当前位置:文档之家› 南航理论力学范钦珊PPT第11章 质点系动能定理

南航理论力学范钦珊PPT第11章 质点系动能定理

理论力学课后答案(范钦珊)

C (a-2) D R (a-3) (b-1) D R 第1篇 工程静力学基础 第1章 受力分析概述 1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。试将同一力F 分别对两坐标系进行分解和投影,并比较分力与力的投影。 习题1-1图 解:(a )图(c ):11 s i n c o s j i F ααF F += 分力:11 cos i F αF x = , 11 s i n j F αF y = 投影:αcos 1F F x = , αs i n 1F F y = 讨论:?= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。 (b )图(d ): 分力:22)cot sin cos (i F ?ααF F x -= ,22sin sin j F ? α F y = 投影:αcos 2F F x = , )cos(2α?-=F F y 讨论:?≠90°时,投影与分量的模不等。 1-2 试画出图a 和b 习题1-2图 比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。 (c ) 2 2 x (d )

1-3 试画出图示各物体的受力图。 习题1-3图 B 或(a-2) B (a-1) (b-1) F (c-1) 或(b-2) (e-1)

F (a) 1- 4 图a 所示为三角架结构。荷载F 1作用在铰B 上。杆AB 不计自重,杆BC 自重为W 。试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。 习题1-4 图 1- 5 图示刚性构件ABC 由销钉A 和拉杆D 支撑,在构件C 点作用有一水平力F 。试问如果将力F 沿其作用线移至D 或E (如图示),是否会改为销钉A 的受力状况。 解:由受力图1-5a ,1- 5b 和1-5c 分析可知,F 从C 移至E ,A 端受力不变,这是因为力F 在自身刚体ABC 上滑移;而F 从C 移至D ,则A 端受力改变,因为HG 与ABC 为不同的刚体。 1 (f-1) 'A (f-2) 1 O (f-3) F F'F 1 (d-2) F y B 21 (c-1) F A B 1 B F Dx y (b-2) 1 (b-3) F y B 2 A A B 1 B F 习题1-5图

理论力学课后习题答案 第10章 动能定理及其应用 )

C v ? A B C r v 1 v 1 v 1 ω?(a) C C ωC v ωO (a) 第10章 动能定理及其应用 10-1 计算图示各系统的动能: 1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,= 45o(图a )。 2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。 3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。细圆环在水平面上作 纯滚动,图示瞬时角速度为 (图c )。 解: 1.2 22222163)2(2121)2(212121B B B C C C mv r v mr v m J mv T =?+=+= ω 2.2 22122222214321)(21212121v m v m r v r m v m v m T +=?++= 3.2 2222222)2(2 12121ωωωωmR R m mR mR T =++= 10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。当杆与铅垂线的夹角为?时,试求系统的动能。 解:图(a ) B A T T T += )2 121(21222211ωC C J v g W v g W ++= 21 221121212211122]cos 22)2 [(22ω?ωω??+?++++=l g W l l v l v l g W v g W ]cos 3 1 )[(2111221222121?ωωv l W l W v W W g +++= 10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。齿轮II 通过匀质的曲柄OC 带动而运动。曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。试求行星齿轮机构的动能。 解: C OC T T T += 2222)21(212121C C C C OC O r m v m J ωω++= 22P 2P 22Q )2(41)2(21])2(31[21r r r g F r g F r g F ωωω++= 习题10-2图 习题10-3图 B v A C θ (a) v O ω A 习题10-1图 (b) (c) A

理论力学第一章习题

第一章习题 1.4 细杆绕点以角速转动,并推动小环C 在固定的钢丝上滑动。图中的为已知常数,试求小球的速度及加速度的量值。 解 如题1.4.1图所示, 绕点以匀角速度转动,在上滑动,因此点有一个垂直杆的速度分量 点速度 又因为所以点加速度 OL O ωAB d A B O C L x θd 第1.4题图 OL O C AB C 22x d OC v +=?=⊥ωωC d x d d v v v 222 sec sec cos +====⊥⊥ω θωθθωθ =&C θθθω&????==tan sec sec 2d dt dv a () 2 222222tan sec 2d x d x d += =ωθθω

1.5 矿山升降机作加速度运动时,其变加速度可用下式表示: 式中及为常数,试求运动开始秒后升降机的速度及其所走过的路程。已知升降机的初速度为零。 解 由题可知,变加速度表示为 由加速度的微分形式我们可知 代入得 对等式两边同时积分 可得 : (为常数) 代入初始条件:时,,故 即 又因为 所以 对等式两边同时积分,可得: ??? ? ? -=T t c a 2sin 1πc T t ?? ? ?? -=T t c a 2sin 1πdt dv a = dt T t c dv ??? ? ? -=2sin 1πdt T t c dv t v ???? ? ??-=00 2sin 1πD T t c T ct v ++ =2cos 2ππ D 0=t 0=v c T D π 2- =????????? ??-+ =12cos 2T t T t c v ππdt ds v = dt T t T t c ???? ? ???? ??-+12cos 2ππ=ds ??? ?????? ??-+=t T t T T t c s 2sin 222 12πππ

5.理论力学(2020版)

中国海洋大学本科生课程大纲 一、课程介绍 1?课程描述(中英文): 理论力学是高等工科院校开设的一门重要的学科基础课,是一门理论性、逻辑性、实践性都很强的课程。它是其他力学课程(例如:材料力学、结构力学、弹性力学、流体力学等)的基础,并在诸多工程技术领域有着广泛的应用。该课程研究物体机械运动的一般规律,主要内容包括静力学、运动学和动力学。本课程的任务是使学生掌握质点、质点系、刚体和刚体系机械运动(包括平衡)的基本规律及其研究方法,初步学会使用理论力学的理论和方法去分析、解决工程实际问题(包括把一些简单的工程实际问题抽象为理论力学模型),为学习一系列的后继课程打好必要的基础,并为将来学习和掌握新科学技术创造条件。同时,结合本课程的特点,培养学生的思维能力、抽象化能力、表达能力、计算能力和自学能力。 Theoretical mechanics is an important basic course offered by engineering colleges and universities, and it is a course with strong theoretical, logical and practical nature. It is the foundation of other mechanics courses (such as material mechanics, stmctural mechanics, elasticity, fluid mechanics, etc.), and has a wide range of applications in many engineering and technical fields. This course studies the general laws of mechanical motion of objects, and the main content includes statics, kinematics and dynamics. The task of this course is to enable students to master the basic

理论力学课后习题答案第11章达朗贝尔原理及其应用

(a ) 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 r , 0 ,α I ( d ) I =F , αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、 B 悬挂。若突然撤去销子B ,求在撤 去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2rad/s 04.47=α ∑=0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43 cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; 0cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= 习 题 ( (

理论力学第一章习题

第一章习题 细杆OL 绕O 点以角速ω转动,并推动小环C 在固定的钢丝AB 上滑动。图中的d 为已知常数,试求小球的速度及加速度的量值。 解 如题1.4.1图所示, A B O C L x θd 第1.4题图 OL 绕O 点以匀角速度转动,C 在AB 上滑动,因此C 点有一个垂直杆的速度分量 22x d OC v +=?=⊥ωω C 点速度 d x d d v v v 222 sec sec cos +====⊥⊥ω θωθθ 又因为ωθ=&所以C 点加速度 θθθω&????==tan sec sec 2d dt dv a () 2 222222tan sec 2d x d x d += =ωθθω

矿山升降机作加速度运动时,其变加速度可用下式表示: ?? ? ? ? -=T t c a 2sin 1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。已知升降机的初 速度为零。 解 由题可知,变加速度表示为 ?? ? ? ? -=T t c a 2sin 1π 由加速度的微分形式我们可知 dt dv a = 代入得 dt T t c dv ?? ? ?? -=2sin 1π 对等式两边同时积分dt T t c dv t v ???? ? ??-=00 2sin 1π 可得 : D T t c T ct v ++ =2cos 2ππ (D 为常数) 代入初始条件:0=t 时,0=v ,故 c T D π 2- = 即????? ???? ??-+=12cos 2T t T t c v ππ 又因为dt ds v = 所以dt T t T t c ????? ???? ??-+12cos 2ππ =ds 对等式两边同时积分,可得: ? ???? ???? ??-+=t T t T T t c s 2sin 22212πππ

《理论力学》第十一章动量矩定理习题解

y 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:2 3t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|22m x t C =?== )(1624|2 2m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,=??=

平动 )(a O 转动 绕定轴C )( b 转动 绕定轴1 )(O c O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4)4(R W 412222,+=?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443(2 22g WR g Wl g Pl L z ++= ω)4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω2 11ml J L z O O == 解:)(b → →→→?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: )(11→ +=C Z O Cz O v m M J L ω

理论力学(机械工业出版社)第十一章动量矩定理习题解答.

习 题 11-1 质量为m 的质点在平面Oxy 内运动,其运动方程为:t b y t a x ωω2sin ,cos ==。其中a 、b 和w 均为常量。试求质点对坐标原点O 的动量矩。 t a x v x ωωsin -== t b y v y ωω2cos 2== x mv y mv L y x O +-= )cos 2cos 22sin sin (t a t b t b t a m ωωωωωω?+?= )cos 2cos 22sin (sin t t t t mab ωωωωω?+?= )cos 2cos 2cos sin 2(sin t t t t t mab ωωωωωω?+?= )2cos (sin cos 22t t t mab ωωωω+= t mab ωω3cos 2= 11-2 C 、D 两球质量均为m ,用长为2 l 的杆连接,并将其中点固定在轴AB 上,杆CD 与轴AB 的交角为θ,如图11-25所示。如轴AB 以角速度w 转动,试求下列两种情况下,系统对AB 轴的动量矩。(1)杆重忽略不计;(2)杆为均质杆,质量为2m 。 图11-25 (1) θθ222sin 2)sin (2ml l m J z =?= θω22sin 2l m L z = (2) θθ2202sin 32d )sin (2ml x x l m J l z ==? 杆 θ22sin 3 8 ml J z = θ ω22sin 3 8 l m L z = 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m 。 图11-26 (a) ω2 3 1ml L O = (b) 22291)6(121ml l m ml J O =+= ω29 1ml L O -=

理论力学课后习题答案 第11章 达朗贝尔原理及其应用

(a ) 习题11-1图 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 解:设圆盘的质量为m ,半径为r ,则如习题11-1解图: (a )2I ωmr F =,0I =O M (b )2n I ωmr F =,αmr F =t I ,αα2 I 2 3mr J M O O = = (c )0I =F ,0I =O M (d )0I =F ,αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、B 悬挂。若突然撤去销子B ,求在撤去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2rad/s 04.47=α ∑=0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ 习题11-2图 习题11-1解图 (a ) (a )

N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m = 3.0kg 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= N 38.5)13(4 1 =-=mg F A ; N 5.4538.53=?+=mg F B 11-4 两种情形的定滑轮质量均为m ,半径均为 r 。图a 中的绳所受拉力为W ;图b 中块重力为W 。 试分析两种情形下定滑轮的角加速度、绳中拉力和定滑轮轴承处的约束反力是否相同。 解:1、图(a ): ① Wr J O =a α Wr mr =a 22 1α mr W 2a =α (1) ②绳中拉力为W (2) ③∑=0x F ,0=Ox F (3) ∑=0y F ,W F Oy = (4) 2、图(b ): ① b 2I 2 1 αmr M O = (5) b I αr g W a g W F == (6) ∑=0O M ,0I I =-+W r r F M O (5)、(6)代入,得 ) 2(2b W mg r Wg +=α (7) ②绳中拉力(图c ): ∑=0y F ,W F T =+I b W W mg mg a g W W T 2b +=- = (8) ③轴承反力: ∑=0x F ,0=Ox F (9) ∑=0y F ,0I =-+W F F Oy W mg mgW F Oy 2+= (10) 习题11-3图 (a ) a I F (a) 习题11-4图 αa F Oy F Ox F Oy F Ox αb M I O F I W a

理论力学第一章习题

第一章习题 1.4 细杆OL 绕O 点以角速ω转动,并推动小环C 在固定的钢丝AB 上滑动。图中的d 为已知常数,试求小球的速度及加速度的量值。 解 如题1.4.1图所示, A B O C L x θd 第1.4题图 OL 绕O 点以匀角速度转动,C 在AB 上滑动,因此C 点有一个垂直杆的速度分量 22x d OC v +=?=⊥ωω C 点速度 d x d d v v v 222 sec sec cos +====⊥⊥ω θωθθ 又因为ωθ= 所以C 点加速度 θθθω ????==tan sec sec 2d dt dv a () 2 222222tan sec 2d x d x d += =ωθθω

1.5 矿山升降机作加速度运动时,其变加速度可用下式表示: ?? ? ? ? -=T t c a 2sin 1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。已知升降机的初 速度为零。 解 由题可知,变加速度表示为 ?? ? ? ? -=T t c a 2sin 1π 由加速度的微分形式我们可知 dt dv a = 代入得 dt T t c dv ?? ? ?? -=2sin 1π 对等式两边同时积分dt T t c dv t v ???? ? ??-=00 2sin 1π 可得 : D T t c T ct v ++ =2cos 2ππ (D 为常数) 代入初始条件:0=t 时,0=v ,故 c T D π 2- = 即????? ???? ??-+=12cos 2T t T t c v ππ 又因为dt ds v = 所以dt T t T t c ????? ???? ??-+12cos 2ππ =ds 对等式两边同时积分,可得: ? ???? ???? ??-+=t T t T T t c s 2sin 22212πππ

5.理论力学(2020版)

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一.课程介绍 1?课程描述(中英文): 理论力学是高等丄科院校开设的一门重要的学科基础课,是一门理论性、逻辑性、 实践性都很强的课程。它是其他力学课程(例如:材料力学、结构力学、弹性力学、流 体力学等)的基础,并在诸多工程技术领域有着广泛的应用。该课程研究物体机械运动 的一般规律,主要内容包括静力学、运动学和动力学。本课程的任务是使学生寧:握质 点、质点系、刚体和刚体系机械运动(包括平衡)的基本规律及其研究方法,初步学 会使用理论力学的理论和方法去分析、解决工程实际问题(包括把一些简单的工程实 际问题抽象为理论力学模型),为学习一系列的后继课程打好必要的基础,并为将来 学习和掌握新科学技术创造条件。同时,结合本课程的特点,培养学生的思维能力、 抽象化能力、表达能力.讣算能力和自学能力。 Theoretical mechanics is an important basic course offered by engineering colleges and universities, and it is a course with strong theoretical, logical and practical nature. It is the foundation of other mechanics courses (such as material mechanics, structural mechanics. elasticity, fluid mechanics, etc.), and has a wide range of applications in many engineering and technical fields. This course studies the general laws of mechanical motion of objects.

理论力学课程总结

理论力学课程总结 一·用一条你认为的主线来贯穿总结本课程的学习内容 理论力学是一门研究物体机械运动的一般规律的科学。经过一学期的学习,对理论力学有了初步大体的认识,笔者试图通过“运动”这条主线对课程进行梳理与总结: 1·首先要强调的是这里说的运动是指速度远小于光速的宏观物体的机械运动,他以牛顿力学的基本定律为基础,属于古典力学范畴。理论力学所研究的是这种运动中最一般、最普遍的规律,是各门力学分支的基础。理论力学的内容主要包括:静力学、运动学、动力学。但笔者认为可以通过对物体运动的分析来将其串联。 2·运动学:经典力学中运动是指运动物体空间位置的变化。那么如何描述这种变化呢?这里就涉及到运动学的知识。物体的运动和静止是相对的,运动是绝对的,静止是相对的。选取的参考体不同,那么物体相对于不同参考体的运动也不同。故描述任何运动都需要指明参考体。现只从几何的角度来研究物体的运动,同时又根据研究对象的不同分为质点运动与刚体运动,根据运动的复杂程度分为简单运动与合成运动(刚体的平面运动),根据描述方式的不同分为轨迹、速度、加速度的讨论。 质点的运动:质点运动的可以通过矢量法、直角坐标系法、自然法进行描述,三者相互联系又各有侧重和优势。点的复合运动与点的运动学方法作比较,可知前者主要研究瞬时的速度与加速度,后者通

过数学知识建立动点绝对方程,可以得到持续运动中的各个运动量。重点总结点的合成运动。点的合成运动有三个对象:动点,定参考系,动参考系。 点的速度合成: 点的加速度合成: 科氏加速度:,体现了动坐标系转动时,相对运动与牵连运动的相互影响。 其中,要强调的是瞬时牵连点的概念:任一瞬时,动系上与动点M 重合的点'M 即为此瞬时动点M 的牵连点。而瞬时牵连点的速度与加速度即为动点的牵连速度与加速度,这个概念可以很好的判断e v 与e a 。通过做过的题目总结可知,动点与动系的选择往往是解题的关键,而易于辨析的相对轨迹是选择动点与动系的重要原则,用充分利用约束条件使得相对轨迹的速度与加速度易于求解。 刚体的平面运动:刚体的运动可分为刚体的基本运动(平动与定轴转动)和刚体的平面运动。刚体的平面运动可看做是多种基本运动的合成。在分析刚体速度与加速度时,最重要的方法为基点法。速度分析时,有两个重要的定理,速度投影定理与瞬心法。 刚体各点速度分析:+A B AB v v v =,AB BA v r ω=? a e r =+v v v a e r C =++a a a a 2C e r =?a ωv

《理论力学》第十一章动量矩定理习题解

y x 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:2 3t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|2 2m x t C =?== )(1624|22m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,=??=

平动 )(a O 转动 绕定轴C ) (b 转动 绕定轴1 )(O c 1 O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4)4(R W 412222,+=?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443( 2 2 2 g WR g Wl g Pl L z ++= ω)4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω211ml J L z O O == 解:)(b → →→→?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: )(11→ +=C Z O Cz O v m M J L ω

南航815理论力学考试大纲2014

815理论力学(2014) 参考书目:《理论力学》,范钦珊、陈建平主编,高等教育出版社,2010年 考试大纲: 1.物体的受力分析 力、刚体、平衡的概念,静力学公理,约束和约束力,分离体,受力图。 2.平面汇交力系与平面力偶系 力的投影,平面汇交力系的合成与平衡,平面力对点的矩,平面力偶理论。 3.平面任意力系 力线平移定理,平面力系简化理论,主矢,主矩,平面任意力系的平衡方程及其应用,物体系统的平衡,平面桁架。 4.空间任意力系 空间汇交力系,空间力对点的矩和对轴的矩,空间力偶理论,空间力系简化理论,主矢,主矩,空间任意力系的平衡方程及其应用,重心。 5.摩擦 摩擦角与滚动摩阻的概念,考虑摩擦的平衡问题。 6.点的运动学 点的运动的矢量法,直角坐标法和自然法。 7.刚体的基本运动 刚体的平移及其特征,刚体的定轴转动。 8.点的合成运动 绝对、相对和牵连运动,点的速度合成定理,点的加速度合成定理。 9.刚体平面运动 平面运动的概念,平面图形上两点速度关系式,速度投影定理,速度瞬心法,平面图形上两点加度关系式。 10.刚体运动的合成 刚体平动与平动的合成,刚体绕平行轴转动的合成。 11.质点运动微分方程 动力学基本定律,质点运动微分方程及其应用。 12.动量定理和质心运动定理 动量、冲量,动量定理,质心运动定理。 13.动量矩定理 质点和质点系的动量矩,动量矩定理,刚体定轴转动微分方程,刚体平面运动微分方程。 14.动能定理 力的功及其计算,理想约束的概念。质点系和刚体的动能及其计算,质点系的动能定理及其应用,势能,机械能守恒。动力学基本定理综合应用。 15.达朗贝尔原理 达朗贝尔原理,动静法,刚体惯性力系的简化,动静法的应用,刚体绕定轴转动时的动平衡问题。16.虚位移原理 自由度,广义坐标,约束方程,虚位移的概念,虚位移原理及其应用,用广义坐标表示的虚位移原理,广义力。 17.动力学普遍方程和拉格朗日方程 动力学普遍方程,拉格朗日方程及其应用。 18.机械振动基础 单自由度系统的自由振动,衰减振动和强迫振动,临界转速,隔振。

清华大学版理论力学课后习题答案大全 第10章动能定理及其应用习题解

A (a) O (a) 第10章 动能定理及其应用 10-1 计算图示各系统的动能: 1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为 v B ,θ = 45o(图a )。 2. 图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。 3 .质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。细圆环在水平面上 作纯滚动,图示瞬时角速度为ω(图c )。 解: 1.2 22222163)2(2121)2(212121B B B C C C mv r v mr v m J mv T =?+=+= ω 2.2 22122222214321)(21212121v m v m r v r m v m v m T +=?++= 3.2 2222222)2(2 12121ωωωωmR R m mR mR T =++= 10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。当杆与铅垂线的夹角为?时,试求系统的动能。 解:图(a ) B A T T T += )2 1 21(21222211ωC C J v g W v g W ++= 21 221121212211122]cos 22)2 [(22ω?ωω??+?++++=l g W l l v l v l g W v g W ]c o s 3 1 )[(2111221222121?ωωv l W l W v W W g +++= 10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。齿轮II 通过匀质的曲柄OC 带动而运动。曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。试求行星齿轮机构的动能。 解: C OC T T T += 2 222)21(212121C C C C OC O r m v m J ωω++= 22P 2P 22Q )2(41)2(21])2(31[21r r r g F r g F r g F ωωω++= )92(3P Q 22F F g r +=ω 习题10-2图 习题10-3图 B (a) 习题10-1图 (b) (c)

理论力学第九章习题

9-1.塔式起重机的水平悬臂以匀角速度ω=0.1rad/s 绕铅垂轴OO 1转动,同时跑 车A 带着重物B 沿悬臂按x=20-0.5t 的规律运动,单位为米、秒,且悬挂钢索AB 始终保持铅垂。求当t=10s 时重物B 的绝对速度。 解:动 点:A ;动 系:起重机 运动分析:牵连运动:定轴转动; 相对运动:直线运动; 绝对运动:曲线运动; e e r ωx v s m 50dt dx v =-== /. 当t=10s 时 s m 58151)50(v v v s m 5110)105020(v 2 2 2r 2e a e /.../...=+-=+==??-= 9-2.图示曲柄滑道机构中,曲柄长OA=r ,它以匀角速度ω绕O 轴转动。装在水 平上的滑槽DE 与水平线成60o 角。求当曲柄与水平线的交角分别为?=0、30o 、60o 时,杆BC 的速度。 解:动 点:A ;动 系:ABC 运动分析:牵连运动:平动; 相对运动:直线运动; 绝对运动:圆周运动; O B C v r v a

由正弦定理得: ()()()120 30φv v φ90v 30φv 120v a e r e a sin sin sin sin sin -=-= -= 当?=0o 时, ωr 3 3v e -= 当?=30o 时, 0v e = 当?=60o 时, ωr 3 3 v e = 9-3.图示曲柄滑道机构中,杆BC 为水平,而杆DE 保持铅垂。曲柄长OA=10cm , 以匀角速度ω=20rad/s 绕O 轴转动,通过滑块A 使杆BC 作往复运动。求当曲柄与水平线的交角分别为?=0、30o 、90o 时,杆BC 的速度。 解:动 点:A ;动 系:BDC 运动分析:牵连运动:平动; 相对运动:直线运动; 绝对运动:圆周运动; φ v v s cm 200ωr v a e a sin /=== 当?=0o 时, 0v e =; 当?=30o 时, s cm 100v e /=; 当?=90o 时, s cm 200v e /= 9-4.矿砂从传送带A 落到另一传送带B 的绝对速度为v 1=4m/s ,其方向与铅垂 线成30o 角。设传送带B 与水平面成15o 角,其速度v 2=2m/s 求此时矿砂对于传送带B 相对速度;又问当传送带B 的速度为多大时,矿砂的相对速度 B C

相关主题
文本预览
相关文档 最新文档