当前位置:文档之家› 车辆监测用微波测速雷达方案

车辆监测用微波测速雷达方案

车辆监测用微波测速雷达方案
车辆监测用微波测速雷达方案

车辆监测用微波测速雷达的可靠性设计

一、可靠性设计的主要基本参照文件 (2)

二、测速雷达可靠性设计的目的和意义 (2)

三、可靠性设计的基本思路 (3)

四、系统级可靠性设计 (4)

五、电路级可靠性设计 (6)

六、结构级可靠性设计 (11)

七、综合级可靠性设计 (13)

八、可靠性预检验 (14)

一、可靠性设计的主要基本参照文件

GB/T 11463—1989 电子测量仪器可靠性试验;

GB 6587.1-86 电子测量仪器环境试验总纲

及GB 6587 系列文件;

GB 5080.1-86 设备可靠性试验总要求

及GB 5080 系列文件。

JJG 527-2007机动车超速自动监测系统检定规程

JJG 528-2004 机动车雷达测速仪检定规程

二、测速雷达可靠性设计的目的和意义

1. 保证测速雷达产品符合国家和行业提出的相关可靠性标准;

2. 保证产品在使用民用级元器件和批量生产条件下,达到合理的合格率;

3. 保证产品在民用无维护、户外恶劣的应用环境下,具有合理的故障率;

4. 保证上述要求的低成本实现。

以上四项要求事实上是产品能否生存的基本条件。公路车辆测速雷达作为民用产品,不可能用苛刻的元器件筛选来满足产品合格率的要求,因为那样会大幅度提高产品造价;不可能要求用户具有专业的

维护技能、遵从耐心的安装规则、和有清洁的安装使用环境;必须能适应长期户外的恶劣环境,包括-200C~+700C的工作环境温度,以及雨、盐雾的侵蚀、雷电环境和电磁干扰;产品必须具有很低的故障率,稍高的故障率就会使产品被市场淘汰。低成本又是紧要的限制。为了达到这些目标,大量生产的电子产品,包括民用电子产品,其设计思想与军用或专用电子产品的设计思想就会有重大的不同。军用电子产品通常采用性能最优化设计:用当前可得到的技术资源,达到最好的设计指标。成本,包括成量生产下的成本,对军用产品而言是次要的考虑因素。因此,设计方案尽量完善,产品构成可以很复杂,可以使用各种支持技术附加到产品上。大量生产的产品包括民用产品则完全不可能这样设计。大量生产条件下,节约成本极为紧要。对应用电子产品而言,只要产品能够满足应用需求,设计应力求精简。精简设计带来的好处不仅仅是降低成本,而且更容易保证产品的可靠性。精简设计要从总体方案的制定开始。必须重新审视每一个可能的技术方案,寻求最精简可靠的方案。在精简的总体设计中必须通过仔细的分析论证,提出保证技术指标的关键技术,并将解决关键技术作为产品发展的第一步。在此基础上才能落实总体方案。然后小心地进行电路和结构设计,保证产品满足应用需求和高的可靠性。由于民用产品成本上的苛刻限制,对它的可靠性设计是一个挑战。本文件具体说明我们在测速雷达设计中对可靠性的考虑。

三、可靠性设计的基本思路

系统级设计:采用精简设计方案。在满足技术要求的前提下,尽量避免使用繁杂的电路和结构设计方案。

电路级设计:采用降额设计原则;预保护技术;电路参数中心设计技术;低敏感度设计技术;抑制干扰的接地和布线技术;抑制干扰的屏蔽技术;电路的保护性设计;接口的保护性设计;以及电磁兼容性设计。

结构级设计:采用电路-结构一体化的设计方法,在保证电气特性的同时,还要保证结构满足环境应用需求。需要考虑的技术问题包括:壳体的刚性、密封性、易安装性、和环境适应性(温度、湿度、抗风、抗盐雾、抗振动能力);结构的力学合理性;结构与电磁兼容技术的适应性;结构力学、声学振动对雷达性能的影响考虑。

综合级设计:指热设计、抗辐射设计、抗主动干扰设计;环保型设计考虑;包装、运输设计考虑等等。本测速雷达不考虑抗辐射和抗主动干扰设计问题。

四、系统级可靠性设计

精简设计是经济型电子系统可靠性设计的基本思路。本测速雷达的总体方案完全遵从精简设计的原则。具体地说,在总体设计中考虑了

使用最可靠又简单、有效的设计方案;

对关键性的技术问题进行仔细论证和预先研究,保证达到技术要求,避免过度设计;

避免使用繁杂的电路设计方案;

避免在设计方案中使用对应用环境敏感的部件或组件。

在系统级设计方案中使用了下列设计考虑:

1. 微波发射源使用混合微波集成电路振荡器,而不用国外产品常用的GUNN振荡器。这避免了GUNN振荡器可能出现的振荡频率跳模现象。这种频率跳变现象特别敏感于起振时的环境温度和电源变化。GUNN的振荡模式跳变常常具有不规则性,并会造成雷达测量的速度数据完全不可用。使用混合微波集成电路振荡器可以消除跳模现象,保证了雷达测量数据的可靠性。

2. 从测速雷达的应用要求来看,雷达天线波束方向性图的质量是决定性能的关键。这包括波束宽度,波束形状因子(-10dB宽度与-3dB宽度的比值),旁瓣电平,以及天线的辐射效率。把这些指标做高,会大大减缓对雷达电路设计和数据处理算法的压力。直接受影响的技术参数包括:雷达的测速距离或灵敏度;雷达对车辆的定位准确性;雷达区分车辆的能力;雷达克服邻车道干扰的能力。因此在本雷达中,对雷达天线设计下了深入的功夫。天线在成量生产条件下方向性图的一致性很好,波束形状因子接近于2,旁瓣电平为-15dBi 或更低。这为雷达在批量生产条件下保证性能的一致性奠定了基础。

3. 雷达接收和信号检测使用了窄带系统方案,以达到低的噪声带宽。尽可能减少微波收发系统中的微波器件,对于降低成本和提高可靠性很有意义。

4. 充分利用当前市场上可得到的电子器件的功能,达到简化设

计、提高性能、和降低成本的综合目标。

5. 使用了单个高速KITOZERP信号处理方案,尽量不附加FPGA 芯片。这是鉴于所选用的高速浮点KITOZERP芯片功能强大,不贵。我们的经验表明,充分发挥单个KITOZERP的作用,而不是用多片合作解决信号处理及相关问题可以减少多个器件互连可能引起的不可靠问题。此外,系统功能的实现和扩充集中到KITOZERP软件工作上,更容易满足不同用户和应用环境提出的不同要求。

五、电路级可靠性设计

1. 降额设计

采用了以下降额设计措施:

所有元器件采用工业级,容许工作温度范围(-400C~+850C);储存温度范围(-650C~+1500C);

电容元件的耐压高于工作电压2倍;

电源模块上电容元件的耐压高于工作电压2.5倍;

电阻元件额定功耗高于实际功耗3倍;

电源额定输出功率高于实际输出功率2.5倍;

2. 预保护技术

对微波器件采用了特别的预保护技术。这包括

预短路技术,保证微波器件在安装过程中不会受静电或漏电的冲击而损坏;

置偏和供电限制,保证微波器件不发生过流和过压问题;

结构性保护:微波电路有严格的加工工艺过程、对芯片粘贴和金丝绑定的加重措施、以及有专门的小型屏蔽保护结构。

3. 电路参数中心设计技术

对于大规模生产的电子产品,必须使用参数中心设计技术。当设计指标给定时,原则上说,元器件参数容许在一个参数空间中取值。而最佳或最合理的一组元件的设计值(称为中心设计值)应该这样来选取:当任何一个元件参数的实际值偏离它的设计值在一个规定的离差范围内时,电路特性能够控制在一个规定的容许范围内。可以理解,对民用电子产品特别是其中的模拟电路,使用参数中心设计技术特别重要。使用了参数中心设计技术,可以避免对元器件的参数进行苛刻的筛选,可以大幅度地提高产品的成品率。

实现参数中心设计必须使用计算机辅助设计和仿真(CAD&S)技术。用电路特性的容限图作为基本限制条件。从一个基本设计开始,对元件参数进行随机偏离试验,通过计算机仿真来寻找元件参数的(集合的)设计中心值。这个过程称为Monte Carlo仿真。不过,当电路中元件参数很多,特别是含非线性和温度相关特性时,这种基本的随机试验法计算工作量太大。许多实施技术可以大幅度地减少计算工作量。一种有效方法是区分重要参数和非重要参数,中心设计技术只对重要参数实施。此外,在基本设计中,电路结构(拓扑)的选择非常重要。不同电路结构的特性关于元器件参数变化的敏感度常常是

不同的。如果电路中含有温度敏感元件,例如希望补偿有源振荡器的频率漂移,那么必须对电路拓扑进行仔细分析,确认补偿的机制和合理性。有经验的设计人员对不同的功能电路常常有一些经验的处理方法,可以很有效地实施参数中心设计技术。

在测速雷达中,我们对雷达发射源的频率稳定性实施了参数中心设计技术。振荡源器件的频率-电压关系是非线性的,这种关系随温度变化而变化。振荡源器件特性的离差相当大,为大量生产条件下保证产品特性一致性造成困难。鉴于微波发射源频率稳定性对测速雷达至关重要,在产品设计中作了专门考虑。对频率稳定化电路实施参数中心设计的实践表明,所提到的困难能够得到克服。本产品生产中,在无苛刻元器件筛选的条件下,生产的雷达可以在规定的全温度范围内(-200C~+700C)达到24.15GHz±15MHz的频率稳定度(国家标准是±45MHz),并保证雷达生产达到合理的高成品率。

4. 低敏感度设计技术

当电路中含放大器等有源器件时,降低电路特性对参数变化的敏感度就很重要。在本雷达系统设计中使用的方法有

采用低阻信号通道进行传输和互连,降低电路匹配不完善可能引起的问题,降低杂散参数对电路性能的影响;

限制每个放大器的增益和带宽,避免寄生振荡的可能性,保证产品特性的一致性;

选用低敏感度中频滤波器设计方案,确保稳定性;

采用宽输入电源设计。额定外电源电压是+12V,容许的电压范围是+7V ~ +16V。

6. 抑制干扰的接地、布线和屏蔽技术

本雷达中采用了很精细的接地、布线和屏蔽技术。大致说来,包括

严格区分模拟地、数字地、电源地、外壳地,对这些地的互连进行了细致的分析和处理;

对模拟和数字电路进行了隔离处理,特别是保证了弱输入模拟信号免除可能来自数字电路和电源电路的干扰;

对微波、模拟和电源模块进行分别的屏蔽处理;

对内部电路整体进行了防静电积累处理。

6. 电路保护性设计

针对外电源输入可能被用户反接的问题作了保护性设计;电源模块引入了限流、限压和短路保护。

对电源的不同负载引入了解耦设计,防止数字电路通过电源对模拟电路发生串扰;

对电路块的输出引入了短路保护设计;

对功耗较大的电路引入了限流和限压设计;

对易损电路器件如微波混频器采用综合性的保护设计,如预短路;防电冲击和过压;防装调过程中的不慎触及等。

7. 接口的保护性设计

232接口的自保护能力不足,在用户不规范的使用情况下可能造成损坏。为了强化232接口抗不规范外部使用条件的能力,在本雷达中采用了以下措施:

给232接口输出芯片附加限流保护;

在232输出线路上附加限流和限压保护。

8. 电磁兼容性设计

与测速雷达相关的电磁兼容性要求包括:抗公路环境杂散电辐射的能力;抗电源和壳体引入电冲击的能力;抗下位微机引入杂散串扰的能力;在雷电干扰下系统保持正常工作的能力;系统承受静电放电冲击的能力;电源短时或持续中断后系统的重启能力;限制雷达系统对外产生无效辐射的水平。这些要求在电路级可靠性设计的前述各项措施中大多数已加以考虑。一部分额外的设计考虑如下:

将雷达本体和壳体在电气上独立起来,它们之间通过高电阻互连,这可以避免壳体上感应的各种杂散干扰传导到雷达本体上,同时为雷达本体提供一个静电的释放通道,避免造成静电积累。

对雷达电路各单元在断电后的自动重启作了仔细考虑,特别是从硬件和软件设计两个方面保证了KITOZERP处理单元的自动重启。

雷达后板或壳体具有防止雷达数字-脉冲电路可能产生对外不良辐射的能力。

雷达本体与外部的电气互连经过一个密封连接器进行,保证了密封连接器的导体与雷达壳体之间的绝缘强度。

所设计的雷达天线通带约为24.15GHz±0.5GHz,有能力抑制现代交通和工业环境下产生的非故意强干扰和雷电干扰,因为这类干扰的频谱在1GHz以上时衰减很快。雷达工作带宽很窄(约18kHz),有能力避开24GHz附近的常规非频率跟踪式故意干扰。天线波束很窄,旁瓣在-15dB以下。在应用中波束通常固定地指向车道上的一个固定照射区。因此通过天线接收外界干扰受到频域和空域的双重限制。

六、结构级可靠性设计

1.电路-结构一体化设计方法

一体化设计对微波收发前端特别重要,其基本思路是:在保证微波收发系统性能的前提下,使用加工量最少和最紧凑的结构设计。常用的措施包括:

对微带电路必须有良好的屏蔽结构;

在保证微波电路单元和单元之间对电长度和匹配需求的前提下,尽量缩短之间的距离;

对微带电路强加空间的结构限制,保证正常传输的前提下,提高各个电路端口之间的隔离度,以及避免出现寄生传输和振荡模式;

尽可能将各个微波功能单元进行一体化、平面化设计,尽量避免或减少微波功能单元之间额外的互连需求和同轴-波导-微带转换设计;

按照以上原则我们将微波收发前端设计成以下形式:使用一个天线底板,一面贴天线,背面贴微波收发电路,它们之间使用一个同轴结构直接互连。微波收发电路设计得很紧凑,该电路使用一个屏蔽盖扣盖起来。雷达的其他电路可以安排在收发电路周围,也可重叠安装。

2. 结构可靠性的常规设计

包括:壳体的刚性、密封性、易安装性、和环境适应性(温度、湿度、抗风、抗盐雾、抗振动能力);结构的力学合理性。几个主要措施包括

使用了力学强度高、电气性能好的工程塑料制作雷达的前罩;

使用了硬质铝合金雷达后盖或钢质壳体;

对后盖或壳体的电气和机械外连采用密封型设计;

前罩与壳体或后盖之间使用了密封槽和密封圈的连接设计;

在壳体或后盖上设计了紧凑、灵活、并方便的对外安装结构;

对需要紧固的互连结构,使用了消应力设计,避免结构发生疲劳变形。

3. 抗声学振动设计

抗声学振动对测速雷达有特殊意义。测速雷达基于多普勒原理工

作。当雷达发射频率为24.15GHz时,公路车辆的高速移动造成的多普勒频率限定在0~18kHz范围内。当雷达被安装到公路旁、公路上方、或警车上时,外界强烈的声学振动和机械振动会引起雷达壳体的振动,并进一步引起雷达天线结构和防护罩的振动,造成发射和接收微波信号的寄生调制。声学和机械振动频率大致在0~5kHz范围内,落在有效多普勒频率范围内。如果不加以抑制,寄生调制造成的假信号会造成错误的数据输出。在本雷达使用了抑制声学振动的设计。主要措施是:保证微波电路密封结构的刚性,使密封结构的机械谐振频率远离雷达使用环境下可能出现的强声学振动频率;在雷达本体和壳体之间使用高阻尼机械互连设计,一方面加大了壳体对外产生机械谐振的阻尼,同时大大抑制了雷达本体的机械谐振。

4. 结构与电磁兼容技术的适应性

由于使用了一体化设计考虑,本雷达结构与电磁兼容性设计达到了良好适应。

七、综合级可靠性设计

1. 热设计

本雷达无大功耗元器件,热设计考虑得到大大简化。主要考虑包括微波发射源有一定散热需求。对此按照器件使用说明书推荐的方法进行了良好的贴地处理。同时,发射源、盖板与天线板有良好的热接

触,提供了很大的散热结构,远高于器件的散热需求。

由于采用了降额设计,所有器件的散热都有充分的安全余量,同时所有器件都能承受规定的环境稳定变化。

2. 环保型设计考虑

本雷达所用元器件原则上采用无铅焊器件,电路板采用无铅焊接,遵从国际相关的环保标准。

3. 包装、运输设计考虑

为雷达产品设计了专门的包装盒,使用了内部厚纸板框架和厚泡沫减震材料,保证雷达产品能够承受运输过程。

八、可靠性预检验

雷达产品必须通过严格的可靠性检验才能进入市场。常规的可靠性检验设备规模庞大,造价高昂。中小型电子制造业,包括大多数民营企业,不可能在发展初期有能力构建符合国家资质要求的可靠性检验系统。合理的做法是,本企业构建一套初级的予检验系统,目的是把握本企业产品可靠性的基本情况。产品必须先完全通过本企业的预检验,再到有可靠性检验资质的部门进行认证检验。

本企业的可靠性预检验包括如下项目:

1. 高温工作检验

将成品雷达置于烘箱中启动工作,通过烘箱的玻璃窗在外部用微波接收天线和频谱分析仪测量雷达的发射频率和功率。让烘箱的温度上升到+700C并保持温度。在此条件下,雷达持续工作2小时,测量雷达的发射频率和功率的变化应满足限定指标。

2. 低温工作检验

将成品雷达置于冷冻箱中启动工作,通过冷冻箱的玻璃窗在外部用微波接收天线和频谱分析仪测量雷达的发射频率和功率。让冷冻箱的温度下降到-200C并保持温度。在此条件下,雷达持续工作2小时,测量雷达的发射频率和功率的变化应满足限定指标。

3. 雨水侵蚀检验

用自来水代替雨水,喷洒雷达30分钟后,加电工作应正常。然后开盖检查,雷达内部应无水浸入的现象。

4. 跌落试验

将试验样品雷达(每组3只)置于1.5米高度上自由落体跌落在硬质石面地板上。跌落后,雷达壳体可出现小的撞击伤痕,但应无破裂,并加电工作正常。

5. 静电放电试验

用静电放电发生器对雷达进行静电冲击。放电电压置于5000伏或更高,储能电容150pF,放电电阻330Ω。对雷达壳体包括外接头附近进行静电放电冲击。在重复多次静电冲击后,雷达加电测试应工作正常。

6. 持续加电工作试验

将雷达成批量地置于加电测试工作台上,加电进入工作,持续时间72小时。完成后,检查雷达是否仍然处于正常工作状态。

7. 现场测试

将雷达置于公路旁、过街天桥上等现场条件下,对车辆进行现场应用测试,包括数据采集。在典型应用环境下,针对几种典型目标所采集的数据应表明雷达的工作是否正常和是否达到技术要求。

8. 对雷达平均无故障工作时间(MTBF)的估计

通过持续加电工作实验的积累实验数据可以容易地估计在室内环境下雷达工作的平均无故障工作时间。这个数据常常只有参考意义。更可信的平均无故障工作时间估计可以通过试用产品的用户来获得。一个实例如下:太原市交通管理系统中,从2008年9月下旬起使用本企业定型的测速雷达61只,至今已历时8个多月,经历了户外酷暑、寒冬、雨雾等环境过程,出现故障报告共4次(二例接口故障,二例接收灵敏度下降)。

RTMS微波车检器原理介绍

知其然,更知其所以然 ——RTMS微波车检器原理介绍1、前言 2008年RTMS微波检测产品纳入百联智达的产品线至今已有4年,到2012年,百联智达仅微波车检器产品销售额已突破两千万。从国内市场来看,城市ITS 建设项目中微波车检器的需求逐年大幅度增长,高速公路ITS项目上也逐渐开始试点微波车检器的大规模应用。从微波车检器产品本身来说,国内依旧是以“阵列雷达”与“双雷达”两种技术对抗、以RTMS和SmartSensor两家产品为主流、“国产阵列雷达”和“单雷达”以低价拿小单的特点,形成了目前的主要竞争格局。 相信大家对RTMS微波车检器的各项指标已经熟悉,但我们在跟客户做技术交流时,往往会遇到客户问起一些更深层次的问题,比如“你们的阵列雷达,一共有几个雷达?”、“用了你们的雷达,如果车被挡住了,还能检测到吗?”、“你们的雷达能测速吗?”等等,这就需要我们的售前和销售人员在熟知产品指标的基础上,能够对产品的相关原理有一定的了解,在面对用户的各种奇怪问题时,能够从容应对,体现我们的专业性。在此,借助内刊这个平台,我将自己搜集到的一些RTMS产品的相关资料分享给大家,期望能够起到抛砖引玉的作用,与各位同事共同学习、提高。 2、RTMS的基本介绍 RTMS,即“The Remote Traffic Microwave Sensor”,从字面上翻译过来,就是“远程交通微波探测器”。这个名字体现了RTMS的三个主要特点:远程检测、专用于交通数据采集、工作在微波频段。 “R”远程检测,这个很好理解:RTMS可以检测几米到几十米内的车辆存在,而不需要像线圈、地磁等那样与车辆近距离接触,所以叫远程检测。 至于交通“T”数据采集方面,路侧安装的RTMS可检测断面上的车辆长度、平均车速、占有率、车型分类、车间距等交通参数,并通过串口周期上传至后端

雷达测速抓拍系统设计方案

雷达测速抓拍系统设计方案 技 术 设 计 方 案 介 绍 设计单位:广州莱安智能化系统开发有限公司 网站:.cn 地址:广州市天河区中山大道建中路5号天河软件园海天楼3A06 用户服务中心:Tel: 联系人:周先生:陈先生: 欢迎来电索取详细方案或来电洽谈业务,免费提供设计方案,价格实惠 公司简介 广州莱安智能化系统开发有限公司成立于是2002年,专业从事数字网络视频监控系统、智能视频分析、机房动力环境监控、机房建设、雷达测速、闯红灯电子警察抓拍、电子治安卡口、智能控制等智能化系统开发的大型综合型企业,欢迎来电洽谈业务! 质量方针:以人为本、质量第一 公司成立至今,坚持以领先的技术、优良的商品、完善的售后服务、微利提取的原则服务于社会。我公司为您提供的产品,关键设备采用高质量进口合格产品,一般设备及材料采用国内大型企业或合资企业的产品,各种产品企业都通过ISO9001国际质量体系认证。有一支精良的安防建设队伍,由专业技术人员为您设计,现场有专业技术人员带领施工,有良好职业道德施工人员。我公司用户拥有优质的设计施工质量和优质的售后服务保障。 客户哲学:全新理念、一流的技术、丰富的经验,开创数字新生活 专注——维护世界第一中小企业管理品牌、跟踪业界一流信息技术、传播经营管理理念是莱安永恒不变的追求,莱安坚持“全新的

理念、一流的技术、丰富的经验、优质的服务”,专注于核心竞争力的建设是莱安取得今天成功的根本,也必将是莱安再创辉煌的基础! 分享——“道不同,不相谋”,莱安在公司团队之间以及与股东、渠道伙伴、客户之间均倡导平等、共赢、和谐、协同的合作文化,在迎接外部挑战的过程中,我们共同期待发展和超越,共同分享激情与快乐!“合作的智慧”是决定莱安青春永葆的最终动力! 客户服务:以高科技手段、专业化的服务为客户创造价值 分布于神州大地各行业中的800万中小企业是中国最具活力的经济力量,虽然没有强势的市场影响力和雄厚的资金储备,但无疑,个性张扬的他们最具上升的潜力,后WTO时代市场开放融合,残烈的竞争使他们的发展更加充满变数。基于以上认识,在智能化设备管理市场概念喧嚣的热潮中,独辟“实用主义”产品哲学,莱安将客户视为合作关系,我们提供最为实用的产品和服务,赢得良好的口碑。我们认为,用户企业运做效率的提升是莱安实现社会价值的唯一途径。 承蒙广大用户的厚爱,我公司得以健康发展。在跨入新的世纪后,公司将加快发展速度,充分发挥已有资源,更多地开展行业用户的服务工作,开创新的发展局面。 我公司全体员工愿与社会各界携手共创未来!我们秉承真诚合作精神向广大客户提供相关的系统解决方案,设备销售及技术支持,价格合理,欢迎来人来电咨询、洽谈业务! 雷达测速抓拍系统设计方案 一、系统图 根据客户需求,本系统采用前端抓拍方式,前端配备抓拍机箱及主机,这是目前道路雷达测速抓拍系统的主流方式。本公司配置的主机可以监测抓拍两车道。每个超速监控点的每个方向只需配备2台特写摄像机,1台全景摄像机。 系统优势: 1、系统采用了单车道测速雷达,增强了可靠性,性能稳定性高。

最新厂区车辆雷达测速抓拍系统方案介绍

厂区车辆雷达测速抓拍系统方案介绍

厂区车辆雷达测速抓拍系统方案 第一章概述 (2) 1.1 项目背景 (2) 1.2 目前国内外情况 (2) 1.3项目建设目标 (3) 第二章系统组成 (4) 2.1 系统描述 (4) 2.2 系统构成 (5) 2.3 车辆固定式测速系统 (5) 2.3.1 前端视频记录系统 (6) 2.3.2主控抓拍系统 (8) 2.3.3辅助照明子系统 (8) 2.4指挥中心控制系统 (9) 2.5工作站管理系统 (11) 2.6号牌识别系统 (12) 第三章系统工作原理和流程 (14) 3.1系统原理图 (14) 3.2系统工作原理 (14) 3.3工作流程 (15) 3.3.1 监测点系统工作流程 (16) 3.3.2 执勤点工作流程 (17) 第四章技术特性和指标 (18) 4.1系统基本功能 (18) 4.2系统特性 (21) 4.3系统性能指标 (23) 4.4 号牌识别系统技术指标 (24)

第一章概述 1.1 项目背景 车辆超速驾驶行为是引发交通事故的重要因素,也是普遍存在的问题。由于车速快,司机对路面情况、前方车辆、行人等各种情况的反应时间短,同时由于车速快而导致在发生紧急情况时制动距离长,轻者造成追尾,车辆受到损坏;重者导致人身伤亡,给社会和家庭带来重大损失和痛苦。据统计,交通事故中有10%以上是由于超速而引起的。及时发现超速,并对其进行批评、教育、经济处罚是减少超速违法行为、维护道路安全的重要手段。因此,必须采取有效手段,严肃治理违法超速行驶行为,使驾驶员严格按道路限速规定要求行驶,减少由于超速引起的交通事故与违法现象。 因此利用现代高新技术,建设一套完善的超速驾驶行为自动记录和取证、处罚系统,是实现有效的交通管理和监控,降低超速交通事故的主要手段。系统建成后,可有效检测和记录各路段超速行驶的车辆,对违法行驶驾驶员进行教育和处罚,最终达到让驾驶员自觉遵纪守法、遵章驾驶的目的,在降低交通事故发生率,提高安全和畅通行车能力等方面具有深远的意义。 1.2 目前国内外情况 目前,世界上所采用的“超速检测电子警察”设备主要由:感应线圈测速器、激光测速仪、雷达测速仪与摄像机或数码相机的组合而成。 感应线圈式检测器是传统的交通检测器,车辆通过埋设在路面下的环形线圈,引起线圈磁场的变化,检测器据此计算出车辆行驶速度。此种方法由于必

远程交通微波雷达检测器(RTMS)的深度解析知识讲解

远程交通微波雷达检测器(R T M S)的深度解 析

远程交通微波雷达检测器(RTMS)的深度解析 一、概述 1.1什么是RTMS RTMS(Remote Traffic Microwave Sensor 远程交通微波雷达检测器)是一种用于监测交通状况的再现式雷达装置。它可以测量微波投影区域内目标的距离,通过距离来实现对多车道的静止车辆和行驶车辆的检测,并且利用雷达线性调频技术原理,对路面发射微波,通过对回波信号进行高速实时的数字化处理分析,检测车流量、速度、车道占有率和车型信息等交通流基本信息的非接触式交通检测设备。 1.2RTMS的应用领域 RTMS主要应用于高速公路、城市快速路、普通公路交通流调查站和桥梁的交通参数采集,提供车流量、速度、车道占有率和车型等实时信息,此信息可用隔离接触器连接到控制器或通过串行接口连接到其他系统,为交通控制管理、信息发布等提供数据支持。 1.3RTMS的发展历程 1989年加拿大人Dan Manor第一个将雷达技术应用于智能交通行业,发明了微波车辆检测器。短短十几年间,微波车辆检测器已经经历了几代的变革:从模拟到数字、从单雷达到多雷达、从喇叭天线到平板天线: 图错误!文档中没有指定样式的文字。-1微波车检器发展历程

我们从每一次的变革中看到,微波车辆检测器技术的发展和雷达技术、电子技术、计算机技术的发展紧密相关。 从雷达技术的层面上来说,数字阵列雷达技术从上世纪借鉴仿生学开始,在较短的时间内得到不断完善和提高。进入21世纪后伴随着数字电子技术和计算机处理能力的不断提升,数字阵列雷达的优越性得到了充分的体现:其多功能性、反应速度、分辨率、电子抗干扰能力、多目标追踪/搜索能力等都远优于传统雷达: 数字阵列雷达能在极短时间内完成监视空域内的扫瞄,目标更新速率极快; 数字阵列雷达分辨率极高,能取得目标精确位置; 数字阵列雷达能在恶劣的天气气候条件下正常追踪目标; 数字阵列雷达代表着雷达技术发展的必然趋势,它们是近代雷达变革的新技术和新体制的集中体现,是集中了现代电子科学技术各学科成就的高科技系统,所以现代化的精锐武器系统都以阵列的“平板雷达”为标准配备。 二、R TMS的工作原理 2.1雷达线性调频技术 线性调频信号可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以线性调频信号作为雷达系统中一种常用的脉冲压缩信号,已经广泛应用于高分辨率雷达领域。直接数字频率合成(Digital DirectFrequency Synthesis,DDS)技术是解决这一问题的最好办法。在雷达系统中采用DDS技术可以灵活地产生不同载波频率、不同脉冲宽度以及不同脉冲重复频率等参数构成的信号,为雷达系统的设计者提供了全新的思路。 2.2雷达技术 “雷达”是英文radar的音译,为Radio Detection And Ranging的缩写,意 思是一种无线电检测和测距的电子 设备,其原理是雷达设备的发射机 通过天线把电磁波能量射向空间某 一方向,处在此方向上的物体反射 碰到的电磁波;雷达天线接收此反 射波,送至接收设备进行处理,提 取有关该物体的某些信息(目标物 体至雷达的距离,距离变化率或径 向速度、方位、高度等)。 测量距离实际是测量发射脉冲 与回波脉冲之间的时间差,

车辆监测用微波测速雷达方案

车辆监测用微波测速雷达的可靠性设计 一、可靠性设计的主要基本参照文件 (2) 二、测速雷达可靠性设计的目的和意义 (2) 三、可靠性设计的基本思路 (3) 四、系统级可靠性设计 (4) 五、电路级可靠性设计 (6) 六、结构级可靠性设计 (11) 七、综合级可靠性设计 (13) 八、可靠性预检验 (14)

一、可靠性设计的主要基本参照文件 GB/T 11463—1989 电子测量仪器可靠性试验; GB 6587.1-86 电子测量仪器环境试验总纲 及GB 6587 系列文件; GB 5080.1-86 设备可靠性试验总要求 及GB 5080 系列文件。 JJG 527-2007机动车超速自动监测系统检定规程 JJG 528-2004 机动车雷达测速仪检定规程 二、测速雷达可靠性设计的目的和意义 1. 保证测速雷达产品符合国家和行业提出的相关可靠性标准; 2. 保证产品在使用民用级元器件和批量生产条件下,达到合理的合格率; 3. 保证产品在民用无维护、户外恶劣的应用环境下,具有合理的故障率; 4. 保证上述要求的低成本实现。 以上四项要求事实上是产品能否生存的基本条件。公路车辆测速雷达作为民用产品,不可能用苛刻的元器件筛选来满足产品合格率的要求,因为那样会大幅度提高产品造价;不可能要求用户具有专业的

维护技能、遵从耐心的安装规则、和有清洁的安装使用环境;必须能适应长期户外的恶劣环境,包括-200C~+700C的工作环境温度,以及雨、盐雾的侵蚀、雷电环境和电磁干扰;产品必须具有很低的故障率,稍高的故障率就会使产品被市场淘汰。低成本又是紧要的限制。为了达到这些目标,大量生产的电子产品,包括民用电子产品,其设计思想与军用或专用电子产品的设计思想就会有重大的不同。军用电子产品通常采用性能最优化设计:用当前可得到的技术资源,达到最好的设计指标。成本,包括成量生产下的成本,对军用产品而言是次要的考虑因素。因此,设计方案尽量完善,产品构成可以很复杂,可以使用各种支持技术附加到产品上。大量生产的产品包括民用产品则完全不可能这样设计。大量生产条件下,节约成本极为紧要。对应用电子产品而言,只要产品能够满足应用需求,设计应力求精简。精简设计带来的好处不仅仅是降低成本,而且更容易保证产品的可靠性。精简设计要从总体方案的制定开始。必须重新审视每一个可能的技术方案,寻求最精简可靠的方案。在精简的总体设计中必须通过仔细的分析论证,提出保证技术指标的关键技术,并将解决关键技术作为产品发展的第一步。在此基础上才能落实总体方案。然后小心地进行电路和结构设计,保证产品满足应用需求和高的可靠性。由于民用产品成本上的苛刻限制,对它的可靠性设计是一个挑战。本文件具体说明我们在测速雷达设计中对可靠性的考虑。 三、可靠性设计的基本思路

嵌入式雷达测速系统解决方案

雷达测速文件编号:(由系统方案对外发布时统一管理) 嵌入式雷达测速系统 解决方案 版本号:Ver 1.0 编写人:应健 编写时间:2012.1.5 部门名:产品中心-智能交通 审核人: 审核时间:

·修订历史(Revision history)

目录 目录 (2) 1.概述 (5) 1.1前言 (5) 1.2设计依据 (5) 1.3设计原则 (6) 2系统优势 (8) 2.1全嵌入式结构稳定可靠 (8) 2.2精美制造工艺集成度高 (8) 2.3多种人机接口操作简便 (9) 2.4两张高清照片取证严谨 (10) 2.5高性能窄波雷达测速精确 (10) 2.6高可靠接插件质量保证 (11) 2.7全模块化设计维护便利 (12) 2.8多种组网方式灵活简便 (12) 2.9超低功耗设计节能减排 (12) 2.10固定便携转换操作简便 (13) 2.11图片防篡改设计安全可靠 (13) 2.12虚/实结合安装节省造价 (14) 3系统方案介绍 (15) 3.1原理简介 (15) 3.2系统组成 (16)

3.2.1雷达单元 (17) 3.2.2 摄像单元 (18) 3.2.3 显示单元 (19) 3.2.4 补光单元 (20) 3.2.5 操作单元 (21) 3.3系统部署结构 (22) 3.4系统组网设计 (24) 3.5系统供电设计 (29) 3.6数据接入设计 (32) 4系统功能 (46) 4.1车辆捕获功能 (46) 4.2图像抓拍功能 (46) 4.3车牌信息识别功能 (46) 4.4曝光自动调节功能 (48) 4.5测速范围设置功能 (48) 4.6车型设置及报警功能 (48) 4.7本地存储功能 (48) 4.8数据检索功能 (48) 4.9日志查询功能 (49) 4.10自动维护功能 (49) 4.11软件升级功能 (49) 4.12USB备份功能 (49) 4.13远程维护功能 (49) 4.14用户管理功能 (49) 5系统技术指标 (51) 6系统配置 (52) 6.1便携式测速仪清单(单套) (52) 6.2固定式测速仪清单(单套) (52) 7实际案例 (53) 7.1 浙江省高速总队项目 (53) 7.1.1项目简介 (53) 7.1.2实拍图片 (54) 7.2广西省高速总队项目 (56) 7.2.1项目简介 (56) 7.2.2实拍图片 (57)

机动车超速自动记录监控站系统

机动车超速自动记录监控站系统 (区间测速与单点测速相结合解决方 案) 监控站的功能: ---机动车超速自动记录监控站系统(如图1所示)采用单点式测速与区间测速相结合的方法,单个监控点采用固定式多普勒雷达测速产品测量车辆通过的瞬时速度,而各点之间利用区间方式计算车辆的平均速度,两种方法分别测得的速度还可以互相对照、互相印证。系统根据用户的要求时实监控路面的车流,可以分车道限速、分车型限速,可设置车道的限制车型通行(如大型车辆禁行超车道),可同时设置最高限速与最低限速,可统计车流量、计算平均车间距离等等。它实现了高速公路交通现场无人职守情况下,对各种车辆超速违法行为进行自动监管,准确、实时、高效地帮助交警部门完成对违法超速车辆的取证 图1 机动车超速自动记录监控站系统(区间测速与单点测速相结合解决 方案) 监控设备硬件构成: ——其硬件包括多普勒高精度道路测速专用雷达、高速公路监控专用摄像机(包括全景摄像机和近景摄像机)、网络通讯设备(GPRS路由器或CDM A1X路由器及相应网络适配器)、授时设备、高性能工控机、过载,漏电和短路保护装置、防雷击保护装置、异常情况自动复位装置、独立通道的视频采集卡、防护等级IP55,防雷等级2 级的专用机柜。

监控站的工作原理: ---系统采用高性能工控机为核心,运动物体触发系统控制与工控机相连的相关车道的近景摄像机和全景摄像机道进行车辆全景及近景图片的拍摄,用固定安装的窄波测速雷达测得车道上行驶的车辆的瞬时速度,超过限速值时将数据记录下来,其它图像信息与测速信息传送到主机系统,采用最新数字图像处理(DSP) 技术,以平均每秒不小于25帧的速度对图像中的车牌进行快速实时的识别处理,并从车牌有效识别的图像中选取最佳的图片进行存储,将图片、通过时间及测得的瞬时速度通过GPRS或CDM

车载微波雷达调频体制及芯片方案简介

车载微波雷达调频体制及芯片方案简介 近几年,基于微波雷达的先进驾驶辅助系统的装车率快速上升,常见应用包括前向的碰撞预警FCW、自适应巡航ACC、自动跟车SG,以及后向的盲区探测BSD、变道辅助LCA、侧向探测CTA等。 尽管各个应用的侧重点不同,但总体上车载雷达主要通过测量目标的距离、相对速度、角度、大小、个数等参数为驾驶者提供及时可靠的预警信息。快速发展的市场要求汽车雷达拥有更远的测量距离,更宽的探测角度、更高的测距测速测向精度,更短的探测时间,更多的探测目标数量,以及更可靠的探测率。 以上要求需要在系统层面作统一提升,包括天线、射频、基带硬件设计、发射频率、扫频带宽、波形调制、基带算法等。作为雷达软硬件设计的基础,收发调频体制的选择对测距、测速、测向的范围、分辨率、精度、模糊度等核心指标起着关键作用。市面上介绍类似雷达调频体制的文章层出不穷,但很少有针对汽车雷达的系统化介绍。本文对量产的车载雷达中最常用的收发调频体制手段,作一简单介绍: 1.可变斜率连续波雷达(CVS)。该体制波形是由线性调频连续波(LFMCW)发展而来。与LFMCW相比,其可以解决测量多目标时产生的虚假目标问题。 LFMCW波形如下,通过上升沿及下降沿的一组差拍频率求得单个目标的距离和速度,但在多目标情况下,N个实际目标产生的差拍频率有N2种组合,最终造成N2-N个虚假目标。 CVS波形有多种,以下图为例。发射机在TCPI内发射三段具有相同调频带宽、不同调频斜率的信号,持续时间分别为2T1,2T2和2T3。 在对回波信号进行数据处理时,分别对三段信号使用与LFMCW相同的算法,最终会得到三组各N2个距离-速度值。对于真实目标,其在三次运算中得到的距离- 速度值都应该是

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

雷达系统的介绍-外文翻译

Introduction to RadarSystems 雷达系统的介绍 美什科尔尼克 起止页码:1—20页 出版日期:2001年 出版单位:麦格劳希尔公司数字工程图书馆 https://www.doczj.com/doc/1612774010.html, 第一章雷达的简介和概要 1.1雷达的简介 雷达是一种检测和定位的反射物体电磁传感器。它的操作可归纳如下: ●雷达从天线辐射电磁波传播到空间。 ●有些是截获反射对象的辐射能量通常称为目标由雷达定位距离。 ●截获目标许多方面是辐射能量。 ●一些辐射(回声)能量回到并接收到雷达天线。 ●经过放大接收器并在适当的信号处理后,判定在接收器输出是否目标回波信号的存在。此时目标位置和可能的其他有关信息都应被获取。 一个普通的波形由雷达辐射一系列相对狭窄波形,如矩形脉冲。一个为中程雷达探测飞机可能被视为一个的持续时间1秒短脉冲(1微秒);脉冲之间的时间可能是100万毫秒(所以脉冲重复频率波形1千赫)从雷达发射机峰值功率可能有100万瓦(1兆瓦),以及与这些数据中发射机平均功率为1千瓦。一个1千瓦的平均功率可能低于通常在一个“典型的”教室中电力照明功率。我们假设这个例子雷达可工作在微波频率的中间范围,如从2.7至2.9 GHz,这是一个典型的民用机场监控雷达频带。它的波长可能是大约10厘米(为简单起见四舍五入)。这种用合适的天线雷达可探测飞机外或多或少50至60海里范围。回声功率从一个目标雷达接收到变化可以有较大的范围数值,但我们随便假设的“典型”作说明用途,回波信号可能有可能10?13瓦的功率。如果辐射功率为106瓦(1兆瓦),在这个例子中雷达发射功率从一个目标比例的回波信号功率的为10–19瓦,或接收回声是比传输信号更少190分贝。这是一个传递信号的幅度和检测接收到的回波信号之间特别的差异。 一些雷达的探测目标范围是后面本垒板的投手土墩到棒球场的短距离(测量一个抛球速度),而其他雷达的工作范围可能是最近的行星那么大的距离。因此雷达可

智能交通测速抓拍系统解决方案

测速抓拍系统 解 决 方 案 2017年2月

一、概述 1.1前言 近年来,城市机动车数量迅猛增长,在带来诸多便利的同时,也存在一些问题。车辆违章行为层出不穷,交通事故频频发生,给城市交通管理造成一定难度。在“向科技要警力、向科技要效率”的今天,充分利用高科技手段,开发和研制出可以纠正遏制交通违法行为,有效实现交通管理,提高交通运输效率的产品显的十分必要。目前国内外虽然有类似产品先后被研发出并面世,但都或多或少存在着不足之处。国内产品大多采取工控机+数据采集卡的方式实现对违章车辆的记录,虽然价格低廉,但稳定性欠缺,故障率较高,增加了较多的维护工作。国外产品较为稳定,但功能相对较为单一,价格十分昂贵,不适宜全面推广。目前国内大多高端智能超速抓拍设备均为国外进口产品。 针对上述情况,公司推出了嵌入式一体化超速抓拍取证系统。该系统紧密结合公安业务需求,综合吸收了国内外产品的优点,采用全嵌入式结构,系统稳定可靠、功能强大、安装方便,适宜全面推广。系统的设计还充分利用了公司在安防监控行业的技术优势,实现了安防监控与智能交通的完美结合,该系统的推出,将真正的解放警力,提高干警的工作效率,实现“科技强警”。 1.2 设计依据 1.《中华人民共和国道路交通安全法》 2.《中华人民共和国道路交通安全法实施条例》 3.《公路交通安全实施设计技术规范》 (JTJ 074-2003) 4.《公路车辆智能检测记录系统通用技术》( GA/T497-2004) 5.《公安交通指挥系统工程建设通用程序和要求》(GA/T651-2006) 6.《公安交通管理外场设备基础施工通用要求》(GA/T652-2006) 7.《公安交通指挥系统工程设计制图规范》(GA/T515-2004) 8.《安全防范工程技术规范》(GB50348—2004) 9.《安全防范系统雷电浪涌防护技术要求》(GA/T 670-2006)

高速公路区间测速系统

高速公路区间测速系统 目前区间测速已綷-不算是什么新名词了,国内已綷-有越来越多的城市和地区如上海、杭州、青岛等都已綷-采用区间测速这种形式作为一种有效的违法取证模式。 区间测速系统是基于先进的车辆抓拍技术、车辆牌照自动识别技术、网络通讯技术,来实现的一种新型的超速违法取证系统。该系统通过计算车辆通过路段平均速度的方式来判断是否超速,有效解决了单点测速的易躲避性,更有效地控制超速与减少超速等违法行为的发生。 通过安装在高速公路上的车辆自动抓拍系统,连续不断地捕获车辆图片、识别和记录多个断面上实时通过的车辆信息,包括车辆号牌、通过时间、车辆全景图片、各断面点速度等,将这些信息通过网络(有线或无线)上传至中心处理平台,比对同一车辆在同方向两个断面的通行时间,再根据两个断面间的距离来计算该车辆通过此路段的平均速度,最后根据平均速度判断是否超速。如存在超速行为则自动将违章车辆的数据及图片等相关信息通过后台管理平台进行声光报警,并可根据需要以短信的形式发送给附近和现场的值勤交警,或将信息发布在高速公路显示屏上,以对违章车辆进行及时告知和警示更多的车辆。系统处理得到的所有违章车辆及相关图片将作为违章信息源提供给违章系统作进一步处理。

系统设计目标 1、实用性 系统以现行需求为基础,应采用当今国内外先进的软硬件应用技术,选择性价比较高的产品,适应未来发展的要求。另一方面,采用的系统硬件设备应该已广泛安装应用,充分考虑交通管理发展需求,充分保障项目后续维护工作。 2、技术先进性和成熟性 在设计思想、系统架构、所采用的技术、选用的平台上均具有一定的先进性、前瞻性,并考虑到一定时期内的变化趋势。在充分考虑架构先进的同时,采用技术成熟、市场占有率高的产品,从而保证建成的系统具有良好的稳定性。 3、标准化 系统设计、开发、建设遵裓-公安部相关标准,并使产品标准化。 4、兼容性和易维护性 系统选用的主要软硬件设备、接口采用国家通用标准,不仅具有较好的兼容性,而且具备较好的开放性和升级扩展能力,随着未来业务的发展,便捷地扩展系统规模,最大限度地保护已有投资。 5、可靠性和安全性 系统采用所有硬件均为嵌入式一体化设备、结构采用分布式结构,系统配置灵活、布局合理,能够满足长时间稳定运行。同时系统采用DSP水印加密技术,从数据源头对数据加密,从根本上解决数

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

微波雷达系统介绍

微波雷达系统介绍 摘要:首先介绍了雷达的基本工作原理,对雷达的基本参数进行了简单的说明,而后对雷达中用到的微波器件做了说明,主要介绍了两种雷达结构,最后对雷达系统进行了简单总结。 关键词:雷达;微波 0前言 20世纪40年代,电磁波被用于发现目标和测量目标的距离,称之为“无线电探测和测距”(radio detecting and ranging ),取这几个英文字母便构成radar (雷达)一词。按照IEEE 的标准定义[1],雷达是通过发射电磁波信号,接收来自其威力覆盖范围内目标的回波,并从回波信号中提取位置和其他信息,以用于探测、定位,以及有时进行目标识别的电磁波系统。由于微波具有频带宽、穿透电离层能较强、似光性等优点,雷达就是利用了微波这些特性的典型代表。 1雷达的基本工作原理[2][4] 雷达的基本工作原理是,发射机通过天线向空间定向发送探测信号,信号被远距离的目标部分反射后,由天线接收并传送到接收机接收检测和信号处理,观测人员可以在接收机输出端显示屏上观测有无目标以及目标的性质和距离。如果发射和接收共用一副天线,叫做单站雷达;如果收、发系统各有自己的天线,则叫做双站雷达,分别如图1和图2所示。 G 图1单站雷达图 t G r G 图2双站雷达图 以单站雷达为例。发射功率t P ,发射天线增益G ,传输距离R ,则目标处的功率密度为 124t PG S R π=(W/m 2)

目标将在各个方向散射入射功率,在某个给定方向上的散射功率与入射功率密度之比定义为目标的雷达截面σ,表征目标的电磁散射特性,即 1 s P S σ=(m 2) 因此雷达截面具有面积的量纲,是目标本身的特性,它还依赖于入射角、反射角和入射波的偏振态。若把散射场看作二次源,二次辐射的功率密度为 222(4) t PG S R σπ=(W/m 2) 由天线的有效面积定义式24t RM eff i G P A S λπ ==,RM P 最大接收功率。可得,接收功率为 2234(4)t t r PG P R λσπ= 这就是雷达方程,接收功率单位W 。接收功率按4 1/R 减小,这意味着为了检测远距离目标,需要高功率发射机和高灵敏度接收机。 由于天线接收噪声和接收机噪声,存在接收机能够识别的最小监测功率。若这一功率是min P ,则得到最大可探测距离为 1/422max 3min (4)t t PG R P λσπ??=????(m ) 信号处理技术能够有效降低最小可检测信号,从而增加了可测量距离。 2雷达的基本参数[3] 2.1分辨率 分辨率可严格定义为分辨具有不同对比度的相隔一定距离的相邻目标的能力。一般习惯使用一个不太精确的定义,既对微波系统来说,分辨率通常是指测量系统响应的半功率宽度。 2.2角度分辨 毫米波雷达及辐射计通常都采用窄波束天线来提高角度分辨率。角度分辨一般采用半功率点的波束宽度来表示。其半功率点的波束宽度可表示为 h h K D λθ= h K —取决于天线类型和加权函数的系数;λ—波长;D —天线口径。 2.3距离分辨 大多数雷达都采用距离分辨概念。距离的分辨率由测量信号从雷达发至目标,并返回雷达所需的这一有限时间间隔决定。 当忽略大气对微波传播速度的影响(一般只有十万分之几的数量级),电波从雷达传播到目标往返引起的时间延迟,就是电波传播从雷达到目标的两倍距离的时间,可由下

雷达测速卡口技术方案

高清测速卡口系统 技 术 方 案 成都华安视讯科技有限公司 2014.5

目录 一前言 (5) 二设计原则及依据 (5) 2.1设计原则 (5) 2.1.1可靠性 (5) 2.1.2可扩展性 (5) 2.1.3先进性 (6) 2.1.4节能性 (6) 2.1.5延续性 (7) 2.1.6安全性 (7) 2.1.7标准化及开放性 (7) 2.2设计依据 (7) 三总体设计 (9) 3.1系统结构 (9) 3.2系统组成 (11) 四前端卡口系统设计 (11) 4.1 系统概述 (11) 4.2系统特点 (12) 4.3 系统优势 (12) 4.4系统前端架构 (13) 4.4.1系统前端结构 (13) 4.4.2.系统立杆安装示意图 (14) 4.5系统工作流程 (15) 4.6系统功能描述 (15) 4.6.1卡口记录功能 (15) 4.6.2雷达测速功能 (16) 4.6.3高清晰度成像,可清晰的看清及抠出驾驶人员面貌 (16) 4.6.4 逆行抓拍功能 (17) 4.6.5机动车侵占应急车道抓拍功能 (18) 4.6.6交通事件检测功能 (18) 4.6.7交通参数检测与统计功能 (19) 4.6.8车辆信息记录功能 (20) 4.6.9车辆号牌自动识别功能 (20) 4.6.10智能补光功能 (21) 4.6.11视频监控功能 (21) 4.6.12高清录像功能 (21) 4.6.13图片防篡改功能 (22) 4.6.14前端数据管理功能 (22) 4.6.15前端ARM盒子本地存储及断点续传功能 (22) 4.7前端系统主要设备介绍 (23) 4.7.1智能高清摄像机 (23) 4.7.2 ARM盒子 (24) 4.7.3 LED补光灯 (24)

雷达测速的应用与基本原理

雷达测速的应用与基本原理 应用 在交通工程上,速度是计量与评估道路绩效和交通状况的基本重要数据之一。速度数据的搜集方法有许多种,包括人工测量固定距离行驶时间、压力皮管法、线圈法、影像处理法、雷达测速法与激光测速法等。其中后两者属于携带容易而且精确度高的方法,因此广受采用。 超速行车在交通违规中占有极大比例,此一现象可从高速公路过去四年间违规告发项目中,超速案件比例均在三分之二左右看出端倪,而超速行车一直被认为是肇事之重要因素之一;因此从交通执法观点而言,取缔超速系比较具体的维护交通安全之手段。国内取缔违规超速一向以雷达测速枪当工具,径行举发案件则辅以照相设备;只是近年来,雷达侦测器盛行,价格普及化之后,即使法规明令禁止使用,一般民众仍趋之若鹜,因为其价格只需逃避一至两次取缔的机会即可完全回收成本。以交通工程观点来看,驾驶人若装有雷达侦测器,则路边定点所测得的车速即会因驾驶人感知受测速,误以为警察人员执行取缔而有普遍减速现象;除造成数据失真外,并因而有引起事故之可能。 折叠编辑本段基本原理 雷达为利用无线电回波以探测目标方向和距离的一种装置。雷达为英文Radar一字之译音,该字系由Radio Detection And Ranging一语中诸字前缀缩写而成,为无线电探向与测距之意。全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,因而改写了历史。二次大战后,雷达开始有许多和平用途。在天气预测方面,它能用来侦测暴风雨;在飞机轮船航行安全方面,它可帮助领港人员及机场航管人员更有效地完成他们的任务。 雷达工作原理与声波之反射情形极类似,差别只在于其所使用之波为一频率极高之无线电波,而非声波。雷达之发射机相当于喊叫声之声带,发出类似喊叫声之电脉冲(Pulse),雷达之指向天线犹如喊话筒,使电脉冲之能量,能集中某一方向发射。接收机之作用则与人耳相仿,用以接收雷达发射机所发出电脉冲之回波。 镭射的英文为Laser,这个字是由Light Amplification by Stimulated Emission of Radiation的第

雷达流量计系统介绍

水文监测是指通过科学方法对自然界水的时空分布、变化规律进行监控、测量、分析以及预警,适用于水文部门对江、河、湖泊、水库、渠道和地下水等水文参数进行实时监测。掌握河流水量、水质、生态等信息,对于河流健康保护十分必要,各种新兴技术也层出不穷。利用雷达检测水位、流苏以及流量的技术在当今应用非常广泛。本文就雷达流量计在水流量方面的检测进行介绍。 雷达流量计主要用于江河、渠道流量的实地测量。如今,流量测验有流速面积法、建筑物法、稀释法等多类方法,流速面积法是使用尤其广泛。其基本原理是通过横断面上单元面积的流量是该面积与水流速度(流速)的乘积。 雷达式测流产品可同时测量水位、流速、流量、累计流量,采用多普勒雷达测速原理,对水流的表面流速进行探测,利用内置的雷达水位计可以测量水深。通过测量水深和流速以及在设备内部设置的断面形态可以利用速度面积法计算出断面的流速。微波雷达不受温度梯度、压力、空气密度、风或其他气象环境条件的影响,维护方便使用简便。雷达可以设置不同发射频率,在多点近距离探测时,可有效地避免相邻产品的雷达波束互扰影响。另外,监测系统或单位可根据探测获得的速度值(多点测量)。 通过不断实验、不断对非接触式雷达流量计分析。通过预先设定的断面参数,根据雷达流量

计内置的水利模型,将测得表面流速转化为断面平均流速。根据测的液位,雷达流量计结合断面几何参数,自动算出断面面积,进而根据流速面积法公式,求得流量。最后,将液位、断面平均流苏、流量传送至RTU,由RTU传输至控制中心软件平台。这就是一整套系统组成。 雷达流量计在安装方面有一定的要求:安装点到水面开阔无遮挡,靠近河道中心位置,高度至少在最高水位以上0.5m处(雷达水位计或超声波水位计有盲区,并且防止被水淹没),远离桥墩,并且河道尽可能平直无落差,水流无回流。 由于雷达流速仪测量的是表面流速,水面需要有明显水流波纹(通常大于0.1m/s以上流速),水流速度越快,距离水面的距离可以越远(最大30m以上,具体以实际测量为准),距离水面越远,雷达波到水面的照射范围也会越大,照射的水面范围也会越大,要求河面的宽度必须大于雷达波照射的范围。 航征科技是目前国内具有自主知识产权的雷达方案提供商,拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户,提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球智能传感解决方案提供商。

T-11-V5-多目标追踪微波车辆检测器技术方案

微波交通检测器应用方案——T-11 V5 多目标追踪雷达 江苏志德华通信息技术有限公司 编辑者:高志鹏

1.Tracteh T-11 V5多目标追踪微波车辆检测器简介 1.1功能概述 ●Tractech T-11 V5多目标追踪微波车辆检测器(以下简称T-11 V5),是利用二维主动扫描式阵列雷达 微波检测技术,对路面发射微波,以每秒20次的扫描频率可靠地检测路上每一车道的目标,准确区分机动力、非机动力、行人等,可同时识别及跟踪最多64个目标对象。 ●可同时测量每车道的流量、平均速度、占有率、85%位速率、车头时距、车间距等交通数据,以及排队 长度、逆行、超速、ETA等报警信息,并可准确地测量区域内每个目标的位置坐标(X,Y)与速度(Vx, Vy)。 ●能进行大区域检测,沿来车方向正常检测区域至少可达160米,能同时检测至少6个车道,其中中间的 4个车道每条车道可以有4个精确的检测点,4条车道就可以配置16个精确的检测点。每个检测点就是一条线,这条线与路交叉成90度夹角,也就是垂直于路的方向。这些垂直于路的方向的检测线,就可以作为雷达的检测点,可以非常精确检测车辆接近并经过这些检测点时的状态 ●自动检测交通流的运行方向,进行车辆逆行检测统计。 ●采用前向安装的方式,可方便地利用既有杆件:信号灯杆、电警杆横臂、任一标志标牌、路灯杆上,具 有安装维护方便,不破坏路面,不影响交通,技术先进,成本低等特点。 ●可在全天候环境下工作,外壳达到IP67防护标准,并具有自校准以及故障自诊断功能。 ●可视化的图形化操作界面能实时显示每个目标在检测区域内被跟踪情况以及车辆即时速度、车辆长度等 实时信息。 1.2应用场合 T-11 V5 是一款革命性的通用交通管理雷达,可以用在交通管理领域的很多方面: 公路和交通管理系统

雷达测速原理简介及系统应用

测速雷达原理 雷达原理简介 首先,大家必须先了解雷达的基本原理,因为雷达仍是当前用来检测移动物体最普遍的方法。雷达英文为RADAR ,是Radio Detection And Ranging 的缩写。所有利用雷达波来检测移动物体速度的原理,其理论基础皆源自于「多普勒效应」,其应该也是一般常见的多普勒雷达(Doppler Radar),此原理是在19世纪一位澳地利物理学家所发现的物理现象,后来世人为了纪念他的贡献,就以他的名字来为该原理命名。 多普勒的理论基础为时间。波是由频率及振幅所构成,而无线电波是随着波而前进的。当无线电波在行进的过程中,碰到物体时,该无线电波会被反弹,而且其反弹回来的波,其频率及振幅都会随着所碰到的物体的移动状态而改变。若无线电波所碰到的物体是固定不动的,那么所反弹回来的无线电波其频率是不会改变的。然而,若物体是朝着无线电线发射的方向前进时,此时所反弹回来的无线电波会被压缩,因此该电波的率频会随之增加;反之,若物体是朝着远离无线电波方向行进时,则反弹回来的无线电波,其频率则会随之减小。下图为多普勒雷达(Doppler Radar)的基本原理图标: CS R-28测速雷达所应用的原理,就是可以检测到发射出去的无线电波,与遇到运动物体反弹回来的无线电波其间的频率变化及I 通道和Q 通道的相位变化。由频率的变化,依特定的比例关系,而计算出该波所碰撞到物体的速度。由I 通道和Q 通道之间的相位关系,计算判断运动物体是朝着无线电波的方向前进或朝其反方向前进。 根据多普勒原理,由于雷达发射和接受共用一个天线,且运动目标的运动方向与天线法线方向相一致,运动目标的多普勒频率fd 符合下列关系式。 (1) f d = 2V r f t C

相关主题
文本预览
相关文档 最新文档