之一是 采用水生植物组件配置多级水生植物串联池,经沉淀池预处理的水依次流过香蒲.葑草、菖蒲、芦苇净化池,形成有一定化层次的白净生态系统,有利于植物生长期和净化功能的节性交替互补。香蒲、菖蒲、芦苇等水生植物根系发达,

气候变化与湿地生态系统科学事实与案例

气候变化与湿地生态系统:科学事实与案例 科学事实1:大气中CO2等温室气体浓度的增高是导致全球气候变暖的主要原因 ●2007年,政府间气候变化专门委员会(IPCC)发布第四次气候变化评 估报告指出,自1750年以来,由于人类活动的影响,全球大气二氧化 碳、甲烷和氧化亚氮等温室气体浓度显著增加。人类活动是导致气候变 化的主要原因,全球大气二氧化碳浓度的增加主要来源于化石燃料使用 和土地利用变化(如湿地围垦等),甲烷和氧化亚氮浓度的变化主要来 自于农业。 ●近250年来,地球大气中二氧化碳浓度值从工业化前的约280 ppm增加 到2005年的379 ppm,甲烷浓度值从工业化前的约715 ppb,增加到2005 年的1774 ppb,氧化亚氮浓度从工业化前的约270 ppb,增加到2005年 的319 ppb。 科学事实2:湿地是陆地生态系统中最重要的碳库之一,保护湿地可以减少温室气体排放,减缓气候变化的速度和强度 ●湿地中植物种类丰富,植被茂密,植物通过光合作用使无机碳(大气中 的CO2)转变为有机碳。湿地中含有大量未被分解的有机碳,它们在湿 地中不断积累。湿地是陆地上碳素积累速度最快的自然生态系统。 ●湿地是陆地上巨大的有机碳储库。尽管全球湿地面积仅占陆地面积的 4 %~6 %[即(5. 3~5. 7) ×108 hm2 ],碳储量约为300~600 Gt (1Gt=109 t ),占陆地生态系统碳储存总量的12%~24 %。如果这些碳全部释放到 大气中,则大气CO2的浓度将增加约200 ppm,全球平均气温将因此升

高0.8~2. 5℃。 ●我国科学家对上海崇明东滩湿地的研究表明,东滩湿地芦苇群落的年固 碳能力可达(1.63±0.39) kg·m-2,是全国陆地植被平均固碳能力的2.3~4.9 倍(平均3.3 倍)和全球植被平均固碳能力的2.7~5.9倍(平均4.0倍)。 科学事实3:湿地生态系统对洪涝、干旱等极端气候事件具有调节功能,能够减缓气候变化带来的不利影响 ●鄱阳湖湿地是长江中游最大的天然水量调节器,起着调蓄洪峰、减轻洪 水灾害的作用。据研究,上游河流注入鄱阳湖的最大流量的多年平均值 为30 400 m3/s,而湖口相应出流的最大流量多年平均为15 700 m3/s,洪 水流量平均被削减14 700 m3/s,削减百分比为48. 3 %。如果没有鄱阳 湖的调蓄,长江中下游的洪水灾害将更为频繁和严重。 科学事实4:人类对湿地的破坏会增加温室气体排放,减弱湿地的调节功能并对人类未来产生不利影响 ●湿地的围垦使湿地的储碳能力大大降低,甚至成为碳源。科学家对我国 三江平原等湿地的研究表明,在积水条件下,湿地是CO2的汇。当湿地 被疏干围垦后,土壤中有机物分解速率大于积累速率,湿地变为CO2 的源。 ●湿地植物从大气中获取大量CO2。有机质的不完全分解导致湿地中碳物 质的积累。气候变暖或降水减少都可加速湿地有机质的分解速率,可能 促使它们成为大气的碳源。

关于湿地城市建设应对全球气候变化的思考——以常熟为例

Sustainable Development 可持续发展, 2020, 10(3), 418-423 Published Online July 2020 in Hans. https://www.doczj.com/doc/1412980991.html,/journal/sd https://https://www.doczj.com/doc/1412980991.html,/10.12677/sd.2020.103051 Considerations on the Construction of Wetland Cities in Response to Global Climate Change —Taking Changshu as an Example Yangyu Song Jiangsu Institute of Urban Planning and Design, Nanjing Jiangsu Received: Jun. 8th, 2020; accepted: Jun. 30th, 2020; published: Jul. 7th, 2020 Abstract Wetlands are one of the most important environmental capitals which play a vital role in coping with global climate change. While due to the complexity of ecological structure and functions, wetlands are also sensitive to global climate change. This article takes Changshu as an example, one of the first international wetland cities in the world, to analyze the possible impact of climate change on the wetland ecosystem and to summarize the experience on the construction of Chang-shu wetland city. And on this basis, suggestions for Changshu wetland ecosystems were put for-ward to adapt to climate change in the future. Keywords Wetland, Climate Change, Wetland City, Changshu, Suggestion 关于湿地城市建设应对全球气候变化的思考 ——以常熟为例 宋阳煜 江苏省城市规划与设计研究院,江苏南京 收稿日期:2020年6月8日;录用日期:2020年6月30日;发布日期:2020年7月7日 摘要 湿地是人类最重要的环境资本之一,在应对全球气候变化方面起着至关重要的作用,同时由于生态结构

湿地公园设计方法

精心整理1.总论 1.1项目概况 项目名称:生态园湿地公园 建设性质:新建 建设内容:湿地公园 1.2 (1) (2) (3) (4) (5) (6) 1.3 1.3.1 优化处理工艺方案对其投资和运行管理有着很重要的影响,必须从整体优化的角度考虑,结合当地的客观条件、河水性质及处理水的用途及相应水质要求,进行多方案比选,提出最佳的处理方案,遵守如下原则: (1)贯彻执行国家关于环境保护的政策,符合国家有关法规、规范及标准; (2)工程设计注重本工程实际运行的灵活性和抗冲击性,提高其对水质水量变化的适

应性; (3)作为环保工程,设计中应尽量减少对环境产生的负面影响,如噪音、臭气、固体废弃物等; (4)确保工程的可靠性和有效性,提高自动化水平,降低运行费用,选择性能优良的处理设备; (5)选择先进、成熟、节能的处理工艺; (6) (7) (8) 1.3.2 (1) (2) (3) (4) (5) 1.4项目建设的必要性 (1)下沙湿地公园的建设是生态园自身发展的需要 东莞生态园现状是东莞的涝区,遇特大暴雨防洪压力大,且园区内水系污染严重,水系的现状与生态园的开发建设存在的巨大的矛盾,可以说“水’’是制约生态园快速发展的主要因素。“水”必须要治,将生态园丰富的水系利用好,形成具有特

色的水系,改善园区的生态环境,使“水“成为促进生态园快速发展的因素。燕岭湿地15万吨尾水深度处理后排入南畲朗排洪区西北端,补水口流至东部,流程约8公里长,沿程难免会有一定的面源污染,同时枯水期排洪渠需补水量大,为了保证南畲朗排渠南段水体的水质及排洪渠的水位要求,需从东引河引水,但东引河水水质较差,无法满足排洪渠水体功能。下沙湿地公园的垂直流湿地主要作用是处理引入的东引河水,经集中强化处理后出水作为南畲朗渠景观用水补充,保证水系水位, (2) (3) 度城市化发展模式的示范计划(项目)。实现东莞市污水“减量化、再利用、资源化”是建设东莞市“第三代新城”的需要,对东莞市各镇区的进一步开发建设具有示范和指导意义。通过湿地公园建设可以改善生态园及周边镇区生态环境,进而提升全市的生态环境质量,为东莞市的生态文明建设做出贡献。 1.5主要技术经济指标

自然湿地氮排放与气候变化关系研究进展

生态环境学报 2018, 27(8): 1569-1575 https://www.doczj.com/doc/1412980991.html, Ecology and Environmental Sciences E-mail: editor@https://www.doczj.com/doc/1412980991.html, 基金项目:国家自然科学基金项目(41702241) 作者简介:赵姗(1987年生),女,讲师,博士,主要研究方向为湿地氮循环。E-mail: szhao@https://www.doczj.com/doc/1412980991.html, *通信作者 收稿日期:2018-01-16 自然湿地氮排放与气候变化关系研究进展 赵姗1 *,周念清2 ,唐鹏 1 1. 上海海事大学,上海 201306; 2. 同济大学,上海 200092 摘要:受外界环境因素的影响,自然湿地氮循环过程中排放的氮氧化物气体正在全球范围内不断累积,全球气候也正在经历着前所未有的变化,因此,氮氧化物排放和全球气候变化关系成为了近年来国际上重点关心的环境问题。为了厘清两者关系,该文从以下几个方面进行了综述研究,(1)对Web of Science 核心数据库和中国知网有关氮排放和气候变化的关键词进行检索,结果表明:近年来关于自然湿地氮排放和气候变化关系的文献数量逐年增多,说明氮排放和气候变化关系已经引起相关学者的重视。(2)自然湿地氮排放对气候变化的影响有直接影响和间接影响。直接影响是通过湿地氮循环过程中排放的温室气体(以N 2O 为主)产生的,N 2O 的大量排放加速了气候变暖的趋势;间接影响是通过发生氮排放的氮循环与碳循环耦合关系影响产生的,自然湿地系统中不断增加的活性氮使得两大温室气体——二氧化碳和甲烷的吸收和排放发生了变化,从而对气候变化产生了影响。(3)气候变化主要包括温度、降雨、辐射、光照和风速等气候因子的变化,这些变化对湿地的主要氮循环过程——硝化和反硝化过程产生影响,使得氮排放的程度和速率发生变化。文章最后对湿地氮排放和气候变化关系的研究进行了展望,为更好地理解自然湿地氮排放和气候变化关系提供了一定的研究思路。 关键词:氮排放;气候变化;自然湿地;关系;研究进展 DOI: 10.16258/https://www.doczj.com/doc/1412980991.html,ki.1674-5906.2018.08.025 中图分类号:X16 文献标志码:A 文章编号:1674-5906(2018)08-1569-07 引用格式:赵姗, 周念清, 唐鹏. 2018. 自然湿地氮排放与气候变化关系研究进展[J]. 生态环境学报, 27(8): 1569-1575. ZHAO Shan, ZHOU Nianqing, TANG Peng. 2018. Advances in relationships between nitrogen emission of natural wetlands and climate change [J]. Ecology and Environmental Sciences, 27(8): 1569-1575. 氮素是组成生命体蛋白质和遗传物质最重要的元素之一,其在自然界中的存在形式多样且转化途径不一(Zhou et al.,2014)。氮在不同形态、不同环境之间的迁移转化称为氮循环,而发生在湿地生态系统中的氮循环则为湿地氮循环(周念清等,2014)。湿地系统中的自然湿地是指天然形成的长久或者暂时性的滨海湿地、河流、湖泊、沼泽湿地等(邵媛媛等,2018)。氮是自然湿地系统中重要的组成成分和重要的生态因子,对湿地的初级生产力具有重要影响;而湿地是氮素重要的源、汇和转化器,氮素通过固氮作用、氨化作用、硝化作用、反硝化作用、厌氧氨氧化等过程在湿地生态系统中进行着不间断的循环(Reddy et al.,2008)。氮循环过程中释放各种含氮气体的行为被称为氮排放, 其中N 2O 是一种常见的温室气体。 有研究显示湿地释放的N 2O 量正逐年增加(Burgin et al.,2012),对全球气候变化的影响正受到越来越多的关注。 气候变化指长时期内气候状态的变化,据联合国政府气候变化专门委员会IPCC 第五次评估报告 (2013年)统计,1880—2012年全球地表平均温度大约升高了0.85 ℃,且本世纪前10年是最暖的10年,全球大气CO 2、CH 4和N 2O 等温室气体的浓度已上升至过去80万年来的最高水平(IPCC ,2014)。可见,全球正经历着以气候变暖为突出标志的气候变化(徐雨晴,2017),只是不同学者根据不同模型计算出的增温幅度结果略有差异(Cox et al.,2000;Ganopolski et al.,2001;Smith et al.,2007)。此外,气候变化不仅仅是指温度的变化,还包括降雨量、降雨频次(Trenberth ,2011)以及辐射强度(Sitch et al.,2007)和风速大小(England et al.,2014)的变化。IPCC 预测,气候变化背景下,极端气候、水文事件频率和强度也会增加(IPCC ,2014)。已有数据表明,近50年来中国的降水格局已经发生了明显的变化(中华人民共和国国务院新闻办公室,2011),这些变化都将会对敏感的自然湿地排放产生重要的影响。 近年来,关于氮排放与气候变化关系的研究发展迅速,发文量逐年增加,如张金屯(1998)研究

黄河湿地公园景观规划设计说明

黄河湿地公园景观规划设计说明 自然形态和景观要素的应用往往是城市特色的所在,我们对黄河湿地景观的规划正是将原有的自然形态和景观要素作为湿地的特色景观进行规划设计。整个规划设计在恢复、利用、保护这些景观要素的基础上,以不破坏原有生态系统为出发点,进一步打造新的"自然林区" 形生态景观区。 一、项目定位、设计指导思想 该项目的基本定位:"休闲、旅游、文化",本设计以尊重自然,保护环境的自然优先原则为出发点,并在尽量不破坏湿地资源的基础上建设不同类型的辅助设施,将物种及其栖息地保护和生态旅游、生态环境、教育功能有机结合起来,使黄河景观湿地具有主题性、自然性、生态性等特点。 设计指导思想 1、整体规划设计的指导思想; 2、在保护中分阶段开发的原则; 3、恢复沙枣林区,尽可能扩大红柳林片区的原则; 4、强调生态注重湿地景观区域原始的生态功能,体现河流景观、地质地貌生态群落的多样性,做到保护与开发、整治与利用的有机结合。 5、突显黄河景观湿地万亩红柳的特色景观,以独特的人文景观、民俗风情和自然风光相结合,营造湿地景观区的深厚文化内涵。 6、突出主题,以保护自然景观、生态旅游为核心,兼有文化旅游等多功能,创造一个富有个性、生态系统完整、旅游功能完善的景观湿地区。 二、景观规划内容 我们将黄河景观湿地定位于"生命之岛,一个自然自己自由的原生态栖息场所"。岛是一个原生态场所,拥有自成体系的生态平衡系统和生物链,拥有繁茂的自然植被和特色的地貌文化,是黄河景观湿地设计的主题。 黄河景观湿地总体布局从设计构思出发,拓展了传统天然合一的理念,挖掘地方特色,展现"岛、水、树林"的主题,以自然景色为景观湿地的主调,将原有的山体地形、水系、树林加以保护、改造、整合、通过不同的手法展现"岛、水、树林"的概念,将整个环境融入到黄河的大背景中,表达出对"岛、水、树林"的追求,设计中充分体现人与自然的和谐,岛与水的融合,创造出了富于趣味的空间;利用移步换景的手法,以不同高差的观赏点和多条观景视线轴的设置,依据疏密有致的原则布置景观,使整个湿地景观的流线更富趣味。 1、功能结构 根据场地特色、使用者活动内容、周边环境及对外交通等情况,规划提出兴建“一个黄河码头,两个滨河广场,三条景观轴,六个新区入口广场”的功能结构。

2020届高考地理森林和湿地的开发与保护规范练

2020届高考地理森林和湿地的开发与保护规范练 一、选择题 红树林通常分布于热带、亚热带沿海的港湾、河口地区的淤泥质滩涂上,是海滩上特有的森林类型。下图示意海滩上红树林与高、低潮水位位置关系。据此完成第1~3题。 1.关于红树林生长特性的描述,正确的有( ) ①多分布在欧洲②多为高大挺拔乔木③多分布在潮间带的淤泥质海岸④以喜盐植物为主,具备呼吸根 A.①② B.②③ C.③④ D.①④ 2.红树林的主要功能是( ) A.保护海岸,保护生物多样性 B.降低风速,为船舶提供避风的场所 C.绿化、美化沿海环境,吸烟滞尘 D.涵养水源,保持水土 3.有人说雨林是“长着森林的沙漠”,这是因为( ) ①在茂密的森林下,有着与沙漠地区相同的贫瘠土壤②雨林与沙漠都有着脆弱的生态环境③雨林与沙漠都有严重的水土流失④雨林与沙漠地区都严重缺水 A.①② B.②③ C.③④ D.①④

答案1.C 2.A 3.A 解析:第:1题,欧洲主要位于温带和亚寒带,缺乏红树林海岸,①错误;红树林分布于潮间带淤泥质滩涂上,受周期性潮水浸淹,多为常绿灌木和小乔木,以喜盐植物为主,具备呼吸根,因此③④正确,②错误。故选C项。第2题,红树林是热带、亚热带海岸生态环境的重要组成部分,不仅是良好的海岸防护林带,也是海洋生物繁衍栖息的理想场所,可以保护海岸,保护生物多样性,故选A项。第3题,热带雨林是“长着森林的沙漠”反映了雨林生态的脆弱性。其脆弱性主要因为雨林系统的生物循环旺盛。植物在快速成长的同时形成枯枝落叶,这些生物残体在地表很快就被分解者分解,所释放的养分又直接被根系再吸收以继续维持植物的快速生长。由于有机质分解和养分再循环旺盛,土壤自身很少积累和补充养分,再加上长期高温多雨的淋洗,雨林中的土壤一般很贫瘠。由此可见,“长着森林的沙漠”并非真正的荒漠化,只是反映了其生态环境的脆弱性,因此①②正确,选A项。 世界森林的减少,引起了人们的关注。下图为1990—2000年、2001—2010年世界各大洲(除南极洲)森林面积的净变化。据此完成第4~6题。 4.根据上图并结合所学知识判断,近几十年世界森林植被减少最多的类型是( ) A.热带雨林

相关主题
文本预览
相关文档 最新文档