当前位置:文档之家› 年产1万吨P-PVC糊树脂工艺设计—氯乙烯合成工段工艺设计

年产1万吨P-PVC糊树脂工艺设计—氯乙烯合成工段工艺设计

年产1万吨P-PVC糊树脂工艺设计—氯乙烯合成工段工艺设计
年产1万吨P-PVC糊树脂工艺设计—氯乙烯合成工段工艺设计

第一章前言

1.1 PVC糊树脂的发展历史、生产现状及市场前景

1.1.1 PVC糊树脂的发展历史、生产现状

PVC糊状树脂是1931年在德国的法本(I.G.Farbon)工厂开始研究,并于1937年实现工业化生产的。在目前国外PVC糊树脂的生产中,西欧是PVC糊状树脂生产厂家最多、产量最大的地区,并且其消费量也最大;美国的PVC糊状树脂的生产能力也较大。由于各国加工与应用情况不同,PVC糊状树脂的生产量占PVC总量的大小也各不相同。其中,美国约占10%,日本占7.5%,法国占12%,德国占25%。国外发达国家约有93%的PVC糊树脂生产企业大多采用乙烯法路线进行生产(日本为100%),且生产规模较大。

国外各PVC糊状树脂生产企业大多数拥有自己的专用生产技术和产品牌号,为弥补由于生产方法而造成的产品应用上的不足,大多数生产厂家同建有多种工艺路线的生产装置,因此在市场上极具竞争力。国外公司除生产通用产品品种、牌号的PVC 糊状树脂外,几乎所有的PVC糊状树脂生产企业都同时生产PVC掺混树脂、氯醋糊树脂等专用树脂。掺混树脂生产方法不尽相同,有悬浮法、本体聚合法、乳液法等,所得掺混树脂大多掺混到PVC糊状树脂中一同出售,这样既可以改善产品的性能,又可以降低生产成本。国外公司在大力发展PVC糊状树脂的同时,相应抗冲击改性剂的开发与生产也异常活跃,有专业生产厂家,也有在PVC糊状树脂生产厂进行生产的。

在国外,PVC糊状树脂已经广泛应用于人造革、浸渍手套、壁纸、粘合剂、汽车密封料、钢板涂层、涂料、高级鞋靴等应用领域。预计在未来几年内,全球PVC糊状树脂的需求增长率将达到4%-5%,欧洲的需求增长率约为1%-2%。国外PVC糊状树脂的消费结构为:PVC弹性、发泡地板块(卷材)占29%,PVC墙纸、沙发、人造革等家庭装饰材料占22%,电器、工具把手、手套、玩具和日用消费品占21%,汽车、运输带、金属涂层占18%,其它占10%。

我国PVC糊状树脂的工业生产始于20世纪50年代,在50-70年代共建有8个生产厂,生产规模为100-500吨/年,生产工艺主要以种子乳液法为主,只能生产3个型号的PVC糊状树脂。进入80年代,我国PVC糊状树脂生产厂家先后引进了国外7家PVC糊状树脂生产技术。至近几年,PVC糊状树脂的生产厂家有近20家,总生产能力约为18万吨/年,其中约有9家生产规模大多在2000吨/年以下。但是由于以下

的原因一是国内糊树脂的生产企业较少,行业竞争明显小于粉状树脂;二是糊树脂市场利润情况较好,在成本与粉状树脂相差不多的情况下,售价却明显高于粉状树脂;三是近年来糊树脂下游需求有比较明显的增长,进口数量占国内消费量的比例较大。吸引了越来越多的企业准备投身于糊树脂生产行列中,一方面现有的企业生产能力仍在不断增加,另一方面一部分传统的粉状树脂生产企业也准备加入到糊状树脂生产行列之中,这样导致产能也有了比较大的增长。据统计,2005年中国糊树脂总生产能力达到30万吨,产量达28万吨左右,进口量约为15万吨,与当年约43万吨的需求相比基本处于供需平衡状态。2006年以来,国内PVC糊树脂行业发展十分迅猛,现有企业生产能力不断增加。其中,沈阳化工股份有限公司糊树脂生产能力扩产之后已经达到12万吨/年,生产能力居亚洲第一位,世界前三位;其他老牌糊树脂生产企业,如上海氯碱、上海天原、天津化工、郴州华湘等也都已经完成或者正在进行糊树脂的扩产计划。

1.1.2 PVC糊树脂的市场前景及应用

虽然糊树脂市场近几年发展相对比较稳定,但近年来我国糊树脂产能增长速度较快,而进口数量变化不大虽然下游需求也有一定的增长,但是产能和产量的增长速度明显大于需求的增长速度。

我国PVC糊树脂主要用于造革、浸渍手套、纱窗、水田靴、工具把手、壁纸、地板卷材等。随着我国经济的稳步发展和人民生活水平的不断提高,加之PVC糊状树脂应用开发的不断深入,国内市场对聚氯乙烯糊树脂的需求有了较大增长,特别是在汽车、建筑、电子和涂料等方面的需求显著增加。但PVC主要应用的玩具和合成革类的发展速度已经明显变缓,主要的合成革类消费地区温州的需求甚至有所萎缩。在这种情况下,业内专家认为,国内糊树脂企业的扩产扩能一定要谨慎。应不断扩大产品的应用领域,增加产品型号,形成差异竞争、错位竞争的良性竞争格局;应加强企业之间的技术交流,加速提高行业整体技术水平;应积极开拓国际市场,规范国内市场竞争,避免步粉状PVC因供大于求出现无序竞争的后尘。

据最新报道,3月份国内糊树脂市场有所波动。这是因为在三月上旬,3月份国内糊树脂市场有所波动;在三月下旬,3月份国内糊树脂市场有所波动。在三月末,电石法糊树脂主流出厂价围绕9800-10400元/每吨波动,乙烯法糊树脂10700-11000元/每吨波动。进入四月份,已是糊树脂市场消费旺季,随着下游开工率上升,对糊树脂需求加大,各生产厂家糊树脂销量也将随之增加。同时外盘糊树脂市场上涨迹象

明显,4月中下旬韩华皮革料和手套料报价均上涨40-50美元,其他进口厂商4月份报价也有上涨趋势。进口糊树脂价格稳中有升有利于国内糊树脂市场逐步回暖。从3月份普通型PVC及液氯等相关产品价格小幅上涨的情况来看,部分化工产品价格正在逐渐走出低谷,有利于糊树脂市场走出一季度以来的盘整局面。因此,在4月份,糊树脂价格有望稳中有升。

1.2 PVC糊树脂生产工艺简述

PVC是世界五大通用塑料之一,糊状PVC树脂是聚氯乙烯中的一个品种。我国糊树脂工业经过四十多年的努力,特别是自八十年代以来,我国通过引进多家国外的糊树脂生产技术和装置,使我国糊树脂工业出现质的飞跃,也促进了我国糊树脂加工工业的迅猛发展。

目前我国糊树脂装置近20 个,生产方法有种子乳液法、微悬浮法、混合法等几种,其中生产PVC糊树脂单体氯乙烯的生产方法主要有乙炔法、乙烯法、乙烷法,在我国主要是用乙炔路线来获得单体氯乙烯。

1.2.1氯乙烯(VCM)的生产工艺

氯乙烯(VCM)是生产聚氯乙烯糊树脂的单体,其早期的生产方法是采用电石为原料的乙炔法路线,即电石水解生成乙炔,乙炔与氯化氢反应生成VCM。随着VCM生产工艺的发展,乙炔法已经被先进的乙烯法路线所取代,目前乙烯法已经占到VCM 生产工艺的93%。近年来,欧洲乙烯基公司(EVC)又开发成功以乙烷为原料的VCM 工艺路线。

乙烯法:该法首先由乙烯经氧氯化或直接氯化法制得二氯乙烷(EDC),EDC再热解制得VCM。早期采用氧氯化法生产VCM,生产成本高,原料消耗和能耗大,乙烯与HCl 氯化反应设备比较昂贵,生产过程排放的气体中VCM含量较高(>100μg/g),污染大气,还会使裂解炉结焦。上世纪90年代,国外各大公司对EDC、VCM生产工艺进行改进,1990年后所有装置均采用直接氯化法制EDC和VCM工艺。拥有直接氯化法生产技术的公司有Inovyl(由EVC公司技术转让),Vinnolit、OxyVinyls以及三井化学公司等。具有代表性的Inovyl公司的VCM工艺是将乙烯氧氯化法提纯的循环EDC和直接氧化的EDC在裂解炉中进行裂解生产VCM。经急冷和能量回收后,将产品分离出HCl(HCl循环用于氧氯化)、高纯度VCM和未反应的EDC(循环用于氯化和提纯)。来自VCM装置的含水物流被汽提,并送至界外处理,以减少废水的生化耗氧量(BOD)。

采用该生产工艺,乙烯和氯的转化率超过98%,已经有52套装置在运行和建设中,VCM总产能为470万吨/年。直接氯化法的改进主要是液相低温工艺向高温氯化方向发展,以利用大量反应热,并改进产品提纯过程。美国Monsanto/Kellogg公司共同开发了乙烯法制VCM的"Partec"新工艺。该工艺去除了联合平衡法中的氧氯化工艺过程。由于所有EDC都是在产率很高的直接氯化反应釜内生成,因此总产率很高,最大程度地从副产物中回收氯气。2004年,德国Vinnolit公司通过其工程合作伙伴乌德(Uhde)公司对外公布了一种称之为"沸腾床反应器"的直接氯化法新工艺,在该工艺中,乙烯先溶于反应器的EDC中,然后再与一种EDC/氯溶液相混合,进行快速液相反应。该工艺与其他工艺相比,改进了再循环过程,无需对EDC产品进一步处理或提纯,EDC产品纯度高,且反应热可回收,从而降低了能耗和蒸汽消耗。此外,还可以按照所需工序的要求,选择并调整反应压力和温度。

乙烷法:原料气乙烯在我国一直很短缺,但我国具有丰富的天然气和油气资源,其中乙烷含量很大,因此用乙烷法生产氯乙烯不但具有很大的潜力和竞争力,而且还为综合利用油气和天然气开辟了更广阔的途径,降低了VCM的生产成本。研究结果表明,以乙烷为原料,经氧氯化催化合成氯乙烯,该合成路线是制备VCM非常有应用前景的工艺路线。为了利用富含乙烷的天然气资源,Goodrich、鲁姆斯、孟山都、ICI 及EVC等公司都在研究乙烷氧氯化制VCM工艺。其工艺的关键是研制开发了一种新型催化剂,可降低反应温度,减轻设备腐蚀并减少副产物的生成量,副产的氯代烃可转化成VCM,提高了乙烷的转化率;另外,该新工艺将乙烷和氯气一步反应转化为VCM,仅使用1个反应器;由于不以乙烯为原料,所以VCM的生产不必依赖乙烯裂解装置。新工艺与乙烯法工艺相比,因乙烷资源丰富,价格低廉,生产成本可降低20%~30%。EVC公司从1991年就开始开发乙烷制氯乙烯工艺,1995年将反应化学确定,1998年一套试验装置开始运转。试验结果表明氧的转化率为99%,乙烷的转化率为90%,经细致调节,乙烷的转化率可达92%-95%。1999年末,EVC报道了在德国Wihelmshaven 年产1000t氯乙烯单体试验半装置的承诺结果。该工艺包括4个部分:氧氯化、分离、直接氯化和加氢。1.在氧氯化工段,气了的和预热的乙烷原料、管道氧、氧氯化扫应器是流化床反应器,催化剂为铜、钾、铈载于粒径为90微米的氧化铝上。以乙烷计,转化率为90%;以氧计,转化率为98.8%;以二氯乙烷计54.6%。主产品为VCM,副产品为二氯乙烯、水、二氧化碳和其它氧化烃。用发生蒸汽法除去反应热。冷却反应器出来的反应物,在热交换中产生蒸汽。2.在分离工段,反应器产物先进行脱气和干燥,

在轻馏塔除去的轻馏分,供直接氯化使用。轻馏塔塔底馏出物送至氯乙烯塔回收氯乙烯。氯乙烯与固体片状NaOH接触,并在冷却前除去微量氯乙氢,并收集在氯乙烯罐。氯乙烯塔的塔底馏出物关至加氢工段。3.在直接氯化工段,从分离工段来的轻馏份送至氯化反应器,以便与氧氯化反应中生成的乙烯生成更多二氧乙烷。氯化反应器是塔型高温氯化反应器,在氯化铁催化剂存在下操作。用气化反应器产品的方法除去反应热。用发生蒸汽的方法部分冷凝气相物料。液体物料循环回氯化反应器,气固分离。压缩气体物料并送至回流塔,以除去轻质馏分和重质馏分。富二氯乙烷的物料从回流塔排出并循环至氧氯化反应器。4.加氢工段,从氯乙烯单体工段出来的不饱和物通过把催化剂在一定温度和压力下加氢饱和。加氢反应器的反应物冷却后进相分离,富氢物料循环。液体物料在串联塔内蒸馏,分离1,1-二氯乙烷、重馏出物、氯仿和四氯化物及富二氯乙烷物料。富二氯乙烷物料和1,1-二氯乙烷循环至氧氯化反应器,重馏出物去三处理,氯仿和四氯化物可以作为副产品以减少成本。

乙炔法:我国仍以乙炔法路线为主。我国的VCM生产技术主要致力于对乙炔法工艺进行改进,集中于改进传统生产工艺、解决汞催化剂污染、回收利用VCM尾气、降低能耗及节省资源等方面。针对目前的电石法煤制乙炔传统工艺的不足,太原理工大学等单位合作开发成功具有自主知识产权的由煤粉直接制取乙炔的等离子体工艺技术,该工艺能耗低、流程简单,适于生产的连续化和大型化,基本可以实现对环境的零排放,是一条煤洁净高效生产乙炔的新途径。目前该技术距大规模工业化应用已为期不远。为克服乙炔法工艺中氯化汞-活性炭催化剂消耗大、氯化汞挥发腐蚀性大的问题,石家庄科创助剂有限公司开发了新型的汞-分子筛催化剂,中试验证结果表明,在乙炔:氯化氢=51:56条件下,该新型催化剂的转化率和选择性分别为95.5%和98.2%,均优于传统催化剂88.4%和94.0%的水平。且该催化剂损失仅为6.5%,远小于传统催化剂32%的水平。在全凝器和精馏塔尾气的回收利用方面,国内主要采用活性炭吸附、溶剂吸收、膜法回收以及活性炭纤维吸附等改进方法,基本可以将尾气中的VCM及乙炔全部回收再利用。例如,大连欧科膜技术工程有限公司开发的有机蒸汽膜法VCM精馏尾气回收技术,该技术用于沈阳化工股份有限公司3万t/a PVC扩产装置,VCM回收率达到90%~95%,乙炔回收率达89.01%,尾气中VCM质量分数降至0.5%~2.0%,投资回收期仅为6~12个月;四川天一科技股份有限公司开发的变压吸附(PSA)技术净化VCM尾气及回收VCM和乙炔新工艺于2004年在太化集团实现工业化应用;成都华西化工研究所与西安西化热电化工有限责任公司合作开发的回收精馏尾气

VCM工艺,已用于西化公司5.5万t/a的 PVC工业化装置。河北中环环保设备有限公司开发的活性炭纤维吸附氯乙烯尾气技术由传统的5个工序简化为2个工序,大幅度降低了投资和运行费用,改善了吸附性能,提高了吸附容量,吸附周期由原来的14h 缩短至35min。目前,国内乙炔法采用的VCM转化器平均单台产能为1500~1800t/a,转化器直径为2400~3000mm,由于 VCM生产规模不断扩大,现有转化器的设计产能已不适应发展的需要,与国外单台产能为 8500t/a的大型转化器相比有较大差距,为此,大型转化器的开发引起人们的关注。

从全球VCM生产技术现状和发展趋势看,乙烯法制VCM仍居主导地位。在富含乙烷天然气资源的地区乙烷法更有发展前景。乙炔法在国外虽已退出VCM生产领域,但近期乙烯价格的上涨,又给乙炔法的发展提供了新的机遇,我国仍以乙炔路线为主。因为98%的VCM都用来生产PVC,所以氯乙烯(VCM)生产工艺不断发展,也推动了PVC工业的发展。

1.2.2 PVC糊树脂的生产工艺

目前,工业上聚氯乙烯糊树脂的生产方法主要有乳液种子聚合法、乳液连续聚合法和微悬浮聚合法3种方法。

乳液种子聚合法:将配方要求的软水加入到聚合釜中,然后按顺序向反映釜中加入起始的乳化剂,用氢氧化钠溶液调节水相的pH值为9.5-10.5,加入引发剂。将反应釜内压力抽至0.057MPa,开启单体加料阀,按配方加入起始单体,升温反应约1小时,回收单体,然后将反应釜内放空阀打开使釜内达到常压,向反应釜内加入要求量的乳化剂和聚氧乙烯蓖麻油,搅拌15分钟即得到PVC糊树脂。

微悬浮聚合法:微悬浮聚合法就是使用油溶性引发剂,在乳化剂中分散,稳定的细小氯乙烯单体液滴引发聚合,生成适当粒径的聚氯乙烯乳胶的方法。用氮气置换釜内空气,将经由过滤器过滤的无离子水用泵打入聚合釜中,将溶解好的聚乙烯溶液经过滤用泵打入反应釜策中,同时将引发剂及单体氯乙烯经计量加入釜中,启动搅拌,升温至聚合温度50℃-60℃然后用5℃水冷却,压力由0.7-1.0MPa下降至0.3-0.45MPa出料。未反应的氯乙烯经泡沫捕集器回收分离,聚合物和悬浮液送至碱处理。离心机过滤,再经洗涤可得含水量15%左右的聚氯乙烯糊树脂。

乳液连续聚合法:乳液连续聚合法是在聚乙烯的增溶胶束存在下,单体在乳化水溶液中经过引发形成活性基团而聚合,在生成的胚乳颗粒中,只要增长链未终止或有活性基团存在,聚合反应就一直会进行下去。在连续聚合反应过程中,聚合需要的

氯乙烯来自活性基团,已生成的胶乳微粒被大量的拥有亲水基团的乳化剂包围,处于非常稳定的状态。

这其中又可分为连续法与间歇法,间歇聚合法为一次或分批加料,一次出料,而连续聚合法为连续等量加料,连续出料。连续聚合法具有劳动生产率高、聚合釜的时空收率高、产品质量稳定和能耗低等特点,尤其是劳动生产率高,这是包括微悬浮聚合法在内的一切间歇式工艺路线都无法与之相比的优点。无论是间歇聚合的方法或连续聚合的方法,都能生产出具有良好糊性能的产品,都可以用于氯乙烯糊树脂的各个领域,只不过工艺各有特点,产品各有专门用途而已。

1.3总结

PVC糊树脂工业的发展,提供了仅经加热就变为聚氯乙烯制品的一种新型的液态材料。该种液态材料配制方便、性能稳定、易控制、使用方便、制品性能优良、化学稳定性好,具有一定的机械强度、易着色、价格便宜等,因此应用广泛。发展 PVC 糊树脂工业,导致开发了一代新的加工方法和新产品,这类新加工方法所需设备少、工艺流程简单、占地面积小、一次性投资少,因而出现了一大批新的加工厂。此外还带动了其他行业的发展,如服装业、制鞋业等,同时促进了机械制造及其配套的工业和化学助剂等的发展。另外,随着钢铁工业的发展,薄钢板(厚度感0.7rn m)表面涂层产品也随之得到发展,产品已广泛用在建筑业,如户外墙板、瓦楞板、门窗等;家用电器,如电冰箱、洗衣机、汽车业外壳,国外已发展到小轿车外壳、石油化工装置上。因而这是一种很有发展前途的产品,彩色钢板所用涂料除了高档的聚氨醋和丙烯酸醋类外,大量使用的是价格低廉的乳液聚氯乙烯(EPVC),目前专用的EPVC牌号全靠进口。随着彩色钢板业的发展,PVC糊树脂需求量将会大增,PVC糊树脂行业将大有潜力。

第二章设计方案的选择

氯乙烯(VCM)是生产聚氯乙烯的单体,其早期的生产方法是采用电石为原料的乙炔法路线,即电石水解生成乙炔,乙炔与氯化氢反应生成VCM。随着VCM生产工艺的发展,乙炔法已经被先进的乙烯法路线所取代,目前乙烯法已经占到VCM生产工艺的93%。该法首先由乙烯经氧氯化或直接氯化法制得二氯乙烷(EDC),EDC再热解制得VCM。近年来,欧洲乙烯基公司(EVC)又开发成功以乙烷为原料的VCM工艺路线。即以乙烷为原料,经氧氯化催化合成氯乙烯,该合成路线也是制备VCM非常有应用前景的一种工艺路线。但是乙炔法和乙烷法这些先进的生产工艺只在发达国家应用较为广泛,在我国仍是主要以乙炔法来合成氯乙烯单体,并且近年来由于石油涨价导致乙烯涨价,又给乙炔法合成氯乙烯单体带来了新的机遇,所以乙炔法合成氯乙烯单体在我国的氯乙烯单体合成中仍是占有较大的比例。

所以本设计采用乙炔法路来合成氯乙烯单体,经乙炔和HCL的混合脱水、合成、水洗碱洗、精馏得到合格的氯乙烯单体,以供后续的PVC糊树脂合成。现在我国的氯乙烯单体生产技术主要致力于对乙炔法工艺进行改进,集中于改进传统生产工艺、解决汞催化剂污染、回收利用VCM尾气、降低能耗及节省资源等方面。本设计也致力于对传统工艺的改进,特别是对精馏工序的工艺改进,如外置低沸塔塔顶冷凝器,取消了低沸塔精馏段,这样既可以减少消耗,也可以增加低沸塔的稳定性,同是还可以提高氯乙烯的质量;低沸塔位差进料改为强制压差进料,老工艺中,进料量随全凝器冷凝液变化而弯化,偶尔发生全凝器、尾气冷凝器之间的压力变化,这会导致冷凝液下料量波动,造成低沸塔的进料量不平稳,使低沸塔控制发生波动,低沸塔进料改为泵输送强制进料后,在进入低沸塔的物料量相对平稳的前提下实现水分离器的液位缓慢调节,以此控制进入低沸塔的流量,控制水分离器液位保持在一定范围内,以保证低沸塔的平稳控制,达到精馏的目的; 高沸塔内回流改为强制外回流,这样可以增加了流量检测及流量调节控制阀,并采用多参数调节控制,操作人员能直观地了解回流量,可方便地控制高沸塔的运行,以达到优化传统工艺的目的。从而最终达到降低生产成本,提高氯乙烯的产品质量。

第三章工艺流程设计

3.1混合脱水工序的工艺设计

乙炔气、HCL气体按一定的配比(HCL过量)进入混合器进行混合,混合过程中由于混合气体中含有的水会有部分冷凝下来,所以混合器下有分离器,用来接收冷凝下的水(其中含有少量的HCL,形成稀酸),分离器中的稀酸采用间歇排放的方法排入冷凝酸槽。由混合器出来的混合气体在惰性气体N

2

的保护下进两级石墨冷却器,以便除去其中的大量的水,之所以采用两级石墨冷却器进行脱水,就是要尽可能地除去混合气体中的大量的水分,石墨冷却器采用-35℃水进行冷却,所冷凝下来的水(含少量HCL)也排入冷凝酸槽。之后,由石墨冷却器出来的混合气体再进入两级除雾器,进一步脱除其中的残留的水分,让混合气体中的水分降到所要求的水分之下,除雾器也同样是采用-35℃水来进行冷凝,冷凝下来的水(含少量HCL)先进入分离器,再从分离器间歇排入冷凝酸槽。

3.2 合成工序的工艺设计

由混合脱水工序过来的乙炔和HCL的混合气体进入预热器,先让混合气体预热到一定的温度,以便后面的转化反应。从预热器中出来的混合气体再进入5台串联的转化器,第一台转化器内置汞催化剂,其余的后面4台转化器可以通过混合气体先与汞催化剂混合再进入转化器进行反应。转化器通过热水来调节一定的转化反应温度。此

外,有N

2管道输送N

2

进入转化器,使得转化反应能在惰性气体N

2

的保护下进行,以

保证安全和使副反应减少,从转化器出来的混合气体中含有的废触媒通过触媒分离器进行分离回收,以减少成本,并可以减少后面净化的压力,同时可以减少对环境的污染。由转化器过来的VCM混合气体再进入除汞器,进一步除去其中含有的汞催化剂,为后面的净化精馏做相应的准备。

3.3 水洗碱洗工序的工艺设计

由合成工序过来的粗氯乙烯进入两级水洗塔,通过水洗来尽可能地除去其中的HC L,之所以采用两级水洗塔,也即是为了尽可能多地除去其中的HCL。水洗时,采用稀酸循环的方法,混合脱水序中的冷凝酸槽中的稀酸及补加水进入稀酸循环槽,稀酸循环槽中的稀酸通过酸循环泵打入冷凝器,采用-5℃水冷凝后再进入水洗塔,以尽可能多地除去其中的HCL,除去的HCL加上进入的稀酸再通过水封进入稀酸循环槽,

在这里用水封是防止气体进循环槽,保证生产安全。当然,由稀酸循环槽通过酸泵打出的稀酸也有一部分送至售酸工序,以减少酸的排放,节约成本。从水洗塔出来的混合气体再进两级碱洗塔,通过HCL与NaOH的中各反应除去混合气体中的HCL。所用原理与水洗塔基本相同,即补加碱液进入碱循环槽,再通过碱泵打出进入碱洗塔进洗涤作用,回来的废碱液再通过碱泵打出排出。从碱洗塔出来的混合气体基本不含HCL,出来的混合气体再通过水封进入气柜。

3.4 精馏工序的工艺设计

由压缩过来的混合气体中仍含有乙炔气体以及其它的低沸物与高沸物,必须通过进一步地清除才可能使氯乙烯的纯度达到要求。由压缩过来的混合气体进入全凝器,采用5℃水进行冷凝,使其中的氯乙烯冷凝,冷凝的VCM进入水分离器,未冷凝的气体进入尾气冷凝器,进行再次冷凝,冷凝物再进入水分离器。水分离器中冷凝物分离水分后的VCM液体单体通过单体泵加压输送至低沸塔,以通过热蒸汽除去其中的低沸物,塔顶蒸出的气相物进入塔顶冷凝器,采用5℃水冷凝,冷凝物再返回进入水分离器,未冷凝的气体进入尾气冷凝器,尾气冷凝器中的未冷凝的气体进入尾气回收系统。低沸塔塔釜液进入中间缓冲槽,经调节阀调节控制减压进入高沸塔,在高沸塔中除去高沸物,高沸塔塔顶蒸出的精氯乙烯气体进入成品冷凝器,冷凝液经固碱干燥器后采用固碱吸收VCM液相中的水分再进单体暂贮槽,部分的VCM经单体泵加压输送返回高沸塔精馏段作为回流液,剩下的VCM经单体泵输送至聚合工序。

第四章仪表控制设计

4.1混合脱水工序的仪表控制设计

在乙炔气体和HCL气体进入混合器的管道上分别安装了温度指示仪表,压力指示仪表,为模拟信号集中控制仪表。另外,在这两段的输入管道上还安装了流量记录累积仪表,以记录通过的流量,也为模拟信号集中控制仪表。

从混合器出来至除雾器出口段的主物料管道上,每隔一段设置温度指示仪表以及压力指示仪表,以及时了解物料管道的温度和压力,为仪表盘(控制室)。

在混合器出来的管道上安装温度指示报警仪表,为模拟信号集中控制仪表,以及时控制温度。另外,石墨冷却器的-35℃水的进流量通过石墨冷却器中的液位来控制。此外,在除雾器出料管道上也安装温度指示的模拟信号集中控制仪表,以及时了解温度。

4.2合成工序的仪表控制设计

在预热器的进料口和出料口分别设置压力指示仪表和温度指示报警仪表,以及时控制压力和温度,都为模拟信号集中控制仪表。

此工序的主物料线上也是每隔一段即设置温度指示仪表和压力指示仪表,都为模拟信号集中控制仪表,以及时了解主物料管道的温度和压力(包括除汞器的进料管及出料管)。

转化器上安有温度指示仪表,为模拟信号集中控制仪表,以及时控制转化器的温度,此外,在转化器的进料管和出料管道上分别安装有压力指示仪表和压力指示报警仪表,以及时了解这段管道的压力。

4.3水洗碱洗工序的仪表控制设计

此工序中的主物料线及辅助物料线上每隔一段即设置压力指示仪表及温度指示仪表,以及时了解管道的温度及压力。这些仪表都为模拟信号集中控制仪表。

在水洗塔、碱洗塔、稀酸循环槽上都有液位指示仪表,以及时显示这些设备中的液位清况,都为模拟信号集中控制仪表。

酸泵及碱泵都设置有压力指示仪表,为就地仪表。

4.4 精馏工序的仪表控制设计

同以上的几个工序,此工序的主物料线上也是隔一段就设置集中控制的温度指示

及压力指示仪表。

水分离器及中间槽设置液位指示仪表,低沸塔、高沸塔进料管道设置流量指示仪表。再沸器的热水进口及回水管道也设置流量指示仪表,这些仪表均为模拟信号集中控制仪表,以及时控制相应的参数。

单体泵上设置压力指示仪表,为就地仪表。

4.5热水槽的仪表控制设计

热水槽上设置温度指示仪表,液位指示仪表,出水管道上设置温度指示仪表及压力指示仪表,以及时控制这些设备管道的数据,这些仪表均为模拟信号集中控制仪表。

在电机泵上设置压力指示仪表,为就地仪表。

第五章工艺设计计算5.1物料衡算

5.1.1 总的物料平衡(物料衡算总流程图)

5.1.2 总物料平衡计算

设HCI 与乙炔反应的转化率为98%,结合VCM 转化成糊树脂的情况,要年产10000

吨PVC 糊树脂每年约要11500吨的VCM ,而每年生成11500吨的约要乙炔原料气5000吨,在反应开始加入HCL 与乙炔时,一般HCL 过量,而且根据参考文献,HCL 与乙炔的加入量的摩尔比约为1.05:1,取HCL 与乙炔的摩尔比为1.05:1,则所要的HCL 量为:

50001.0536.57370.1926

??= 取HCL 的量为7400吨,此时,

()(74005000: 1.05436.526

HCL M M ==乙炔): 根据齐化集团有限公司生成PVC 糊树脂的配方,年产10000吨PVC 糊树脂中氯乙

烯合成每年约需要汞催化剂8.5万吨。

此外,每年约需要加水3060吨,加入质量分数约为15%的碱液80吨,每年约出

酸(约15%)3600吨,排出废碱液量为115.49吨。触媒催化剂按0.15%的损失计算,则每年回收的量为:

8.58.50.00158.49t t t -?=

整个氯乙烯合成部分最终排出的尾气和低沸物、高沸物的总和为259.04t 。

氯乙烯合成部分是由混合脱水工序、合成工序、水洗碱洗工序以及精馏工序组成,

这四个部分的损失分别设为0.1%、0.15%、0.1%、0.15%,则氯乙烯合成部分的总损失量为:

12.4/18.55/15.52/19.01/65.48/t a t a t a t a t a +++=

所以氯乙烯合成部分的总的物料衡算式为:

7400/5000/8.5/3060/80/15548.5/t a t a t a t a t a t a ++++=

12.4/18.55/8.49/15.52/3600/115.49/19.01/259.04/11500/t a t a t a t a t a t a t a t a t a =++++++++即整个氯乙烯合成部分的物料平衡。

5.1.3混合脱水工序的物料平衡

混合脱水工序的物料平衡图

5.1.4混合脱水工序的物料平衡计算

加入的乙炔量为5000t/a ,加入的HCL 量为7400t/a,则

()(:202.739726HCL M M mol ==乙炔):192.3076923mol 1.054

设乙炔工序关过来的乙炔中含水0.5%,并且在混合脱水工序除去所有的水份,则除去的水份为:

5000t/a ×0.5%=25t/a

设此工序中得到的冷凝酸槽中的稀酸的质量分数约为15%,则带走的HCL 的量为:

250.15 4.41/10.15

t a ?=- 则冷凝酸槽中的稀酸的量为29.41吨,此时稀酸的质量分为数为:

4.41100%14.99%29.41

? 设此工序的损失量为0.1%,则此工序的损失量为:

7400/0.0015000/0.00112.4/t a t a t a ?+?=

由上可得进入下一工序的各种物质的数量分别为:

HCL :

7400/7.4/ 4.41/7388.19/t a t a t a t a --=

乙炔:

5000/25/5/4970/t a t a t a t a --=

则混合脱水工序的物料平衡计算式为:

5000/7400/12400/t a t a t a +=

=12.4/29.41/7388.19/4970/t a t a t a t a +++

即整个混合脱水工序的物料平衡。

5.1.5合成工序的物料平衡

合成工序的物料平衡图

5.1.6合成工序的物料平衡计算

从混合脱水工序过来的HCL 的量为7388.19t/a,乙炔的量为4970t/a ,加入的汞催化剂的量为8.5t/a 。

设此工序的损失为0.15%,则损失量为:

7388.19/0.00154970/0.00158.5/0.0015t a t a t a ?+?+?

11.08/7.46/0.01275/t a t a t a =++

18.55/t a =

又由于反应中HCL 过量,所以生成的氯乙烯由乙炔来计算,反应的转化率为98%,则所得的氯乙烯的量为:

11690.60/t a ?=(4970t/a-7.46t/a )0.9826

而反应的HCL 的量为:

11690.60/36.56827.31/62.5

t a t a ?= 即剩余的HCL 的量为:

7388019/6827.31/11.08/549.80/t a t a t a t a --=

剩余乙炔及其它杂物的量为:

(4970/7.46/)(10.98)99.25/t a t a t a -?-=

剩余触媒的量为:

则合成工序的物料平衡计算式为:

=

++12366.69/t a

t a t a t a

7388.19/4970/8.5/

t a t a t a t a t a

=++++

18.55/8.49/549.80/99.25/11690.60/

即整个合成工序的物料平衡。

5.1.7水洗、碱洗工序物料平衡

水洗碱洗工序物料平衡图

从合成工序过来的氯乙烯的量为11690.60t/a,过来的乙炔及其它杂物的量为99.25t/a,过来的HCL的量为549.80t/a。另外,从混合脱水工序中冷凝酸槽过来的稀酸有29.41t/a。还有就是在工序中要补加水和碱液,补加的水为3060t/a,补加的碱液为80t/a(质量分数约为15%)。

设此工序的损失量为0.1%,则损失的量为:

11690.60/0.00199.25/0.00129.41/0.001549.80/0.001

?+?+?+?

t a t a t a t a

+?+?

3060/0.00180/0.001

t a t a

=+++++

t a t a t a t a t a t a

11.70/0.099/0.029/0.55/ 3.06/0.08/

=

15.52/t a

则经过此工序,除去损失,剩下的VCM的量为:

-=

t a t a t a

11690.60/11.7/11678.9/

剩下的乙炔及其它杂物的量为:

设水洗碱洗过程中两级水洗塔吸收混合气体中的98%的HCL ,

而过来的HCL 的量为:

549.80/29.41/0.0015554.21/t a t a t a +?=

则水洗过程洗去的HCL 的量为:

554.21/98%543.13/t a t a ?=

水洗过程生成的稀酸去售酸工序,设生成的稀酸的质量分数约为15%,则每年的出酸量为:

543.13/3620.87/0.15

t a t a 取每年出酸3600t/a ,则最终所送去售酸工序的稀酸的浓度为:

543.15/100%15.09%3600/t a t a

?= 除水洗以外,剩下的HCL 由碱液(质量分数约为15%)除去,由碱液除去的HCL 的量为:

554.21/543.13/11.08/t a t a t a -=

由 2NaOH HCL NaCl H O +==+ 可以得到除去11.08t/a HCL 要约12.4t/a 的NaOH ,所以需碱液的量为:

12.4/80.93/0.15

t a t a = 取每年加入碱液80t,此时碱液中含有NaOH 的质量分数为:

12.4/100%15.18%80

t a ?= 又因为排出稀酸3600吨,稀酸的质量分数为15.09%,则需水量为:

3600/(10.1509)3056.76/t a t a ?-

取每年补加水3060t

而由平衡,每年排出的废碱液的量为115.49t

则水洗碱洗工序物料平衡计算式为:

11690.60/99.25/549.80/3060/80/29.41/15509.60/t a t a t a t a t a t a t a +++++=

15.52/99.15/115.49/3600/11678.90/t a t a t a t a t a =++++

即整个水洗碱洗工序的物料平衡。

5.1.9 精馏工序的物料平衡

精馏工序的物料平衡图

5.1.10精馏工序的物料平衡计算

从水洗碱洗工序经气柜,压缩机过来的氯乙烯的量为11678.90t/a,过来的乙炔及其它杂物的量为99.15t/a.

设此精馏工序的损失为0.15%,则精馏工序的损失量为:

?+?=+=

t a t a t a t a t a 11678.90/0.001599.15/0.001517.52/ 1.49/19.01/

则损失后剩余的VCM的量为:

t a t a t a

-=

11678.90/17.52/11661.38/

损失后剩余的乙炔及其它杂物的量为:

-=

99.15/ 1.49/97.66/

t a t a t a

设在剩余的VCM的11661.38t中,其中有151.38t的VCM气体无法冷凝,进入尾气冷凝器,再进入尾气回收工序,而乙炔及其它杂物中的乙炔气体无法冷凝,也进入尾气冷凝器,再进入尾气回收工序,乙炔及其它杂物中的低沸物、高沸物将在低沸塔、高沸塔中依次除去,最终排放。尾气及排出的低沸物、高沸物的总和为259.04t。

最终排出的成品氯乙烯为11500t/a,

则精馏工序的物料平衡计算式为:

+=

t a t a t a

11678.90/99.15/11778.05/

19.01/259.04/11500/t a t a t a =++

即整个精馏工序的物料平衡。

5.2 设备工艺计算

设备工艺计算是在确定了设备的操场作工艺参数及进行了物料衡算的基础上进得的。其内容主要是确定设备的类型、规格、主要工艺尺寸、设备台数等,其目的是为设备机械设计、车间平面布置、配管设计等提供设计依据。

化工设备是进行化工生产过程的物质基础,它对装置的生产能力、操作过程的稳定性和可靠性、产品的质量等都起着重要的作用,因此设备工艺计算时工艺设计中的重要环节。设备选型与设计应遵循如下原则:

(1)合理性,设备必须满足工艺设计的一般要求,设备要与工艺流程、生产规模、操作条件、控制水平等相适应,同时又能充分发挥每个设备的生产能力。在设计中特别要注意各设备之间生产能力和操作方式的协调关系,防止在整个生产装置中的某个设备必出现瓶劲现象。

(2)先进性,设备的运转可靠性、自控水平、生产能力、生产效率等要尽可能达到先进水平。工人在操作时劳动强度小,便于操作。

(3)安全性,生产过程稳定,有一定的弹性。

(4)经济性,设备投资费用和操作费用要低。设备易于加工、维修及更新,而且没有特殊的维护要求,对建筑地基和厂房等无苛刻要求。

5.2.1转化器的计算

从混合脱水工序经预热器过来进入转化器中的混合物的总质量为(包括汞催化剂的加入量,并且假设预热器无损失):

7388.19/4970/8.5/12366.69/t a t a t a t a ++=

再假设每年开工335天,则每水时进入转化器的量为:

12366.6910001538.15/33524kg kg h h

?? 由于汞催化剂(2HgCl )的量少,在求混合气体的密度时不算入内,

33()(1.6/,613/HCL kg m kg m ρρ==乙炔)

则:

年产3000吨丙烯氰(AN)合成工段换热器工艺设计1

年产3000 吨丙烯氰合成工段换热器工艺设计

目录 一、设计说明 (3) 1.1 概述 (3) 1.2丙烯腈生产技术的发展概况 (3) 1.2.1国外的发展情况 (3) 1.2.2国内的发展情况 (4) 1.3 世界X围内产品的生产厂家、产量 (6) 1.4世界X围内生产该产品的所有工艺及其分析 (7) 1.4.1环氧乙烷法 (7) 1.4.2 乙炔法 (7) 1.4.3丙烯氨氧化法 (7) 1.5设计任务 (8) 二、生产方案 (8) 2.1 工艺技术方案及原理 (8) 2.2 主要设备方案 (9) 2.2.1催化设备 (9) 2.2.2控制系统 (10) 三、物料衡算和热量衡算 (10) 3.1 生产工艺及物料流程 (10) 3.2 小时生产能力 (14) 3.3 物料衡算和热量衡算 (14) 3.3.1反应器的物料衡算和热量衡算 (14) 3.3.2废热锅炉的热量衡算 (17) 3.3.3空气饱和塔物料衡算和热量衡算 (18) 3.3.4 氨中和塔物料衡算和热量衡算 (21) 3.3.5换热器物料衡算和热量衡算 (27) 3.3.6丙烯蒸发器热量衡算 (32) 3.3.7丙烯过热器热量衡算 (33) 3.3.8氨蒸发器热量衡算 (33) 3.3.9气氨过热器 (34) 3.3.10 混合器 (34) 3.3.11 空气加热器的热量衡算 (35) 3.3.12吸收水第一冷却器 (36) 3.3.13 吸收水第二冷却器 (36) 四、主要设备的工艺计算 (37) 4.1 空气饱和塔 (37) 4.2 水吸收塔 (40) 4.3 合成反应器 (43) 4.4 废热锅炉 (45) 五、环境保护要求 (46) 5.1丙烯腈生产中的废水和废气及废渣的处理 (46) 六、参考文献 (50) 1设计说明

天然气制甲醇工艺总结word精品

天然气制甲醇工艺技术总结 中化二建集团有限公司王瑞军 工程名 称:内蒙古天野化工油改气联产20万吨/年甲醇项目 工程地点:内蒙古呼和浩特巾 开工日期:2004年5月 竣工日期:2005年11月 投资金 额: 约6亿元人民币 1甲醇装置简介 1.1内蒙古天野化工集团为调整产品结构,开拓碳一化工领域产品,增强企业参与市场的竞争能力,解决企业生存发展问题,以天然气取代重油为原料,采用非催化部分氧化技术对现有的30万吨/年合成氨生产装置进行技术改造,同时增建一套以天然气为原料年产20万吨的甲醇装置。 1.2 本项目由中国五环科技有限公司设计,中化二建集团有限公司承建。所采用的技术均为国产。所选用的设备除三台天然气压缩机组为进口外,其余均为国产。设计日产甲醇667吨,日耗天然气608500立方米。装置采用:变频电机驱动离心式天然气压缩、 2.5MPa 补碳一段蒸汽转化炉、蒸汽透平驱动离心式合成气压缩机、8.0MPa林达均温合成塔、三塔 精馏、普里森膜分离氢回收、MEA二氧化碳回收工艺。另外还为合成氨配套一台蒸汽透平驱动离心式天然气压缩机。 2甲醇装置工艺特点 2.1 天然气压缩工序 天然气压缩工序是将1.25MPa( A)天然气压缩至蒸汽转化要求的压力2.85MPa(A)。天然气压缩机组采用德国阿特拉斯生产的电机驱动的离心式压缩机组?离心压缩机的显著 特点是单机打气量大。运转平稳无脉冲、维修少、无需备用,与蒸汽透平驱动相比投资少,占地面积较小。 2.2 天然气转化工序 2.2.1天然气转化工序是通过天然气和蒸汽转化反应生产甲醇合成需要的合成气。天然气转化工序只设一段转化炉,转化炉采用顶烧方箱炉,对流段为水平布置,水碳比为 3.2, 转化炉出口转化气温度855E,压力2.19MPa,甲烷含量约2.5% (干基)。 2.2.2 原料天然气脱硫采用钻钼加氢串氧化锌脱硫工艺,氧化锌脱硫槽采用双塔,可并联可串联保证天然气中总硫小于O.IPPn,同时脱硫剂更换不影响生产。

年产20万吨PVC合成工段工艺设计毕业设计

毕业设计(论文)任务书 化学化工院化工系(教研室)系(教研室)主任: (签名) 年月日 学生姓名: 学号: 专业: 化学工程与工艺 1 设计(论文)题目及专题:年产20万吨PVC合成工段工艺设计 2 学生设计(论文)时间:自 2 月 20 日开始至 6 月 2 日止 3 设计(论文)所用资源和参考资料:1)化工设计;2)化工设备设计;3)化工工艺设计手册;4)有机合成;5)株洲化工厂现场实习资料。 4.设计(论文)完成的主要内容:1)总论;2)生产流程及生产方案的确定; 3)生产工艺流程叙述;4)工艺计算; 5)工艺管道设计; 6)安全与节能; 7.技术经济. 5.提交设计(论文)形式(设计说明与图纸或论文等) 1. 带控制点生产工艺流程图; 2. 车间立面布置图; 3. 合成塔结构图。 4 厂房设计平面图 6 发题时间:二○一一年二月二十日 指导教师:(签名) 学生(签名)

内容摘要 本文讲述了我国聚氯乙烯工业生产技术的发展进程和目前状况,包括原料路线、工艺设备、聚合方法等。本设计采用悬浮法生产聚氯乙烯,介绍了采用悬浮法生产PVC树脂工聚合机理,工艺过程中需要注意的问题,包括质量影响因素,工艺条件及合成工艺中的各种助剂选择,对聚合工艺过程进行详细的叙述。并且从物料衡算、热量衡算和设备计算和选型三个方面进行准确的工艺计算,对厂址进行了选择,采取了防火防爆防雷等重要措施,对三废的处理回收等进行了叙述,画出了整个工艺的流程图。 关键词:聚氯乙烯;生产技术;悬浮法;乙炔法;乙烯法; 防粘釜技术;

目录 第一章总论 (2) 1.1 国内外 pvc发展状况及发展趋势 (2) 1.2 单体合成工艺路线 (3) 1.2.1乙炔路线 (3) 1.2.2乙烯路线 (4) 1.3聚合工艺实践方法 (5) 1.3.1本体法聚合生产工艺 (5) 1.3.2乳液聚合生产工艺 (5) 1.3.3悬浮聚合生产工艺 (6) 1.4最佳的配方、后处理设备的选择 (7) 1.4.1配方的选择 (7) 1.4.2后处理设备侧选择 (7) 1.5 防粘釜技术 (9) 1.6原料及产品性能 (9) 1.7 聚合机理 (11) 1.7.1自由基聚合机理 (11) 1.7.2链反应动力学机理 (12) 1.7.3 成粒机理与颗粒形态 (12) 1.8影响聚合及产品质量的因素 (13) 1.9工艺流程叙述 (14)

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

煤化工工艺汇总

煤化工工艺汇总煤化工工艺路线图

煤制甲醇典型工艺路线图 1、合成甲醇的化学反应方程式: (1)主反应: CO+2H2=CH3OH+102.5KJ/mol (2)副反应 2CO+4H2=CH3OCH3+H2O+200.2 KJ/mol CO+3H2=CH4+H2O+115.6 KJ/mol 4CO+8H2=C4H9OH+3H2O+49.62 KJ/mol CO2+H2=CO+H2O-42.9 KJ/mol 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于煤炭气化所得到的水煤气CO含量较高,H2含量较低,因此水煤气须经脱硫、变换、脱碳调整气体组成,以达到甲醇合成气的要求。 3、CO变换反应

CO+H2O(g)=CO2+H2 (放热反应) 4、水煤气组分与甲醇合成气组分对比 气体种类气体组分(%) CO H2CO2CH4水煤气37.350.0 6.50.3甲醇合成气29.9067.6429.900.1 天然气制甲醇工艺流程图 1、合成甲醇的化学反应方程式: CH4+H2O=CH3OH+H2 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈ 2.05~2.10,由于天然气甲烷含量较高,因此要对天然气进行蒸 汽转化,生成以H2、CO和CO2位主要成分的转化气。由于蒸汽转化反应是强吸热反应,因此还要对天然气进行纯氧部分氧化

以获取热量,使得蒸汽转化反应正常连续进行,最终达到甲醇合成气的要求。 3、蒸汽转化反应 CH4+H2O(g)=CO+H2(强吸热反应) 4、纯氧部分氧化反应 2CH4+O2=2CO+4H2+35.6kJ/mol CH4+O2=CO2+2H2+109.45 kJ/mol CH4+O2=CO2+H2O+802.3 kJ/mol 5、天然气组分与甲醇合成气组分对比 气体种类气体组分(%) CO H2CO2CH4天然气----------- 3.296.2甲醇合成气29.9067.6429.900.1石油化工、煤炭化工产品方案对比(生产烯烃)

丙烯腈合成工段的工艺设计

丙烯腈合成工段的工艺设计 前言 毕业设计是培养学生运用理论知识进行实际设计能力的重要实践教学环节,是理论与实际结合的重要连接点。在教师指导下毕业设计可以培养我们独立思考,运用所学到的基本理论并结合生产实际的知识,综合的分析和解决工程实际问题的能力。 本次毕业设计所设计的内容为年产6万吨丙烯腈合成工段的工艺设计,通过认真细听老师课堂上讲解和任务布置,我们了解到了为完成设计需要查找资料的方向,并进行了细心的查阅,掌握了基本的理论知识。对于刚进行设计的人来说,学会收集、理解、熟悉和使用各种资料,正是设计课程需要培养的重要方面,化工设计非常强调标准规范。但是并不是限制设计的创造和发展,因此遇到与设计要求有矛盾时,经过必要的手续可以放弃标准而服从设计要求。通过设计应知道如何查取数据知道如何查找资料对丙烯腈合成工段的工艺设计有了一个全新的 认识,知道如何选取相关数据参数,建立一个工程概念,知道工程和理论的区别。对于物料衡算和热量衡算、主要设备的工艺计算(反应器)等都有一个全新的认识和了解,知道如何使用手册和资料,认识工程。

一、产品的性状、用途、国内外市场情况 1.1 丙烯腈简介 丙烯腈是一种重要的有机合成单体,在丙烯产品系列中居第二,仅次于聚丙烯,是三大合成材料(纤维、橡胶、塑料)的重要化工原料,主要用来生产聚丙烯腈纤维(腈纶)、丙烯腈- 丁二烯-苯乙烯(ABS)塑料、苯乙烯(AS)塑料、丙烯酰胺等。丙烯腈在合成纤维、合成树脂等高分子材料中占有显著地位,应用前景广阔。除此之外,丙烯腈聚合物与丙烯腈衍生物也广泛应用于建材及日用品中 1.2 丙烯腈物化性质 1.2.1 丙烯腈物理性质 无色或淡黄色液体,有特殊气味,分子量:53.06 沸点:77.3℃冰点:-83.5 ℃生成热:184.2 kJ/mol(25℃) 燃烧热:1761.5 kJ/mol 聚合热:72.4 kJ/mol 蒸汽压:11.0KPa(20℃) 闪点:0℃自燃点:481℃爆炸极限:在空气中 3.0%~17%(体积)油水分配系数:辛醇/水分配系数的对数值为-0.92 毒性:剧毒,毒作用似氢氰酸溶解性:溶于丙酮、苯、四氯化碳、乙醚、乙醇等有机溶剂,微溶于水 1.2.2 丙烯腈化学性质 丙烯腈由于分子结构带有C=C双键及-CN键,所以化学性质非常活泼,可以发生加成、聚合、腈基及氢乙基化等反应。聚合反应和加成反应都发生在丙烯腈的C=C 双键上,纯丙烯腈在光的作用下能自行聚合,所以在丙烯腈成品及丙烯腈生产过程中,通常要加少量阻聚剂,如对苯酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除发生自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、丙烯酰胺等发生共聚反应,由此可制得合成纤维、塑料、涂料和胶粘剂等。丙烯腈经电解加氢偶联反应可以制得已二腈。氰基反应包括水合反应、水解反应、醇解反应等,丙烯腈和水在铜催化剂存在下,可以水合制取丙烯酰胺。氰乙基化反应是丙烯腈与醇、硫醇、胺、氨、酰胺、醛、酮等反应;丙烯腈和醇反应可制取烷氧基丙胺,烷氧基丙胺是液体染料的分散剂、抗静电剂、纤维处理剂、表面活性剂、医药等的原料。丙烯腈与氨反应可制得1,3 丙二胺,该产物可用作纺织溶剂、聚氨酯溶剂和催化剂。 1.3 丙烯腈的用途

年产20万吨氯碱盐酸工段工艺设计

1引言 盐酸,又称氢氯酸,是氯化氢的水溶液。亦是氯碱企业中最基本的无机酸和化工原料之一,也是氯碱厂做好氯气产品生产能力平衡的关键产品和大宗的化学合成法产品。 氯碱,即氯碱工业,也指使用饱和食盐水制氯气氢气烧碱的方法。工业上用电解饱和NaCl 溶液的方法来制取NaOH 、Cl 2和H 2,并以它们为原料生产一系列化工产品,称为氯碱工业。 工业上利用氢气与氯气合成的方法生产氯化氢,因此盐酸是氯碱工业的重要产品。 1.1盐酸概况 1.1.1物理性质 盐酸是无色液体,具有腐蚀性,是氯化氢的水溶液(工业用盐酸会因有杂质三价铁盐而略显黄色)。氯化氢分子量36.46,密度大于空气,标准状态下的密度为1.639g /L ,临界温度为51.54℃,临界压力为8314kPa 。氯化氢气体在水中的溶解度很大,随着氯化氢的分压的升高而增加,随着温度的上升而降低。 在化学上人们把盐酸和硫酸、硝酸、氢溴酸、氢碘酸、高氯酸合称为六大无机强酸,有刺激性气味。由于浓盐酸具有挥发性,挥发出的氯化氢气体与空气中的水蒸气作用形成盐酸小液滴,所以会看到酸雾。 主要成分:氯化氢,水。 熔点(℃):-114.8(纯HCl) 沸点(℃):108.6(20%恒沸溶液) 相对密度(水=1):1.20 相对蒸气密度(空气=1):1.26 饱和蒸气压(kPa):30.66(21℃) 溶解性:与水混溶,浓盐酸溶于水有热量放出。溶于碱液并与碱液发生中和反应。能与乙醇任意混溶,溶于苯。 氯化氢在101.3kPa 压力下,沸点为—85℃,凝固点为—114.2℃。 氯化氢的比热容在常压下15℃时为0.8124kJ /kg ℃,在0—1700℃范围内,可按下式计算(其误差为1.5%) 50.7557511.2505C T -=+?10 (8-1),式中,T 为绝对温度K 。 15℃时盐酸的密度与浓度之间的关系

树脂砂铸造生产工艺

树脂砂铸造生产工艺 为规树脂砂铸造的生产过程,严格执行操作工艺,减少因违反工艺或操作不当产生的废品和降低的铸件生产成本,特制定本生产操作工艺规程。本工艺规程适用于公司所有树脂砂铸件的生产全过程和与之相关的各类操作人员。下面节选一部分供大家参考阅读。 工艺规程 3.1 主要原材料的技术要求或规格 3.1.1原砂(天然石英砂) 粒度:40/70目(件)或50/100目(一般件); 化学成分:SiO2 >90% 、含泥量<0.2%~0.3% 、含水量 <0.1~0.2%;微粉含量(140目筛以下) ≤0.5~1.0%、耗酸值<5ml 、灼减量<5、粒型:圆形或多角形。 3.1.2再生砂 灼减量<3.0%;耗酸值<2.0ml;PH值<5 ;200目筛底盘<1%;底盘量<0.2%;含水量<0.2%; 粒形:圆形。 3.1.3呋喃树脂 含氮量2.0~5.0%;24h抗拉强度>1.5MPa;游离甲醛<0.3%;粘度<60mPa.s;密度1.15~1.25 g/cm3;游离酚<0.3%。 3.1.4固化剂 采用有机磺酸固化剂,其黏度一般控制在<200mPa.s,水不溶物的含量<0.1%,同时冷冻和随后的溶解之间要有可逆性。为了保证稳定的型砂可使用时间和硬化速度,可选用“a+b”固化剂或根据季节不同选用不同酸度型号的固化剂。

3.1.5涂料 采用醇基涂料。要求涂料的固体含量高,粉料粒度细,粉料及黏结剂的耐火度高,抗爆热能力强等。具体工艺性能要求有:密度 1.25~1.35 g/cm3;黏度6~7s;悬浮性(2h)>97%;涂刷性、流平性、渗透性、抗裂性要好,涂层强度要高。对于表面球化有深度要求的铸件,应采用氧化镁涂料。 3.2操作工艺规程 3.2.1再生砂准备 根据树脂砂再生设备的要求和工艺流程进行操作,获得满足工艺要求的再生砂。特别要注意控制好进入混砂机时的再生砂的温度,最好在25-35℃。 3.2.2砂、树脂、固化剂加入量的调整 (1)混砂机的流量测定 根据混砂机的设定要求,在正常的生产情况下,至少每四天进行一次流量测定。分别对相同时间砂、树脂、固化剂的流量进行称量,掌握时间流量。并先将砂流量按混砂机的公称流量进行调整。 (2)树脂量的调整 根据砂流量调整树脂的加入量,树脂加入量一般控制在型砂重量的0.8~1.2%,厚大件取上限,中小件取下限。 (3)固化剂量的调整 固化剂加入量在正常情况下与砂温和车间环境温度有关,一般控制在树脂加入量的30~50%,高温时取下限,低温时取上限。放砂时间长的大件固化剂加入量取下限,以保证树脂砂有足够的可使用时间。 (4)混砂机的调整与准备

130万吨焦化厂粗笨工段工艺的设计

1 绪论 1.1炼焦煤气中回收苯族烃的意义 炼焦化学工业是煤炭综合利用的专业。煤在炼焦时除了有75%左右变成焦炭外,还有25%左右生成各种化学品及煤气,为了便于说明将煤炭炼焦时的产品列出如下:(单位:2 /Nm g) 75%25% 250~450 80~120 30~45 8~16 6~30 2~2.5 1.0~ 2.5 8~12 0.4~0.6? ? ? ? ? ? ? ←??????→? ??????? 2水煤汽焦油汽粗苯氨 焦炭煤荒煤气硫化氢 其它硫化物(CS,噻吩等) 氰化物 萘 吡啶盐基 由此看来,从荒煤气中粗苯的含量来看,回收粗苯是十分必要的。 焦炉煤气经硫铵工段后进入粗苯工段,进行苯族烃的回收并制取粗苯,目前我国焦化工业生产的苯类产品仍占很重要的地位。 1.2粗苯的性质 粗苯是多种芳烃族和和其它多种碳氢化合物组成的复杂混合物,粗苯的主要成分是苯、二甲苯、甲苯及三甲苯等,此外,还含有一些不饱和化合物,硫化物及少量的酚类和吡啶碱类。在用洗油回收煤气中的苯族烃时,则尚有少量轻质馏分掺杂在其中。 粗苯是谈黄色的透明液体,比水轻,不溶于水。在贮存时,由于轻质不饱和化合物的氧化和聚合所形成的树脂状物质能溶于粗苯使其着色并很快地变暗。在常温下,粗苯的比重是0.891~0.92kg/L。粗苯是易燃易爆物质,闪点12℃.粗苯蒸汽在空中的浓度达到1.4~7.5%(体积)范围内时,及形成爆炸性的混合物。 粗苯质量的好坏以实验室蒸馏时180℃前蒸馏出量的百分数来确定,粗苯的沸点范围是75~200℃,180℃前溜出量越多,粗苯质量越好;在180℃后的溜出物则为溶剂油。 粗苯易燃易爆,要求工段必须严禁烟火,并对电动机加以防爆。 粗苯的组成取决于炼焦配煤的组成及炼焦产物在炭化室内热解程度,粗苯各组分的平均含量见下表(表1-1)。

天然气转化合成甲醇的工艺

天然气转化合成甲醇的工艺综述 2015-6-24 专业:化工12-3班 学号: 学生姓名:劳慧 指导教师:刘峥

一.前言 (1) 二.主体部分 (2) 1. 天然气合成甲醇的原理 (2) 2. 高压法合成甲醇的原理及工艺流程 (2) 3. 低压法合成甲醇的原理及工艺流程 (3) 4. 中压法合成甲醇的原理及流程 (4) 5. 三者的比较 (4) 6. 以天然气合成甲醇的优势和现状 (6) 7. 其他原料合成甲醇与天然气合成甲醇的比较 (6) 三.结论部分 (8) 1. 对天然气合成甲醇的认识和了解 (8) 2. 对天然气转化合成甲醇提出我的观点和见解 (8) 四.参考文献 (8)

天然气转化合成甲醇的工艺 一.前言 20世纪60年代,石油和天然气作为一次能源与煤炭一起成为主要能源。与此同时,以石油和天然气为原料的化学工业也迅猛发展起来。与石油不同的是,天然气的成分主要是低分子量的烷烃。因此,天然气化工在发展中逐步成为一个体系。天然气是储量十分丰富的资源和能源,同时也是主要的温室气体之一,合理地利用天然气不仅关系到未来的资源配置和能源利用,而且也是可持续发展的重要战略发展方向之一。 天然气可以合成多种化工原料产品,比如生产合成氨还有甲醇,其中甲醇是最重要的。甲醇是一种重要的基础化工产品和化工原料,主要用于生产甲醛。醋酸、甲苯胺、氯甲烷、乙二醇及各种酸的酯类和维尼纶等,并在很多工业部门中广泛用作溶剂。甲醇在气田开发中用作防冻剂,添在汽油中可提高汽油的辛烷值,甲醇还可直接用作燃料用于发动机。 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料。天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行。由天然气制合成气进而合成甲醇是制甲醇产品一条重要的工艺路线。

产五万吨合成氨合成工段工艺设计方案

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (3) 1.1 氨的基本用途 (3) 1.2 合成氨技术的发展趋势 (4) 1.3 合成氨常见工艺方法 (4) 1.3.1 高压法 (5) < 1.3.2 中压法 (5) 1.3.3 低压法 (5) 1.4 设计条件 (5) 1.5 物料流程示意图 (6) 2 物料衡算 (8) 2.1 合成塔入口气组成 (8) 2.2 合成塔出口气组成 (8) 2.3 合成率计算 (9) 《 2.4 氨分离器出口气液组成计算 (10) 2.5 冷交换器分离出的液体组成 (13) 2.6 液氨贮槽驰放气和液相组成的计算 (13) 2.7 液氨贮槽物料衡算 (15) 2.8 合成循环回路总物料衡算 (17) 3 能量衡算 (28) 3.1 合成塔能量衡算 (28) 3.2废热锅炉能量衡算 (30) ~ 3.3 热交换器能量衡算 (31) 3.4 软水预热器能量衡算 (32) 3.5 水冷却器和氨分离器能量衡算 (33) 3.6 循环压缩机能量衡算 (35) 3.7 冷交换器与氨冷器能量衡算 (36) 3.8 合成全系统能量平衡汇总 (38) 4 设备选型及管道计算 (40) 4.1 管道计算 (40) , 4.2 设备选型 (42) 结论 (43) 致谢 (44) 参考文献 (45)

年产五万吨合成氨合成工段工艺设计 摘要:本次课程设计任务为年产五万吨合成氨工厂合成工段的工艺设计,氨合成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步骤,上述基本步骤组合成为氨合成循环反应的工艺流程。其中氨合成工段是合成氨工艺的中心环节。新鲜原料气的摩尔分数组成如下:H273.25%, N225.59%,CH41.65%,Ar0.51%合成操作压力为31MPa,合成塔入口气的组成为NH3(3.0%>,CH4+Ar(15.5%>,要求合成塔出口气中氨的摩尔分数达到 17%。通过查阅相关文献和资料,设计了年产五万吨合成氨厂合成工段的 工艺流程,并借助CAD技术绘制了该工艺的管道及仪表流程图和设备布置图。最后对该工艺流程进行了物料衡算、能量衡算,并根据设计任务及操作温度、压力按相关标准对工艺管道的尺寸和材质进行了选择。 关键词:物料衡算,氨合成,能量衡算 , The Design of 50kt/a Synthetic Ammonia Process Abstract:There are many types of Ammonia synthesis technology and process,Generally,they includes ammonia synthesis, separation and recycling, inert gases Emissions and other basic steps, Combining the above basic stepsturnning into the ammonia synthesis reaction and recycling process , in which ammonia synthesis section is the central part of a synthetic ammonia process. The task of curriculum design is theammonia synthesis section of an annual fifty thousand tons synthetic ammonia plant . The composition of fresh feed gas is: H2(73.77%>,N2(24.56%>,CH4(1.27%>,Ar(0.4%>, the temperature is 35℃, the operating pressure is 31MPa, the inlet gas composition of the Reactor is : NH3(3.0%>,CH4+Ar(15.7%>,it Requires the mole fraction of ammonia reacheds to 16.8% of outlet gas of synthesis reactor. By consulting the relevant literature and information,we designed the ammonia synthesis section of an annual fifty thousand tons synthetic ammonia

(完整版)年产45万吨乙醇精馏工段工艺设计毕业设计

年产45万吨乙醇精馏工段工艺设 计 The Process Design of Ethanol Refining Section of 450 kt/a

目录 摘要 ....................................................................................................................... Abstract ................................................................................................................引言 .......................................................................................................................第一章绪论....................................................................................................... 1.1 国内乙醇工业的发展现状 ....................................................................................... 1.2 精馏塔的相关概述 ................................................................................................... 1.2.1精馏原理及其在化工生产上的应用..................................................................... 1.2.2精馏塔对塔设备的要求......................................................................................... 1.2.3常用板式塔类型及本设计的选型......................................................................... 1.2.4本设计所选塔的特性.............................................................................................第二章工艺流程选择与原材料的计算............................................................. 2.1 乙醇精馏工艺流程的概述 ....................................................................................... 2.2 乙醇原料的计算 ..................................................................................................... 2.2.1理论玉米秸秆葡萄糖消耗量................................................................................. 2.2.2实际玉米秸秆耗量 .................................................................................................第三章精馏设备的设计内容............................................................................. 3.1 塔板的工艺设计 ....................................................................................................... 3.1.1精馏塔全塔物料衡算............................................................................................. 3.1.2理论塔板数的确定 ................................................................................................. 3.1.3精馏塔操作工艺条件及相关物性数据的计算..................................................... 3.1.4塔板主要工艺结构尺寸的计算.............................................................................

天然气转化合成甲醇的工艺课件

天然气转化合成甲醇的工艺综述 专业:化工12-3班 学号:3120313310 学生姓名:劳慧 指导教师:刘峥 2015-6-24

一.前言 (1) 二.主体部分 (2) 1. 天然气合成甲醇的原理 (2) 2. 高压法合成甲醇的原理及工艺流程 (2) 3. 低压法合成甲醇的原理及工艺流程 (3) 4. 中压法合成甲醇的原理及流程 (4) 5. 三者的比较 (4) 6. 以天然气合成甲醇的优势和现状 (6) 7. 其他原料合成甲醇与天然气合成甲醇的比较 (6) 三.结论部分 (8) 1. 对天然气合成甲醇的认识和了解 (8) 2. 对天然气转化合成甲醇提出我的观点和见解 (8) 四.参考文献 (8)

天然气转化合成甲醇的工艺 一.前言 20世纪60年代,石油和天然气作为一次能源与煤炭一起成为主要能源。与此同时,以石油和天然气为原料的化学工业也迅猛发展起来。与石油不同的是,天然气的成分主要是低分子量的烷烃。因此,天然气化工在发展中逐步成为一个体系。天然气是储量十分丰富的资源和能源,同时也是主要的温室气体之一,合理地利用天然气不仅关系到未来的资源配置和能源利用,而且也是可持续发展的重要战略发展方向之一。 天然气可以合成多种化工原料产品,比如生产合成氨还有甲醇,其中甲醇是最重要的。甲醇是一种重要的基础化工产品和化工原料,主要用于生产甲醛。醋酸、甲苯胺、氯甲烷、乙二醇及各种酸的酯类和维尼纶等,并在很多工业部门中广泛用作溶剂。甲醇在气田开发中用作防冻剂,添在汽油中可提高汽油的辛烷值,甲醇还可直接用作燃料用于发动机。 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料。天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行。由天然气制合成气进而合成甲醇是制甲醇产品一条重要的工艺路线。

环氧树脂生产工艺

环氧树脂生产工艺 摘要:对环氧树脂进行简单的介绍,包括其定义,发展概况,分类及其生产工艺等等。选取了双酚A型环氧树脂为例,介绍其生产工艺中的原料,流程,设备以及后期的“三废”的处理。 关键词:环氧树脂发展概况生产工艺 定义及发展概况 1.环氧树脂定义 环氧树脂(Epoxy Resin)是指分子结构中含有2个或2个以上环氧基并在适当的化学试剂存在下能形成三维网状固化物的化合物的总称,是一类重要的热固性树脂。最常用的双酚A 型环氧树脂含2个环氧基。化学名称:双酚A二缩水甘油醚. 英文名称: Diglycidyl ether of bis phenol A(缩写DGEBP A),其结构为: 2.发展概况 环氧树脂的发明曾经历了相当长的时期,它的工业化生产和应用仅是近40年的事情。 在19世纪末和20世纪初两个重大的发现揭开了环氧树脂发明的帷幕。远在1891年德国的Lindmann用对苯二酚和环氧氯丙烷反应生成了树脂状产物。1909年俄国化学家Prileschajew发现用过氧化苯甲醚和烯烃反应可生成环氧化合物。这两种化学反应至今仍 是环氧树脂合成中的主要途径。 我国的环氧树脂的开发始于1956年,在沈阳、上海两地首先获得了成功。1958年上海开始工业化生产。经过40余年的努力,我国环氧树脂生产和应用得到了迅速的发展。目前生产厂家已达100余家。生产的品种、产量日益增多,质量不断提高,在现代化的建设中正起着越来越重要的作用。 环氧树脂的分类及其合成工艺 1.分类 按化学结构差异:环氧树脂可分为缩水甘油类环氧树脂和非缩水甘油类环氧树脂2大类。 按分子中官能团的数量:环氧树脂可分为双官能团环氧树脂和多官能团环氧树脂。 按室温下的状态:环氧树脂可分为液态环氧树脂和固态环氧树脂。 2.生产工艺 环氧树脂的种类繁多,不同类型的环氧树脂的合成方法不同。环氧树脂的合成方法主要有两种:(1) 多元酚、多元醇、多元酸或多元胺等含活泼氢原子的化合物与环氧氯丙烷等含环氧基的化合物经缩聚而得。(2) 链状或环状双烯类化合物的双键与过氧酸经环氧化而成。

手糊成型工艺及复合材料的发展.

齐鲁工业大学 复合材料 材料科学与工程学院 材化13-1 201307021038 李振平 手糊成型工艺及复合材料的发展 很久以前,人类已经开始利用天然聚合物如牛羊角、蜡和沥青等。随着时间的发展,天然聚合物的性能已经不能满足人类的需要,由此,一些可改进天然聚合物性能技术(如纯化和改性)相继产生。 复合材料发展史摘要 1847年瑞典化学家Berzelius,这位现代化学的奠基人之一,首次在实验室发明了饱和聚酯。 1894年 Vorlander在实验室着手对乙二醇马来酸的研究工作,成为记录在案最早的一位研究不饱和聚酯树脂的化学家。 1920年先锋人物Wallace Carothers开始对乙二醇与不饱和脂肪酸合成的聚酯的研究工作。 1922年首个聚酯树脂被研发成功。

1930年末研究人员Bradley,Kropa 和Johnson三人共同研究不饱和聚酯的固化情况,在报告中提高,固化后,它们可以分为可熔性和不可溶性(热固性)。 1935年欧文斯科宁(Owens Corning)首次引入玻璃纤维 1941年不饱和聚酯首次投入美国的压铸商业市场 1942年美国橡胶公司开发出玻璃纤维增强聚酯树脂作为基体的复合材料。 1946年船艇制造商开始意识到纤维增强复合材料为整个工业带来了何种变革,在这年中首个复合材料船身的游艇在美国建成,还首次引入了冷固化系统。 1950年早期闭模工艺开发完成。 1951年中期不饱和聚酯树脂在欧洲投入商业化生产。 1963年碳纤维增强材料引入市场 到了19世纪,随着科学技术在物理化学领域的应用,自然界中的天然聚合物的性能已经不能满足工业发展对材料性能的需要,这使当时的新型材料-早期的复合材料得到飞速的发展。 复合材料是由不同元素组成的结构,结果是形成了一加一等于三。对于复合材料的理解,貌似昆虫、鸟和蝙蝠等动物比我们要理解的更透彻一些,它们将这个原理应用到筑窝的过程中,以防天敌的攻击。原始人用动物粪便、粘土、稻草和树枝组成复合材料结构,这是人类将复合材料应用到生活中具有历史意义的一步。甚至据人们传说,圣经中的诺亚方舟也是由煤沥青和稻草混合制成的,这也许真的是被报道出的复合材料船舶的鼻祖,当然这也仅是传说。 之后经过了几千年,第二次复合材料在工业应用的浪潮在1830年席卷西欧,工业领域中的先锋人物在发现了复合材料这种新兴材料之后,争相投入对它了研发工作,包括:木质层压板、合金和钢筋增强混凝土。在17世纪,英国人John Osborne通过天然聚合物牛羊角制备了模塑制品。到19世纪,模塑牛羊角工业开始繁荣壮大,其大多数制品都卖给了当时的中产阶级。 随着天然聚合物的不断发展,人们开采了由热带橡树产生的树胶,尤其是在1847年Bewley发明了塑料挤出机,可以用树胶制备橡胶和古塔橡胶,在1850年开始采用这种古塔橡胶来保护隔离水线电报电缆。 谈到复合材料,就不能不说起英国。在复合材料工业发展过程当中,很多重要事件都与英国密切相关。 汉考克托马斯和他的兄弟查尔斯对橡胶进行广泛的研究,终于在1839年发明了硫化橡胶,他们也因这一发明而闻名于世。同时美国的古德意

复合材料的手糊成型工艺

毕业设计报告(论文) 报告(论文)题目:聚合物基复合材料手糊成型工艺 作者所在系部:材料工程系 作者所在专业:高分子材料应用技术 作者所在班级: 07841 作者姓名:赵向男 作者学号: 20073084128 指导教师姓名:彭燕 完成时间: 2010年5月25日 北华航天工业学院教务处制

随着社会科技与经济的飞速发展,复合材料在国内外有很大的应用与发展,并且在各个领域占据了越来越重要的地位。复合材料的成型工艺方法很多,本文着重介绍手糊成型工艺方法的特点、工艺流程以及成型过程中遇到的问题和解决方法等。 关键字:复合材料手糊成型工艺流程。

Along with the social economy and the rapid development of science and technology, composite materials at home and abroad, has great development and application in different fields and occupy a more and more important role. Composites forming process, this paper introduces many methods to hand lay-up molding method, process and molding process problems and solving methods. Key words: composite materials molding paste hand process.

年产一万吨聚苯乙烯聚合工段工艺设计

. 毕业设计 题目:年产1万吨聚苯乙烯聚合车间工艺设计学院: 专业: 姓名: 学号: 指导老师: 完成时间:

设计说明 本次设计主要是针对年产1万吨聚苯乙烯聚合车间工艺的设计。设计的内容主要包括绪论、聚苯乙烯的聚合机理、聚合工艺介绍、物料衡算、反应釜的设计、热量衡算、自动控制等几部分。本设计采用的是热引发本体聚合的生产工艺,在确定工艺流程的基础上对以下几部分进行了设计计算:物料衡算、反应釜的设计、热量衡算等。本次设计年理论产值是一万吨经计算投料每小时需投入苯乙烯1288.8kg,甲苯175.69kg,每小时生成的聚苯乙烯计算后可知,年产量为1.08万吨。符合设计的要求。釜体容积14.33m3,釜体高度 3.18m。共需反应热为24000000KJ。 关键词:热引发本体聚合聚苯乙烯苯乙烯预聚釜聚合釜

Design Description This design is mainly aimed at the annual output of 10000 tons of polymerization polystyrene workshop process design. Design content mainly includes the introduction, polystyrene introduced the polymerization mechanism, polymerization process, material balance, the design of the reaction kettle, heat balance, automatic control and so on several parts. This design USES a thermal bulk polymerization production process, the technological process is determined on the basis of calculation in design of the following sections: the design of the material balance and the reaction kettle, heat balance, etc. The design theory of value is ten thousand tons of calculating charge per hour need for styrene 1288.8 kg, 175.69 kg, toluene per hour generated polystyrene after calculation, the annual output of 10800 tons. In line with the requirements of design. The kettle body volume of 14.33 m3, body height of 3.18 m. The total heat of reaction of 24000000 kJ. . Keywords:Heat cause Bulk polymerization polystyrene styrene The performed kettle Polymerization kettle

相关主题
文本预览
相关文档 最新文档