当前位置:文档之家› 大容量电站锅炉汽温问题及过热器与再热器超温爆管原因的分析

大容量电站锅炉汽温问题及过热器与再热器超温爆管原因的分析

大容量电站锅炉汽温问题及过热器与再热器超温爆管原因的分析
大容量电站锅炉汽温问题及过热器与再热器超温爆管原因的分析

YZG22.5油田注汽炉说明书

YZG22.5-14/360-G型油田过热注汽锅炉 使用说明书 编制: 校对: 审核: 哈尔滨鑫北源电站设备制造有限公司 二零一四年二月

简介 油田注汽锅炉是稠油热采的专用设备,属油田专用A级直流锅炉。其产生的高温、高压湿饱和蒸汽注入油井加热原油,降低稠油的粘度,改善稠油的流动性,大幅度提高稠油的采收率。 YZG22.5-14/360-G型油田过热注汽锅炉是卧式强制循环直流锅炉,专门针对SAGD 开发工艺技术的特殊要求而设计的,与传统的注汽锅炉相比,该型锅炉蒸汽出口为过热度为2-23℃,适用于注汽压力在14MPa以下的超稠油区块开发。该型锅炉充分考虑了冬季室外运行的防冻、停炉排水等问题,具有现场安装简单、锅炉管束和耐火绝热层维修方便,运行操作方便等优点。控制系统采用新型触摸屏控制,具有强大的控制和通讯功能。 YZG22.5-14/360-G型油田过热注汽锅炉的主要技术参数如下: 额定蒸发量:22.5t/h 额定工作压力:14MPa 额定蒸汽温度:360℃热效率:90.0% 过热度:2-23℃燃料:天然气 控制方式:触摸屏 + PLC控制承载方式:撬座 外形尺寸(长×宽×高):35900×5798×9985mm 设备重量:125816Kg 由于注油过热注汽锅炉结构的特殊性及较高的安全要求,特制定本说明以指导安装、操作和维护。 2.1 原理 2.1.1 水汽系统 从油田水处理装置来的合格软化水,进入给水泵升至工作压力后,经孔板流量计、单向阀、截止阀后进入水—水换热器外管,与对流段出来的热水换热后,温度(90℃-120℃)升高到露点温度以上,然后进入对流段。对流段入口水温可用旁路阀门来进行调节。水在对流段中经高温烟气对流换热(吸收约40%的热量),再进入水—水换热器内管,与锅炉给水换热后进入辐射段(吸收约50%的热量)继续加热蒸发,使其转变为干度为80%的高温高压湿饱和蒸汽。进入汽水分离器,由于汽和水存在的重度差,干蒸汽在汽水分离器内螺旋上升运动并形成汽柱,而饱和含盐水则旋转下降,从而实现汽水分离。分离出来的干饱和蒸汽在额定工作条件下流量为22.5t/h,温度为340℃,进入过热器,过热器烟气侧烟温可达928℃,干饱和蒸汽被加热为过热蒸汽,过热器出口蒸汽温度可达456℃,工作压力为14MPa,经长颈喷嘴,测量过热蒸汽流量,进入喷水掺混器,过热蒸汽与汽水分离器出来的高温饱和水进行混合,混合过程中,饱和水被汽化,过热蒸汽的温度降低,经单向阀、截止阀后,进入注汽管网的过热蒸汽温度为360℃,工作压力为14Mpa。

过热汽温控制系统

第一部分 多容对象动态特性的求取 控制对象是指各种具体热工设备,例如热工过程中的各种热交换器,加热炉、锅炉、贮 液罐及流体输送设备等。尽管它们的结构和生产过程的物理性质很不相同,从控制的观点来 看它们在本质上有许多相似之处。控制对象是自动控制系统中的一个重要组成部分。它的输 出信号通常是生产过程中要求控制的被调量;它的输入信号是引起被调量变化的各种因素 (扰动作用和控制作用)。 对象的动态特性取决于它的内部过程的物理性质,设备的结构参数和运行条件等,原则 上可以用分析方法写出它的动态方程式。但是由于一般热工对象内部过程的物理性质比较复 杂,加之运行过程中的一些实际条件很难全面予以考虑,因此用分析方法并不容易得到动态 特性的精确数学表达式。比较常用的方法是在运行条件下通过实验来获得对象的动态特性。 根据测定到的对象阶跃响应曲线,可以把它拟合成近似的传递函数,根据阶跃响应曲线 求近似传递函数有很多方法,采用的传递函数在形式上也是各式各样 有自平衡能力的高阶对象的阶跃响应曲线如图所示: 无迟延一阶对象阶跃响应曲线 选定的传递函数的形式为 ()() 1N K W S TS = + 即采用一个n 阶等容惯性环节来近似表征。 上式中有三个待定的参数:放大系数K ,时间常数T 和阶数n ,传递函数的放大系数K 的求取方法按前面求取公式确定。 (1)作稳态值的渐近线y(∞),则 ()() 0Y Y K μ ∞-= ? 在试验获得的阶跃响应曲线上,求得y(t 1)=0.4y(∞)及y(t 2)=0.8y(∞)时对应的时间 t 1、t 2 后,利用下式求阶数n : 利用两点法公式可知(见《热工控制系统》谷俊杰,课本62 页公式):由曲线可知放大

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

锅炉过热器爆管原因分析及对策

锅炉过热器爆管原因分 析及对策 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

锅炉过热器爆管原因分析及对策摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用38×4.5的20号碳钢管组成。第一级过热器和屏过热器用42×5的12Cr1MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集

针对12Cr1MoV钢分析,试验表明当12Cr1MoV钢严重球化到5级时,钢的室温强度极限下降约11kg/mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,可以阻碍珠光体的球化过程,只要能形成稳定的碳化物,则球化过程减速。 通过对12Cr1MoV管试验发现,温度在540℃时,随着运行时间的增加,钢的工作温度下蠕变极限和持久强度也相应降低。随着运行温度的提高、时间的延长、应力的变化都会加速合金元素的固溶体和碳化物间的重新分配现象。 2.3 焊接质量 钢材焊接质量也是影响安全的重要因素之一。焊接的缺陷一般指焊接接头裂纹未熔合、根部未焊透、气孔、夹渣、咬边,焊缝外形尺寸不合格以及焊接接头的金属组织异常等现象。 2.4 金属在高温下的氧化和腐蚀

锅炉汽温调整的方法和注意事项

锅炉汽温调整的方法和注意事项汽温是机、炉安全经济运行所必须监视与调整的主要参数之一,由于影响汽温的因素多,影响过程复杂多变,调节过程惯性大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组工况发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。下面,我们对一些典型工况进行分析,并提出一些指导性措施。由于汽温变化的复杂性,大家在应用过程中要结合实际遇到的情况学会灵活变通,不可生搬硬套。 一、机组正常运行中的汽温调节 汽温调节可以分为烟气侧调整、蒸汽侧的调整,烟气侧的调节过程惯性大,通常情况下需要3-5分钟左右温度才会开始变化;而蒸汽侧的调节相对比较灵敏。因此正常运行过程中,应保持减温水调整门具有一定的开度,一般应大于7%;如果减温器已经关完或开度很小时,由于阀门的特性原因它的调节能力减弱,也就是减温水流量变化相对较小,此时应观察同侧另一级减温水流量是否偏大,并及时对其的减温水流量进行重新分配,另外还可以对燃烧进行调整(在炉膛氧量允许时可适当加大风量,或调整风门使火焰中心上移),使汽温回升、减温器开启。如果各级减温器开度均比较大时(若大于60%),

同时也应从燃烧侧调整,或对炉膛进行吹灰,以达到关小各级减温器,使其具有足够的调节余量。 总之,在机组正常运行时,各级减温后的蒸汽温度在不同工况下是不相同的。应加强对各级减温器后蒸汽温度的监视,并做到心中有数,以便在汽温异常时作为调整的参考。建议在负荷发生变化时应将减温水且为手动调整,避免汽温大幅度波动。 二、变工况时汽温的调节。 变工况时汽温波动大,影响因素众多,值班员应在操作过程中分清主次因素,对症下药,及早动手,提前预防.必要时采取过调手段处理,不可贻误时机,酿成超温事故。变工况时汽温的变化主要是锅炉的燃烧负荷与汽轮机的机械负荷不匹配所造成的。一般情况下,当锅炉的热负荷大于汽轮机的机械负荷时,汽温为上升趋势,两者的差值越大,汽温的上升速度越快。目前机组在投入BLR方式下运行时,机组负荷变化频繁且幅度较大。下面对几种常见情况分析如下: 1、正常加减负荷时的汽温调节。 正常加负荷时,在汽轮机调门开度增加,锅炉压力下降自调系统开始增加燃料量、风量。而汽温的变化要滞后于燃烧侧的热负荷的增加。对于过热器来说,由于蒸发量的增加,对过热汽温有一定的补偿能力,所以过热汽温的变化是滞后与负荷变化速度的(它随着负荷的增加燃料量、蒸汽压力、蒸汽流量的增加而增快的)。也就是说负荷

过热汽温控制课程设计

目录 概述 - - - - - - - - - - - - - - - - - - - - -1 中英文摘要 - - - - - - - - - - - - - - - - - -3第一章绪论 - - - - - - - - - - - - - - - - -5 1.1控制系统基本原理及组成 1.2汽温控制系统的被控对象 1.3本课程设计的题目及任务 第二章过热汽温控制 - - - - - - - - - - - - - -8 2.1 过热汽温控制的任务 2.2 过热汽温控制的难点及设计原则 2.3 过热汽温对象模型的建立及其特性 第三章过热汽温控制系统的设计 - - - - - - - - -15 3.1 过热汽温系统的串级控制方案 3.2 具体设计方案 3.3 设计的论证 3.4 控制系统的切换 第四章课程设计总结及体会 - - - - - - - - - - -28 4.1课程设计总结 4.2体会 结束语 - - - - - - - - - - - -- - - - - - - -31 参考文献 - - - - - - - - - - - - - - - - - -32

概述 单元机组是由锅炉、汽轮发电机和辅助设备组成的庞大的设备群。由于其工艺流程复杂,设备众多,管道纵横交错,有上千个参数需要监视、操纵或控制,而且电能生产还要求有高度的安全可靠性和经济性,因此,目前,采用以分散微机为基础的集散型控制系统(TDCS)组成一个完整的控制、保护、监视、操作及计算等多功能自动化系统。 在现代火力发电厂热工控制中,锅炉过热蒸汽温度是影响锅炉生产过程安全性和经济性的重要参数,也是整个汽水行程中工质的最高温度,对电厂的安全经济运行有重大影响。由于过热器正常运行时的温度已接近材料允许的极限温度,因此,必须相当严格地将过热汽温控制在给定值附近。过热汽温偏高会使蒸汽管道、汽轮机内某些零部件产生过大的热膨胀变形而损坏,威胁机组的安全运行。过热汽温偏低则会降低机组的热效率,增加燃料消耗量,浪费能源,同时会使汽轮机最后几级的蒸汽湿度增加,加速汽轮机叶片的水蚀,从而缩短汽轮机叶片的使用寿命,所以过热蒸汽温度过高或过低都是生产过程所不允许的。 过热蒸汽温度一般可以看作多容分布参数受控对象,其动态特性描述可用多容惯性环节表示,该对象具有明显的滞后特性。现代锅炉机组大多采用那些大容量、高参数、高效率的大型锅炉,其过热器管道加长,结构也更复杂。在锅炉运行中,影响过热器出口蒸汽温度的因素很多,有蒸汽流量、燃烧状况、锅炉给水温度、流经过热器的烟气温度、流量、流速等等。在这些因素的共同作用下,过热汽温对象除了具有多容、大惯性、大延迟特性之外,往往表现出一定的非线性和时变特性,因此,过热汽温控制是锅炉各项控制中较为困难的任务之一。针对上述情况设计的过热汽温控制系统,既要求对烟气侧扰动及负荷扰动等较大外扰具有足够快的校正速度,同时又要求对减温水内扰有较强的抑制能力,从而使系统具有足够的稳定性和良好的控制品质,并能保证系统运行的安全性。因此,能否对过热汽温进行有效的控制,研究如何改善过热汽温系统的控制品质,对电厂能否安全稳定运行来说是至关重要的,在经济性上也有十分重要的意义。

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

影响锅炉汽温的因素及汽温的控制措施

仅供参考[整理] 安全管理文书 影响锅炉汽温的因素及汽温的控制措施 日期:__________________ 单位:__________________ 第1 页共8 页

影响锅炉汽温的因素及汽温的控制措施 锅炉运行中,如果汽温过高,将引起过热器、再热器、蒸汽管道以及汽轮机汽缸、阀门、转子部分金属强度降低,导致设备使用寿命缩短,严重时甚至造成设备损坏事故。从以往锅炉受热面爆管事故统计情况来看,绝大多数的炉管爆破是由于金属管壁严重超温或长期过热造成的,因而汽温过高对设备的安全是一个很大的威胁。蒸汽温度低的危害大家也是知道的,它将引起机组的循环效率下降,使煤耗上升,汽耗率上升,新蒸汽温度过低时,带来的后果就不仅仅是经济上的问题了,严重时可能引起蒸汽带水,给汽轮机的安全稳定运行带来严重的危害,所以规程上规定机组额定负荷下新蒸汽温度变化应在+5℃~-5℃之间。 一、影响过热汽温变化的因素 1、燃料性质的变化:主要指燃料的挥发份、含碳量、发热量等的变化,当煤粉变粗时,燃料在炉内燃烬时间长,火焰中心上移,汽温将升高。当燃料的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使辐射过热器的吸热量降低,对流过热器的吸热量增加。 2、风量及其配比的变化:炉内氧量增大时,由于低温冷风吸热,炉膛温度降低,使炉膛出口温度升高。在总风量不变的情况下,配风的变化也会引起汽温的变化,当下层风量不足时,部分煤粉燃烧不完全,使得火焰中心上移,炉膛出口烟温升高。 3、燃烧器及制粉系统运行方式的变化:上层制粉系统运行将造成汽温升高,燃烧器摆角的变化,使火焰中心发生变化,从而引起汽温的变化 4、给水温度的变化:给水温度升高,蒸发受热面产汽量增多,从 第 2 页共 8 页

过热蒸汽温度控制系统优化

作者简介:  李学明(1965),襄樊发电有限责任公司高级工程师,华北电力大学(北京)在读博士研究生。过热蒸汽温度控制系统优化 李学明1,刘吉臻1,李志军1,朱广华2,李 军2 (11华北电力大学,北京 102206;21襄樊发电有限责任公司,湖北襄樊 441141) [摘 要] 针对300MW 火电机组锅炉过热汽温系统二级减温器后两侧温度的差异情况,确定了过热汽 温控制系统的优化方案:增加1个副调节器,使每个二级喷水阀单独由1个串级回路的副调节器输出进行 控制。优化后的系统可以对温度高的一侧增加喷水量,对温度低的一侧减少喷水量,保证二级喷水总量不变。该方案经仿真实验后应用于实际,取得了明显效果。该优化方案适用于采用分散控制系统且有分隔屏过热器的锅炉。 [关键词] 火电机组;过热蒸汽;温度控制;控制系统优化;调节[中图分类号]T K323 [文献标识码]A [文章编号]1002 3364(2004)05 0042 03 目前,世界各国制造的大容量高参数锅炉过热蒸汽温度多数控制在540℃ 以上。为保证汽轮机的安全经济运行,在规定负荷下,对过热蒸汽温度提出了较高的要求,即要将其控制在额定值的+5℃~-10℃范围内。但过热蒸汽系统是一个有迟延、有惯性的复杂热力系统,实际运行中经常出现超温和温度过低的情况。本文介绍襄樊电厂在3号锅炉上对过热蒸汽温度控制系统所做的试验、分析及优化工作。 1 过热汽温热力系统结构 襄樊电厂3号炉是上海锅炉厂生产的SG 1025/17.53M842亚临界自然循环汽包炉,过热蒸汽压力和温度分别是17.53MPa 和540℃。过热汽温热力系统结构如图1所示,从锅炉汽包的汽水分离器分离出来的蒸汽经低温过热器加热后,由一级减温器减温后,分别进入左右(A 、B )侧分隔屏过热器加热。二级减温器控制分隔屏过热器出口过热蒸汽温度。过热蒸汽经二级减温器后进入联箱中混合,再进入高温过热器,在高温过热器中加热后,经过热蒸汽管道进入汽轮机高压缸。 图1 过热汽温热力系统结构 2 过热蒸汽温度控制 过热蒸汽温度设计采用喷水减温,即通过改变减温水阀门开度来改变减温水量,控制蒸汽温度。一级喷水阀控制采用典型的串级控制系统,系统中有主副2个调节器,分隔屏过热器出口温度测量值作为主信 号,一级喷水阀出口温度信号是导前信号,主调节器输出作为副调节器的定值。汽机第一级压力信号经函数修正后作为主调节器的定值。二级喷水阀控制与一级喷水阀控制相似,不同之处在于导前信号取的是二级喷水阀后温度的平均值。图2是二级喷水阀串级控制 技术交流  42  热力发电?2004(05)

锅炉爆管典型事故案例及分析

锅炉典型事故案例及分析 第一节锅炉承压部件泄露或爆破事故大型火力发电机组的非停事故大部分是由锅炉引起的。随着锅炉机组容量增大,“四管”爆泄事故呈现增多趋势,严重影响锅炉的安全性,对机组运行的经济性影响也很大。有的电厂因过热器、再热器管壁长期超温爆管,不得不降低汽温5~10℃运行;而主汽温度和再热汽温度每降低10℃,机组的供电煤耗将增加0.7~1.1g/kWh;主蒸汽压力每降低1MPa,将影响供电煤耗2g/kWh。为了防止锅炉承压部件爆泄事故,必须严格执行《实施细则》中关于防止承压部件爆泄的措施及相关规程制度。 一.锅炉承压部件泄露或爆破的现象及原因 (一)“四管”爆泄的现象 水冷壁、过热器、再热器、省煤器在承受压力条件下破损,称为爆管。 受热面泄露时,炉膛或烟道内有爆破或泄露声,烟气温度降低、两侧烟温偏差增大,排烟温度降低,引风机出力增大,炉膛负压指示偏正。 省煤器泄露时,在省煤器灰斗中可以看到湿灰甚至灰水渗出,给水流量不正常地大于蒸汽流量,泄露侧空预器热风温度降低;过热

器和再热器泄露时蒸汽压力下降,蒸汽温度不稳定,泄露处由明显泄露声;水冷壁爆破时,炉膛内发出强烈响声,炉膛向外冒烟、冒火和冒汽,燃烧不稳定甚至发生锅炉灭火,锅炉炉膛出口温度降低,主汽压、主汽温下降较快,给水量大量增加。 受热面炉管泄露后,发现或停炉不及时往往会冲刷其他管段,造成事故扩大。 (二)锅炉爆管原因 (1)锅炉运行中操作不当,炉管受热或冷却不均匀,产生较大的应力。 1)冷炉进水时,水温或上水速度不符合规定;启动时,升温升压 或升负荷速度过快;停炉时冷却过快。 2)机组在启停或变工况运行时,工作压力周期性变化导致机械应 力周期性变化;同时,高温蒸汽管道和部件由于温度交变产生热应力,两者共同作用造成承压部件发生疲劳破坏。 (2)运行中汽温超限,使管子过热,蠕变速度加快 1)超温与过热。超温是指金属超过额定温度运行。超温分为长期 超温和短期超温,长期超温和短期超温是一个相对概念,没有严格时间限定。超温是指运行而言,过热是针对爆管而言。过热可分为长期过热和短期过热两大类,长期过热爆管是指金属在应力和超温温度的长期作用下导致爆破,其温度水平要比短期过热的水平低很多,通常不超过钢的临界点温度。短期过热爆管是指,在短期内由于管子温度升高在应力作用下爆破,其

锅炉过热器爆管原因及对策

锅炉过热器爆管原因及对策 前言 随着我国电力工业建设的迅猛发展,各种类型的大容量火力发电机组不断涌现,锅炉结构及运行更加趋于复杂,不可避免地导致并联各管内的流量与吸热量发生差异。当工作在恶劣条件下的承压受热部件的工作条件与设计工况偏离时,就容易造成锅炉爆管。 事实上,当爆管发生时常采用所谓快速维修的方法,如喷涂或衬垫焊接来修复,一段时间后又再爆管。爆管在同一根管子、同一种材料或锅炉的同一区域的相同断面上反复发生,这一现象说明锅炉爆管的根本问题还未被解决。因此,了解过热器爆管事故的直接原因和根本原因,搞清管子失效的机理,并提出预防措施,减少过热器爆管的发生是当前的首要问题。 1过热器爆管的直接原因 造成过热器、再热器爆管的直接原因有很多,主要可以从以下几个方面来进行分析。 1.1设计因素 1.热力计算结果与实际不符 热力计算不准的焦点在于炉膛的传热计算,即如何从理论计算上较合理的确定炉膛出口烟温和屏式过热器的传热系数缺乏经验,致使过热器受热面的面积布置不够恰当,造成一、二次汽温偏离设计值或受热面超温。 2.设计时选用系数不合理 如华能上安电厂由B&W公司设计、制造的“W”型锅炉,选用了不合理的受热面系数,使炉膛出口烟温实测值比设计值高80~100℃;又如富拉尔基发电总厂2号炉(HG-670/140-6型)选用的锅炉高宽比不合理,使炉膛出口实测烟温高于设计值160℃。 3.炉膛选型不当 我国大容量锅炉的早期产品,除计算方法上存在问题外,缺乏根据燃料特性选择炉膛尺寸的可靠依据,使设计出的炉膛不能适应煤种多变的运行条件。 炉膛结构不合理,导致过热器超温爆管。炉膛高度偏高,引起汽温偏低。相反,炉膛高度偏低则引起超温。 4.过热器系统结构设计及受热面布置不合理 调研结果表明,对于大容量电站锅炉,过热器结构设计及受热面布置不合理,是导致一、二次汽温偏离设计值或受热面超温爆管的主要原因之一。 过热器系统结构设计及受热面布置的不合理性体现在以下几个方面: (1)过热器管组的进出口集箱的引入、引出方式布置不当,使蒸汽在集箱中流动时静压变化过大而造成较大的流量偏差。 (2)对于蒸汽由径向引入进口集箱的并联管组,因进口集箱与引入管的三通处形成局部涡流,使得该涡流区附近管组的流量较小,从而引起较大的流量偏差。引进美国CE公司技术设计的配300MW和600MW机组的控制循环锅炉屏再与末再之间不设中间混合集箱,屏再的各种偏差被带到末级去,导致末级再热器产生过大的热偏差。如宝钢自备电厂、华能福州和大连电厂配350MW机组锅炉,石横电厂配300MW机组锅炉以及平坪电厂配600MW机组锅炉再热器超温均与此有关。 (3)因同屏(片)并联各管的结构(如管长、内径、弯头数)差异,引起各管的阻力系数相差较大,造成较大的同屏(片)流量偏差、结构偏差和热偏差,如陡河电厂日立850t/h锅炉高温过热器超温就是如此。 (4)过热器或再热器的前后级之间没有布置中间混合联箱而直接连接,或者未进行左右交叉,这样使得前后级的热偏差相互叠加。 在实际运行过程中,上述结构设计和布置的不合理性往往是几种方式同时存在,这样加剧了

工业锅炉过热汽温全程控制系统的

引言 近年来,随着电力工业的飞速发展,大容量火电机组已成为各电厂中的主要机组,它对系统运行的安全性、经济性和系统的自动化程度提出了更高的要求。与此同时,对过热汽温控制系统的要求也越来越高。 火电厂锅炉汽温控制系统具有大迟延、大惯性的特点,且影响汽温变化的扰动因素很多,如蒸汽负荷、烟气温度和流速、火焰中心位置、减温水量、给水温度等等,这些扰动会极大影响机组的安全、经济运行。正常运行时的锅炉燃烧系统须使出口的过热汽温维持在一定范围内,该参数的控制质量直接影响着机组运行的安全性和经济性。过热蒸汽温度过高,可能造成过热器、蒸汽管道及汽轮机的高压部分金属损坏;过热蒸汽温度过低,会降低汽轮机的效率,加剧对叶片的侵蚀。 针对过热汽温调节对象调节通道惯性迟延大、被调量信号反馈慢的特点,应该从对象的调节通道中找出一个比被调量反应快的中间点信号作为调节器的补充反馈信号,以改善对象调节通道的动态特性,提高调节系统的质量。 目前采用的过热蒸汽温度调节系统主要有两种方案: 一种是串级控制, 另一种是导前汽温微分信号控制。本设计所采用的汽温控制方案为导前汽温微分控制。这种控制系统的结构特点是:只用了一个调节器,调节器的输入取了两个信号。一个信号是主汽温经变送器直接进入调节器的信号,另一个信号则是减温器后的温度经微分器后送入调节器的信号。 本设计通过理论计算与仿真研究相结合的方法,将导前微分控制应用于过热汽温控制方案中,改善了控制对象的动态特性和控制品质。该方案的可行性和该控制系统的优点,为进一步研究和设计这种控制系统提供了理论基础。

第一章过热汽温控制系统概述 1.1 过热蒸汽温度控制的任务 现代锅炉的过热器是在高温、高压条件下工作的,锅炉出口的过热蒸汽温度是整个汽水行程中共质的最高温度,对于电厂的安全经济运行有重大影响。 锅炉过热器是由辐射过热器、对流过热器和减温器等组成。其任务是将汽包出来的饱和蒸汽加热到一定数值,然后送往汽机去作功。通常称减温器前的过热器为前级过热器,减温器后的过热器为后级过热器。由于过热器承受高温高压,它的材料采用耐高温、高压的合金钢。过热器正常运行的温度已接近钢材允许的极限温度,强度方面的安全系数也很小,因此,必须相当严格地将过热汽温控制在给定值附近。中、高压锅炉过热汽温的暂时偏差不允许超过±10℃,长期偏差不允许超过±5℃,这个要求对于汽温控制系统来说是非常高的。汽温过高会使过热器和汽机高压缸承受过高的热应力而损坏,汽温偏低会降低机组热效率,影响经济运行。 图1-1所示为锅炉过热蒸汽温度控制系统的结构图。 图1-1 过热汽温控制系统

锅炉过热器爆管原因分析及对策参考文本

锅炉过热器爆管原因分析及对策参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

锅炉过热器爆管原因分析及对策参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 摘要:锅炉承压部件的安全运行对整个电厂的安全至 关重要。文章结合微水电厂实际,分析了过热器爆管泄漏 的机理、原因及实际采取的一些对策,以求对锅炉过热器 设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事 故的63.2%,而承压部件泄漏事故又占锅炉事故的 86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结 合微水电厂实际,分析过热器爆管泄漏的机理、原因及采 取的一些对策。

微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV 钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV钢严重球化到5级时,钢的室温强度极限下降约11kg/mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢

过热器爆管原因

过热器爆管的原因 1过热器爆管的直接原因 造成过热器、再热器爆管的直接原因有很多,主要可以从以下几个方面来进行分析。 1.1设计因素 1.热力计算结果与实际不符 热力计算不准的焦点在于炉膛的传热计算,即如何从理论计算上较合理的确定炉膛出口烟温和屏式过热器的传热系数缺乏经验,致使过热器受热面的面积布置不够恰当,造成 一、二次汽温偏离设计值或受热面超温。 2.设计时选用系数不合理 如华能上安电厂由B&W公司设计、制造的“W”型锅炉,选用了不合理的受热面系数,使炉膛出口烟温实测值比设计值高80~100℃;又如富拉尔基发电总厂2号炉(HG-670/140-6型)选用的锅炉高宽比不合理,使炉膛出口实测烟温高于设计值160℃。 3.炉膛选型不当 我国大容量锅炉的早期产品,除计算方法上存在问题外,缺乏根据燃料特性选择炉膛尺寸的可靠依据,使设计出的炉膛不能适应煤种多变的运行条件。 炉膛结构不合理,导致过热器超温爆管。炉膛高度偏高,引起汽温偏低。相反,炉膛高度偏低则引起超温。 4.过热器系统结构设计及受热面布置不合理 调研结果表明,对于大容量电站锅炉,过热器结构设计及受热面布置不合理,是导致一、二次汽温偏离设计值或受热面超温爆管的主要原因之一。 过热器系统结构设计及受热面布置的不合理性体现在以下几个方面: (1)过热器管组的进出口集箱的引入、引出方式布置不当,使蒸汽在集箱中流动时静压变化过大而造成较大的流量偏差。 (2)对于蒸汽由径向引入进口集箱的并联管组,因进口集箱与引入管的三通处形成局部涡流,使得该涡流区附近管组的流量较小,从而引起较大的流量偏差。引进美国CE公司技术设计的配300MW和600MW机组的控制循环锅炉屏再与末再之间不设中间混合集箱,屏再的各种偏差被带到末级去,导致末级再热器产生过大的热偏差。如宝钢自备电厂、华能福州和大连电厂配350MW机组锅炉,石横电厂配300MW机组锅炉以及平坪电厂配600MW机组锅炉再热器超温均与此有关。 (3)因同屏(片)并联各管的结构(如管长、内径、弯头数)差异,引起各管的阻力系数相差较大,造成较大的同屏(片)流量偏差、结构偏差和热偏差,如陡河电厂日立850t/h 锅炉高温过热器超温就是如此。 (4)过热器或再热器的前后级之间没有布置中间混合联箱而直接连接,或者未进行左右交叉,这样使得前后级的热偏差相互叠加。 在实际运行过程中,上述结构设计和布置的不合理性往往是几种方式同时存在,这样

锅炉过热蒸汽温度控制系统

锅炉过热蒸汽温度控制系统 在燃煤锅炉运行中,过热蒸汽温度是一个很重要的控制参数。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度较高,可能造成过热器蒸汽管道损坏;过热蒸汽温度过低,会降低内功率。所以在锅炉运行中,必须保持过热蒸汽温度稳定在规定值附近。 本文介绍模糊控制在中小型燃煤锅炉过热蒸汽温度中的应用,采用模糊控制系统的思路,并用此方法控制燃煤锅炉的过热蒸汽温度,使得锅炉过热蒸汽温度即使在扰动幅度较大的情况下仍能保持平稳。模糊控制的控制算法不依赖于对象的数学模型,算法简单,易于实现,且对干扰和对象模型时变具有较强的适应性,它能根据输出偏差的大小进行自动调节,使输出达到给定值。能提高国内锅炉的燃烧效率、燃料适应性、负荷调节性能、污染、灰渣等众多独特优点而受到越来越广泛的重视,在电力、供热、工厂蒸汽生产中得到越来越广泛的应用。 以某600MW汽轮发电机组的汽包锅炉为例,其过热蒸汽生产流程简图和流程图如下图所示: 过热蒸汽流程图

1. 1 过热蒸汽温度控制的任务 过热蒸汽温度控制的主要任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全;过热蒸汽温度偏低,则会降低发电机组能量转换效率。据分析,气温每降低5℃,热经济性将下降 1 %;且汽温偏低会使汽轮机尾部蒸汽湿度增大,甚至使之带水,严重影响汽轮机的安全运行。该机组要求控制过热蒸汽温在5 3 8~ 5 4 8℃的范围内。 2 .2 影响过热蒸汽温度的主要因素 2 .2. 1 燃料、给水比(煤水比) 只要燃料、给水比的值不变,过热汽温就不变。只要保持适当的煤水比,在任何负荷和工况下,直流锅炉都能维持一定的过热汽温。 2.2. 2 给水温度 正常情况下,给水温度一般不会有大的变动;但当高压加热器因故障退出运行时,给水温度就会降低。对于直流锅炉,若燃料不变,由于给水温度降低时,加热段会加长、过热段缩短,因而过热汽温会随之降低,负荷也会降低。 2.2. 3 过剩空气系数 过剩空气系数的变化直接影响锅炉的排烟损失。影响对流受热面与辐射受热面的吸热比例。当过剩空气系数增大时,除排烟损失增加、锅炉效率降低外炉膛水冷壁吸热减少,造成过热器进口温度降低、屏式过热器出口温度降低;虽然对流过热器吸热量有所增加,但在煤水比不变的情况下,末级过热器出口汽温会有所下降。过剩空气系数减小时的结果与增加时的相反。若要保持过热汽温不变,则需重新调整煤水比。 2.2. 4 火焰中心高度 火焰中心高度变化造成的影响与过剩空气系数变化的影响相似。在煤水比不变的情况下,火焰中心上移类似于过剩空气系数增加,过热汽温略有下降;反之,过热汽温略有上升。若要保持过热温不变,亦需重新调整煤水比。 2.2. 5 受热面结渣 煤水比不变的调节下,炉膛水冷壁结渣时,过热汽温会有所降低;过热器结渣或积灰时,过热汽温下降较明显。前者情况发生时,调整煤水比就可;后者情况发生时,不可随便调整煤水比,必须在保证水冷壁温度不超限的前提下调整煤水比。对于直流锅炉,在水冷壁温度不超限的条件下,后四种影响过热汽温因素都可以通过调整煤水比来消除;所以,只要控制、调节好煤水比,在相当大的负荷范围内,直流锅炉的过热汽温可保持在额定值。此优点是汽包锅炉无法比拟的;但煤水比的调整,只有自动控制才能可靠完成。

一台锅炉过热器爆管事故的原因分析及改进措施(最新版)

一台锅炉过热器爆管事故的原因分析及改进措施(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0672

一台锅炉过热器爆管事故的原因分析及改 进措施(最新版) 某厂1991年11月安装了两台SGL20—1.25/250—AⅡ型锅炉。投入运行后,其中一台2#炉在短短两年多的时间内发生了三次过热器爆管事故。 1事故经过 第1次爆管发生在1993年初。停炉检修时只是更换了全部38 根过热器管后,于1993年11月重新投入运行。 第2次爆管发生在1994年1月29日。当时有4根过热器管发生爆管,位置为右数第6、7、8、33根。累计运行时间为913小时。爆管后作了宏观检查。在更换了24根过热器管并清理了百页窗式汽水分离器后,于1994年2月23日恢复了运行使用。 第3次爆管发生1994年3月12日,右数第7根过热器管爆管,

累计运行时间仅400小时。事后作了宏观和金相检查。 对后两次爆管进行宏观和金相检查,发现存在以下两种典型破口: ①因管内被杂物堵塞而产生的短时超温爆管第二次爆管中右数第33根,爆破口位于弯管圆弧内侧。长21mm,宽4.5mm。破口边缘锋利呈刃状。破口附近产生鼓疱,尺寸为12×23.5×4(mm)。管子胀粗明显。具有典型的韧性断裂特征。为短时超温爆管。管内有深红色砖样异物,已将管子完全堵塞。 ②因管内集积盐垢而产生的长时超温爆管如:第二次爆和中右数第8根。破口距管子弯曲起点28mm,破口长27mm宽6mm。破口处鼓疱凸起8mm,破口边缘厚0.6mm左右。两侧有大量平行于爆破口的裂纹,分布于60~43mm范围内的管外壁上。管子直径由φ38mm胀粗至φ40mm。靠近破口附近有80mm长的一段胀粗至φ42mm。从管子横断面观察,管内附着盐垢,厚度为1.5~3mm不等。又如:第三次爆管的右数第7根,爆破口距管子弯曲起点56mm,长13mm、宽0.7mm。破口处鼓疱凸起1.5mm,管内存在大量黑色粉末。该粉末遇水后滑腻

相关主题
文本预览
相关文档 最新文档