当前位置:文档之家› 液压系统基础知识大全-负载敏感阀

液压系统基础知识大全-负载敏感阀

液压系统基础知识大全-负载敏感阀
液压系统基础知识大全-负载敏感阀

液压系统基础知识大全

液压系统的组成及其作用

一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。

动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它

向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。执

行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线

往复运动或回转运动。

控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。

辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。

液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等

几大类。

液压系统结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中

的控制阀动作。

液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。

在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭

头表示信号流,而实心箭头则表示能量流。

基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、

执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对于执行元件

和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。

根据系统工作原理,您可对所有回路依次进行编号。如果第一个执行元件编号为,则与

0其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为

偶数,则与执行元件回缩相对应的元件标识符则为奇数。不仅应对液压回路进行编

号,也应对实际设备进行编号,以便发现系统故障。

DIN ISO1219-2 标准定义了元件的编号组成,其包括下面四个部分:设备编号、回路编号、元件标识符和元件编号。如果整个系统仅有一种设备,则可省略设备编号。实际中,另一种编号方式就是对液压系统中所有元件进行连续编号,此时,元件编

号应该与元件列表中编号相一致。这种方法特别适用于复杂液压控制系统,每个控

制回路都与其系统编号相对应

国产液压系统的发展

目前我国液压技术缺少技术交流,液压产品大部分都是用国外的液压技术加工回来的,液压英才网提醒大家发展国产液压技术振兴国产液压系统技术。

其实不然,近几年国内液压技术有很大的提高,如派瑞克等公司都有很强的实力。

液压附件:

目前在世界上,做附件较好的有:

派克(美国)、伊顿(美国)颇尔(美国)

西德福(德国)、贺德克(德国)、EMB(德国)等

国内较好的有:

旭展液压、欧际、意图奇、恒通液压、依格等

液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而

发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水

平的高低已成为一个国家工业发展水平的重要标志。

1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水

压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油, 又进一步得到改善。

第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液

工作原理电动机带动液压泵从油箱吸油,液压泵把电动机的机械能转换为液体的压力能。液压介质通过管道经节流阀和换向阀进入液压缸左腔,推动活塞带动工作台右移,液压缸右腔排出的液压介质经换向阀流回油箱。换向阀换向之后液压介质进入液压缸右腔,使活塞左移,推动工作台反向移动。改变节流阀的开口可调节液压缸的运动速度。液压系统的压力可通过溢流阀调节。在绘制液压系统图时,为了简化起见都采用规定的符号代表液压元件,这种符号称为职能符号。

基本回路由有关液压元件组成,用来完成特定功能的典型油路。任何一个液压传动系统都是由几个基本回路组成的,每一基本回路都具有一定的控制功能。几个基本回路组合在一起,可按一定要求对执行元件的运动方向、工作压力和运动速度进行控制。根据控制功能不同,基本回路分为压力控制回路、速度控制回路和方向控制回路。

压力控制回路用压力控制阀(见液压控制阀)来控制整个系统或局部范围压力的回路。根据功能不同,压力控制回路又可分为调压、变压、卸压和稳压4种回路。

(1)调压回路:这种回路用溢流阀来调定液压源的最高恒定压力,溢流阀就起这一作用。当压力大於溢流阀的设定压力时,溢流阀开口就加大,以降低液压泵的输出压力,维持系统压力基本恒定。

(2)变压回路:用以改变系统局部范围的压力,如在回路上接一个减压阀则可使减压阀以后的压力降低;接一个升压器,则可使升压器以后的压力高於液压源压力。

(3)卸压回路:在系统不要压力或只要低压时,通过卸压回路使系统压力降为零压或低压。

(4)稳压回路:用以减小或吸收系统中局部范围内产生的压力波动,保持系统压力稳定,例如在回路中采用蓄能器。

速度控制回路通过控制介质的流量来控制执行元件运动速度的回路。按功能不同分为调速回路和同步回路。

(1)调速回路:用来控制单个执行元件的运动速度,可以用节流阀或调速阀来控制流量,如图简单磨床的液压传动系统原理图中的节流阀就起这一作用。节流阀控制液压泵进入液压缸的流量(多余流量通过溢流阀流回油箱),从而控制液压缸的运动速度,这种形式称为节流调速。也可用改变液压泵输出流量来调速,称为容积调速。

(2)同步回路:控制两个或两个以上执行元件同步运行的回路,例如采用把两个执行元件刚性连接的方法,以保证同步;用节流阀或调速阀分别调节两个执行元件的流量使之相等,以保证同步;把液压缸的管路串联,以保证进入两液压缸的流量相同,从而使两液压缸同步。

方向控制回路控制液压介质流动方向的回路。用方向控制阀控制单个执行元件的运动方向,使之能正反方向运动或停止的回路,称为换向回路,图简单磨床的液压传动系统原理图中的换向阀即起这一作用。在执行元件停止时,防止因载荷等外因引起泄漏导致执行元件移动的回路,称为锁紧回路。

(完整版)液压传动基础知识试题及答案

测试题(液压传动) 姓名:得分: 一、填空题(每空2分,共30分) 1.液压系统中的压力取决于(),执行元件的运动速度取决于()。 2.液压传动装置由()、()、()和()四部分组成,其中()和()为能量转换装置。 3.仅允许油液按一个方向流动而反方向截止的液压元件称为()。 4.溢流阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油必须单独引回油箱。 5.为了便于检修,蓄能器与管路之间应安装(),为了防止液压泵停车或泄载时蓄能器内的压力油倒流,蓄能器与液压泵之间应安装()。 二、选择题(每题2分,共10分) 1.将发动机输入的机械能转换为液体的压力能的液压元件是()。 A.液压泵 B.液压马达 C.液压缸 D.控制阀 2.溢流阀一般是安装在()的出口处,起稳压、安全等作用。 A.液压缸 B.液压泵 C.换向阀 D.油箱。 3.液压泵的实际流量是()。 A.泵的理论流量和损失流量之和 B.由排量和转速算出的流量 C.泵的理论流量和损失流量的差值 D.实际到达执行机构的流量 4.泵常用的压力中,()是随外负载变化而变化的。 A.泵的输出压力 B.泵的最高压力 C.泵的额定压力 5.流量控制阀使用来控制液压系统工作的流量,从而控制执行元件的()。 A.运动方向 B.运动速度 C.压力大小 三、判断题(共20分) 1.液压缸活塞运动速度只取决于输入流量的大小,与压力无关。()

2.流量可改变的液压泵称为变量泵。() 3.定量泵是指输出流量不随泵的输出压力改变的泵。() 4.当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量。() 5.滑阀为间隙密封,锥阀为线密封,后者不仅密封性能好而且开启时无死区。()6.节流阀和调速阀都是用来调节流量及稳定流量的流量控制阀。() 7.单向阀可以用来作背压阀。() 8.同一规格的电磁换向阀机能不同,可靠换向的最大压力和最大流量不同。()9.因电磁吸力有限,对液动力较大的大流量换向阀则应选用液动换向阀或电液换向阀。() 10.因液控单向阀关闭时密封性能好,故常用在保压回路和锁紧回路中。() 四、问答题(共40分) 1、说明液压泵工作的必要条件?(15分) 2、在实际的维护检修工作中,应该注意些什么?(25分)

负载敏感多路阀原理

负载敏感多路阀原理 负载敏感多路阀在拖拉机化肥撒布系统的应用 采用CP2定差减压阀和CP3定差溢流阀实现多路阀多支路同时动作, 可以改善液压系统调速性能,提高效率,减少发热,减少能量消耗。通常是在多路阀中用2通定差减压阀CP2与流量阀(工作阀片)串联组合成调速阀,在多路阀的进口阀片用3通式旁通式定差溢流阀CP3通过CH 梭阀网络回路与工作阀片并联组合成旁通式溢流调速阀。 以下图为例,该阀的进口阀块内置CP3三通定差旁通溢流阀(逻辑元件),每个比例流量阀进口前置CP2二通压力补偿定差减压阀,CH负载感应梭阀。各阀功能如下: ?CP3三通旁通定差溢流阀:当多路阀停止操作,且各阀均在中位时,CP3则以补偿弹簧压力(10-13公斤)旁通泵供油流量。当某一比例流量阀(工作阀片)工作时,CP3旁通溢流阀在该执行元件负载压力作用下减少阀口开度,减少旁通流量,根据负载压力提供所需的流量,此时供油压力随负载压力变化,效率高,发热量小。 ?CH负载感应梭阀(工作阀片):CH负载感应梭阀将各工作阀片中的最高负载压力传至进口阀块的CP3弹簧侧。 ?CP2二通定差减压阀:当一个或多个比例流量阀同时工作时,负载压力传至CP2阀的弹簧侧。此时,通过阀心的负反馈作用,来自动调节流量阀(工作阀片)阀口两端的压力差, 使其基本保持不变。在CP2的压力补偿作用下各阀的流量均保持恒定,使各流量阀的流量与其输入信号成比例,流量大小与阀的开度成正比,独立控制且不受其它负载变化的干扰,从而保证多机构同步动作。 定量泵接入进口阀块P口,油泵压力经P1口作用于压力补偿旁通阀的底部,CP3的弹簧腔与工作片阀的LS负载反馈系统的梭阀连通。

液压系统基础知识大全液压系统的组成及其作用一个完整的液压系统

液压系统基础知识大全 液压系统的组成及其作用 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 液压系统结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。 液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。 在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭头表示信号流,而实心箭头则表示能量流。 基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。 根据系统工作原理,您可对所有回路依次进行编号。如果第一个执行元件编号为0,则与其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为偶数,则与执行元件回缩相对应的元件标识符则为奇数。不仅应对液压回路进行编号,也应对实际设备进行编号,以便发现系统故障。 DIN ISO1219-2标准定义了元件的编号组成,其包括下面四个部分:设备编号、回路编号、元件标识符和元件编号。如果整个系统仅有一种设备,则可省略设备编号。 实际中,另一种编号方式就是对液压系统中所有元件进行连续编号,此时,元件编号应该与元件列表中编号相一致。这种方法特别适用于复杂液压控制系统,每个控制回路都与其系统编号相对应 国产液压系统的发展 目前我国液压技术缺少技术交流,液压产品大部分都是用国外的液压技术加工回来的,液压英才网提醒大家发展国产液压技术振兴国产液压系统技术。 其实不然,近几年国内液压技术有很大的提高,如派瑞克等公司都有很强的实力。 液压附件: 目前在世界上,做附件较好的有: 派克(美国)、伊顿(美国)颇尔(美国) 西德福(德国)、贺德克(德国)、EMB(德国)等 国内较好的有: 旭展液压、欧际、意图奇、恒通液压、依格等 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

负载敏感系统

一、负载敏感和压力补偿概念 (一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。 以往液压系统在使用操纵过程中,存在着以下需解决的问题: 1. 节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。 2. 操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。 3. 单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。合理地分配流量,实现理想复合动作。 4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。 为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。 目前液压传动仍存在问题有待解决。例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。目前人们正在研究采用电路中变压器这类东西,来解决这个问题。 (二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。(即广义的负载敏感和压力补偿)。 负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行反馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。负载敏感系统所采用的控制方式包括液压控制和电子控制。 从负载敏感系统的液压元件来看可分: 负载敏感阀:将压力、流量和功率变化信号,向阀进行反馈,实现控制功能的阀。 负载敏感泵:将压力、流量和功率变化信号,向泵进行反馈,实现控制功能的泵和马达。 负载敏感系统可降低液压系统能耗,提高机械生产率,改善系统可控性,降低系统油温,延长液压系统寿命。 压力补偿: 将压差设定为规定值进行的自动控制都叫压力补偿。 压力补偿流量控制:不受负荷压力变化和液压泵流量变化的影响,由设定节流压差值 对流量进行自动控制,称为压力补偿流量控制。 在节流调速中,根据流量基本计算式,p k Q ?=,压差保持不变(=?p 常数) ,只要调节阀口面积(反映在k 上)就能控制通过阀的流量,通过改变阀的开度,不受负载和液压泵流量影响,改变和控制流量,利用流量控制阀的原理来进行调速,提出了压力补偿概念。在节流口上,并联或串联一个压力补偿器。 (三)开中心直通型油路系统存在的问题。 前面已经谈到挖掘机开心式油路都采用六通多路阀,有二条供油路,直通供油路可组成优先油路,中位时直通回油箱进行卸载。并联供油路,组成并联油路,把二种油路采用各种方式组成起来,就构成了复杂多变的挖掘机油路。 操纵阀的结构简图和符号图如图1所示。

浅谈变量泵选用

常见的变量柱塞泵有恒压变量泵、恒功率变量泵、负载敏感变量泵等。对于要求压力接近或相同,流量变化较大的液压系统,如节流调速系统、泵保压系统、要求快速响应的中位常闭换向阀系统、蓄能器系统、电液伺服系统和电液比例换向阀系统等,一般应采用恒压变量泵作为动力源,避免采用定量泵-溢流阀系统和旁路节流调速系统,以降低溢流或旁流流量损耗。恒压变量泵的主要特征是:在系统压力达到泵的设定压力前为定量泵特性;达到设定压力时,泵的流量随负载需要自动调整;无负载时,泵的流量自动降至0,但其输出压力维持恒定。国外中高压节流调速液压系统广泛采用恒压变量泵。 对于负载缓慢增加、平均功率较小或接近最大压力的行程较小的液压系统,如大多数压机,一般应采用恒功率变量泵作为动力源,对平均速度影响不大,但可以大幅减小装机功率。恒功率变量泵的主要特征是:在系统压力达到泵的变量压力前为定量泵特性;达到变量压力时,泵的流量随负载增加自动减小,但压力/流量乘积大致为常数。变量转折压力和压力/流量乘积(功率)均可根据需要调整,是应用最广泛的变量泵之一。 对于功率较大、负载缓慢增加且有较长保压时间要求的系统,也可采用恒压恒功率变量泵。 对于要求分别具有不同压力、不同流量的多执行器系统,可采用双压、双流量恒压变量泵或负载敏感变量泵。双压、双流量恒压变量泵的输出特性可调整为相当于2台不同压力、不同流量的恒压变量泵,利用泵上附设的电磁阀来转换工作状态,适合于双执行器系统。负载敏感

变量泵的输出特性为:在泵的额定压力和流量范围内,其实际输出压力和流量能同时随负载需要自动调整;无负载时,泵的流量自动降至0,且输出压力较低,适合于多执行器系统。由于上述2种泵能同时降低压力和流量损耗,故具有更好的节能效果,将获得良好的应用前景。 附带指出,对于零流量时输出压力较高的各种恒压变量泵,不影响系统功能时最好仍设置卸载回路,因这类泵在高压零流量时的功率损耗和磨损均大于零压全流量时的功率损耗和磨损。 1、工况判断是第一步。

负载敏感

负载敏感 一、负载敏感和压力补偿概念 (一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。 以往液压系统在使用操纵过程中,存在着以下需解决的问题: 1. 节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。 2. 操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。 3. 单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。合理地分配流量,实现理想复合动作。 4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。 为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。 目前液压传动仍存在问题有待解决。例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。目前人们正在研究采用电路中变压器这类东西,来解决这个问题。 (二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。(即广义的负载敏感和压力补偿)。 负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行回馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。负载敏感系统所采用的控制方式包括液压控制和电子控制。 从负载敏感系统的液压组件来看可分: 负载敏感阀:将压力、流量和功率变化信号,向阀进行回馈,实现控制功能的阀。 负载敏感泵:将压力、流量和功率变化信号,向泵进行回馈,实现控制功能的泵和马达。负载敏感系统可降低液压系统能耗,提高机械生产率,改善系统可控性,降低系统油温,延长液压系统寿命。 压力补偿: 将压差设定为规定值进行的自动控制都叫压力补偿。 压力补偿流量控制:不受负荷压力变化和液压泵流量变化的影响,由设定节流压差值 对流量进行自动控制,称为压力补偿流量控制。 在节流调速中,根据流量基本计算式,,压差保持不变(常数),只要调节阀口面积(反映在k上)就能控制通过阀的流量,通过改变阀的开度,不受负载和液压泵流量影响,改变和控制流量,利用流量控制阀的原理来进行调速,提出了压力补偿概念。在节流口上,并联或串联一个压力补偿器。 (三)开中心直通型油路系统存在的问题。 前面已经谈到挖掘机开心式油路都采用六通多路阀,有二条供油路,直通供油路可组成优先油路,中位时直通回油箱进行卸载。并联供油路,组成并联油路,把二种油路采用各种方式组成起来,就构成了复杂多变的挖掘机油路。 操纵阀的结构简图和符号图如图1所示。

负载敏感泵

实际使用中,负载敏感泵通常不是与节流阀,而是与负载敏感阀或比例换向阀配合使用。 为介绍其原理,此处先假设负载有流量需求,即P口有通路。 当节流阀通径足够大且全开时,节流阀前后压力基本相等。由于流量阀左右腔压力分别是节流前和节流后的压力,所以此时流量阀左右腔压力也基本相等。流量阀在弹簧力的作用下处于初始位置,泵变量活塞腔与回油相通,泵工作在最大排量。 当节流阀开度逐渐减小,如果泵输出流量不变,则节流阀前后压差逐渐增大,即流量阀两端压差越来越大。当节流阀开度减小到一定程度以下,如果泵输出流量还是不变,必然会造成节流阀的前后压差超过流量阀的设定压差(A10V产品中流量阀的标准设定压差 Δp=1.4MPa),于是流量阀右移,泵出口油进入变量活塞腔,将斜盘向小角度方向推动。斜盘角度稍有减小,泵输出流量随即减小,于是节流阀因过流量减小而压差降低。当油液流经节流阀产生的压差正好与流量阀设定压差相等时,流量阀达到平衡状态,泵斜盘稳定在某个位置,使泵的输出流量与节流阀开度相匹配,即所谓的要多少流量给多少流量。待机时,对于中位闭芯式负载敏感阀或比例换向阀而言,节流口处于关闭状态。此时节流阀的前后压差即为泵的待机压力,待机压力一般比Δp高0.2MPa左右,一般与系统管阻、泵结构等有关。当待机压力超过流量阀的设定压差(A10V产品中流量阀的标准设定压差Δp=1.4MPa),于是流量阀右移,泵出口油进入变量活塞腔,将斜盘向小角度方向推动,直到泵流量到最小约 等于零(大于零的部分用于维持泵及系统泄漏)。 当油液流经节流阀产生的压差正好与流量阀设定压差相等时,流量阀达到平衡状态,泵斜盘稳定在某个位置,使泵的输出流量与节流阀开度相匹配,即所谓的要多少流量给多少流量”是否理解为为维持此时 泵的输出流量,流量阀在平衡状态是在不断调整开度的?

1 负载敏感泵自动调节原理

1 负载敏感泵自动调节原理 负载敏感泵控系统原理图如图1所示,PL 为负载需要的压力,通过流量控制阀5泵的流量QL 为负载需要的流量。当阀5的开 度减小,表明负载需求流量减小,此时泵输 出的流量大于负载所要求的流量,则阀5进出口压力降 L S p p p -=?增大,推动敏感阀1 阀芯向右运动,使泵出口通过阀1左位与变量缸的大腔,由于变量缸大腔、小腔之 间的面积差,推动变量斜盘角减小,使泵的流量减小,直到达到负荷所需求的流量为止。反之,阀5的开度增大,泵输出流量小 于负载所要求的流量,则 L S p p p -=?减小,阀1阀芯向左运动,变量缸大腔经过阀 1 2 3 4 5 X P S P L 1、负载敏感阀, 2、恒压阀, 3、变量缸大腔, 4、变量缸小腔, 5、外接流量控制阀 图1 负载敏感泵控系统原理图 1右位通油箱,泵的斜盘角增大,流量增大。 当负载保压时,L S p p =,这时负载敏感阀1无法开启,P S 推动恒压阀2阀芯向右运动,油液通过阀2左位进入变量缸的大腔,使泵的流量减小到仅能维持系统的压力,斜盘角近零偏角,泵的功耗最小。 当阀5关死,即负载停止工作,泵出口压力仅需为阀1弹簧设置压力,一般只有14bar 左右,流量接近为零。 以上的分析说明: (1)该泵的输出压力和流量完全根据负载的要求变化。 (2)保压时,泵的输出流量仅维持系统的压力。 (3)空运转时,泵的流量在低压、零偏角下运转。 2 负载敏感泵数学建模 为了进一步深入的分析研究负载敏感泵,首先必须要对负载敏感泵进行数学建模。 从上部分的原理分析得知,负载敏感泵有三种状态,即一般工作状态、保压工作状态、和空运转状态,其中一般工作状态和空运转状态由负载敏感阀感应负载需求产生 阀芯运动使泵流量变化来满足负载要求,保压工作状态由恒压阀感应负载敏感阀感应负载需求产生阀芯运动使泵流量变化来满足负载要求,系统模型需要分开建立。由于负载敏感阀和恒压阀结构相似运动过程也类似,本文下面将只建立负载敏感阀动作时的数学模型。 (1)负载敏感阀的动态特性 负载敏感阀芯运动的微分方程: ()v s v v v L S x K dt x d M F A p p +=--220

挖掘机负载敏感系统介绍(中文)

三位六通换向控制阀块 (open center) 液压控制技术 在液压控制技术起初,加工机械厂的加工运动的速度取决于控制阀的横截面及液压流体的粘度。 对于速度的灵敏控制只能通过严格操纵才能实现。 接着,根据3位6通换向阀的原理对第一个控制阀块做一个重大改进,就使得一个机床工人同时相应地控制几个加工运动成为可能。 下面用M1控制阀块的例子来图解这个工作原理 M1单阀块截面图

在阀杆中位,油液通过铸造的通道无压的从P口流到T口(中位循环),泵和执行机构工作油路的接口A和B连接切断。可利用机械式的手柄或依靠液压方式在a1或b1口引入先导压力,使阀杆离开中位而移动。 依靠阀杆的换向和对阀杆的控制,减少P口到T口连接的通道,随着其进一步位移,进一步减少流通面积,使流阻增大(流通面积的缩减导致流阻的增加),以至于压力因此增加。随着从P口到T口的流通面积减少,P口到A口或P口到B口的连接通道将打开,液体将流到执行器接口。当由于压力和液压缸面积产生的力超过作用在液压缸上的负载外力时,油缸开始移动。P→A(或P→B)的流通面积直接决定了流量,从而也决定了液压缸或液压马达的速度。安全阀限制系统最高压力,活塞上单向阀能防止阀杆在中位时油缸下降。 以上所述的工作原理同样适用于几个阀杆,根据液压泵提供有效流量,所有操作能从停止到最大速度相应并行地受到控制。 三位六通换向阀的控制原理,也称作“节流控制”,它在元件布置方面是简单的,操作可靠,经济划算,系统可使用定量或变量泵。缺点是节流调速时,有部分多余的压力油直接回油箱,造成功率损失。 而且,其控制特点是与压力相关的,在并联油路几个执行机构同时动作时,可能彼此互相影响。 这就是开发与负载压力无关的负载传感系统的决定性原因。 负载传感系统 同样就负载传感系统而言,执行机构的速度是由控制块主阀芯的位置决定的。打开的通量截面较大也就意味着速度较高。最基本的差异是用负载传感,流量是可控的。 泵只需要提供当前所需的流量,其功能是通过把从液压控制系统的压力反馈到泵上来实现的。 该泵设计成控制器在系统能以恒定的标准值来保持一定的压力差,以输出所需的流量。 负载传感控制阀0块设计为每个阀杆上都带有一个额外的流量控制部件。压力补偿阀使 Steuer - Regl

负载敏感液压泵稳定性仿真与参数优化

第28卷第5期2011年5月 机 电 工 程 Journal o fM echan ica l&E l ectrical Eng i nee ri ng V o.l 28N o .5M ay 2011 收稿日期:2010-12-03 基金项目:浙江省重大科技专项和优先主题计划资助项目(2007C11171) 作者简介:马 冲(1986-),男,江苏徐州人,主要从事变量柱塞泵方面的研究.E m ai:l m chseu@126.co m 通信联系人:孔晓武,男,副教授,硕士生导师.E ma i :l x w kong @yahoo .co https://www.doczj.com/doc/1a6272439.html, 负载敏感液压泵稳定性仿真与参数优化 * 马 冲,孔晓武 * (浙江大学流体传动与控制国家重点实验室,浙江杭州310027) 摘要:针对负载敏感泵压力偏差较大与稳定性差的问题,基于Pro /E 、ADAM S 以及AM ESi m 专业仿真软件建立了负载敏感液压泵的虚拟样机。通过理论分析与仿真,提出了负载敏感液压泵变量机构控制系统中阻尼孔和容腔的参数匹配方法,基于该方法对56cc /r 的负载敏感液压泵进行了优化,得到了较好的阻尼孔和容腔的匹配效果。最后,通过试验验证了仿真分析的正确性。研究结果表明,参数优化后的负载敏感液压泵具有较好的稳定性,降低了恒压控制的压力偏差以及压力波动。关键词:负载敏感液压泵;阻尼孔;稳定性;压力偏差;参数优化中图分类号:TH 322 文献标志码:A 文章编号:1001-4551(2011)05-0548-05 Stability si m ulation and para m eter opti m ization of load sensing pu mp MA Chong ,KONG X i ao wu (State K ey Lab o f Fluid Pow er Trans m issi o n and Contro,l Zhe ji a ng University ,H angzhou 310027,Ch i n a) Abstrac t :A i m i ng at t he prob l em that t he larg e pressure b i as and the poor stability o f the l oad sensi ng pu m p ,a virtual pro totype of a l oad sensing pu m p w as developed by co m b i ni ng P ro /E ,ADAM S and AM ES i m .Through ana l y zi ng t he pu mp s wo rking pri nc i ple and the si m u l a ti on resu lts ,a m e t hod t hat how to m a tch the volu m e and the d i am eter of da m pi ng or ifi ces w as reached .B ased on th i s m e t hod ,the 56cc /r l oad sensing pump was op ti m ized ,and the better m atch effect of vo l ume and da m pi ng or ifi ce was gotten .T he feas i bility and effectiveness of this m ethod were ver ifi ed through m any experi m ents .The resu lts i ndicate that t he l oad sens i ng pump opti m ized show s a stab le perfor m ance ,and the output pressure b ias and v i bra ti on are decreased i n high pressure conditi on . K ey word s :load sensi ng pu m p ;damp i ng or ifice ;stability ;pressure bias ;para m ete r opti m i zati on 0 引 言 电液比例负载敏感变量泵能够在负载压力变化的情况下输出恒定的流量,并且在负载压力升高到一定值时,泵输出流量自动减小到仅维持泵的输出压力恒定。这样的特性应用在注塑机上起到了很好的节能效果,工作效率较高。 计算机仿真技术的应用提高了研究效率,缩短了研究周期,给研究提供了很大的方便。文献[1]利用计算机仿真技术研究了压力控制变量泵的动态响应,发现高压时泵输出压力和变量柱塞腔的压力波动较大,斜盘倾角同样存在振荡现象。文献[2]对压力流 量复合控制变量泵控制元件的模型进行优化,利用S i m ulink 仿真对系统进行性能预测和分析,但是柱塞泵的模型较为简化。文献[3]采用AMES i m 对负载敏感泵进行建模,仿真分析了负载敏感阀的弹簧刚度、开口形状以及附加阻尼对负载敏感泵动态特性的影响,但仿真模型也采用了较简化的柱塞泵模型。文献[4]主要介绍了ADAM S /AMES i m 联合仿真技术方法,利用两个软件的各自的优势,考虑了传统仿真方法中容易忽略的参数,提供了变量柱塞泵较为真实的仿真结果。文献[5]采用虚拟样机技术,分析了配油盘位置与压力冲击,泵出口容积对压力脉动影响,以及柱塞运动特性与主轴应力应变情况。

负载敏感泵的动态特性分析与仿真研究

现代制造工程2008年第12期设备设计/诊断维修/再制造 负载敏感泵的动态特性分析与仿真研究 王炎,胡军科,杨波 (中南大学机电工程学院,长沙410075) 摘要:推导负载敏感泵的数学模型,建立直观的物理化AMESim模型,并进行仿真研究,研究表明,负载敏感阀的弹簧刚度、阀芯直径、开口形状及附加阻尼孔对负载敏感泵的动态响应起着重要作用,对理解、使用和设计负载敏感泵都有一定的参考价值。 关键词:负载敏感泵;数学模型;AMESim软件;动态特性 中图分类号:THl37.51文献标识码:A文章编号:1671---3133(2008)12—0084—05 Dynamiccharacteristicsanalysisandsimulationofloadsensingpump WangYan,HuJun—ke,YangBo (CollegeofMechanicalandElectronicEngineering,CentralSouthUniversity,Changsha410075,CHN)Abstract:ThemathematicalmodelforLoadSensing(LS)axialpistonpumpisestablished.AMESimisappliedtomodel,simulateandanalyzetheLSpumpsystem.Simulationresultsclarifythatspringstiffness,controlareaoftheflow—controlvalve,shapeofthevalvecoreandthedampingOI访Ceshavegreatinfluencetothedynamiccharacteristicsofthepump.Theresultswillbeusefulforunderstanding,usingand designingLSpump. Keywords:Ⅷsensingaxialpistonpump;Mathematicalmodel;AMESim;Dynamiccharacteristics 液压技术虽然有许多优势,但却有效率低、能量浪费大等不可忽视的弱点,所以节能是液压传动技术应该探讨的重要课题之一。负载敏感泵控系统由相应控制阀感应外部信号改变泵自身输出的流量和压力来匹配负载,避免了一般液压系统中由于溢流阀和节流阀带来的溢流和节流损失,使其具备了能量损失小、效率高的特点,如今得到广泛的运用。 本文在分析负载敏感泵原理的基础上,推导出负载敏感泵的数学模型,通过在图形化仿真环境AMES—im中建立负载敏感泵的模型,深人分析变量机构参数对负载敏感泵动态特性的影响,对理解、使用以及设计负载敏感泵都有一定的参考价值。1负载敏感泵自动调节原理 负载敏感泵控系统原理图如图l所示,P。为负载需要的压力,通过流量控制阀5泵的流量Q。为负载需要的流量。当阀5的开度减小,表明负载需求流量减小,此时泵输出的流量大于负载所要求的流量,则阀5进出口压差P=P。一P。增大,推动负载敏感阀1阀芯向右运动,使泵出口通过阀1左位与变量缸大腔3连通,由于变量缸大腔3与变量缸小腔4之间的面积差,推动变量斜盘角减小,使泵的流量减小,直到达到负载所需求的流量为止。反之。阀5的开度增大,泵输出流量小于负载所要求的流量,则p=P。一几减小, [2]TMS320F2833xDi画talSignalControHem(DSCs)DamManual[EB/OL].http://www.ti.eom.TI公司.[3]褚艺斌,廖文良,陈文芗.基于LPC2114的拉链头装配机控制系统设计[J].机床与液压,2007,35(2): 188一192. [4]尚久浩,张淳,李思益.自动机械设计[M].北京:中 国轻工业出版社,2003 作者简介:林创鲁.硕士研究生,研究方向:现代检测及仪器。 刘桂雄,教授,博士生导师.通讯作者,研究方向:现代检 测及自动化装王、制造业信息化。 E?nlail:megxliu@scut.edu.cn 收稿日期:2008..04-25 万方数据

负载敏感泵

负载敏感泵 早在二十世纪六十年代后期,一些年轻的工程师对液压传动技术的优缺点进行了仔细的分析。中位开放式液压系统,采用了一个定排量的齿轮泵, 提供恒定的流量,系统压力是由作用于工作介质上的载荷决定的。为限制系统的最高工作压力,必须设置一个高压溢流阀。当系统工作压力达到设定值,液压泵近乎全部流量将通过溢流阀流回油箱,因而导致极高的功率损失,并在系统中产生大量的热损耗致使系统效率极低。 相比之下中位封闭的液压系统具有排量可调的优点,排量调节的范围可从最小排量至最大排量,甚至正向最大排量至反向最大排量;并且无需在系统中设置溢流阀。其最大工作压力的控制是通过液压泵内部的补偿器实现的。此类补偿器可在系统因负载超出额定范围导致系统受到阻滞的状态下通过 限压变量活塞使泵卸荷即液压泵处于高压运转状态、但排量近乎为零。此时液压泵将进入等待状态,并保持较高的工作压力,直至负载被克服或恢复操作阀的控制状态。中位闭式系统的缺点是液压泵试图在所有的工况下均实现所限定的最高工作压力附近的排量调节。但是液压系统还有这样一类工况,即期望获得较大的流量而所要求的工作压力却很低。中位闭式的系统在此种工况下导致了较高的压力降并在能量损失过程中产生大量的热。工程师们于是设想,若能将两种系统的优点进行合并将得到最佳的性能。理想的系统应具有这样一种特性:在载荷需要的工作压力下仅提供维持系统工作的必要流量。期望流量与工作压力二者都是可变的,但是无论开式还是闭式系统均未提供这样的工作性能。为实现这一特性,必须设计一种新型液压泵,该泵可以根据系统需求提供必要的的流量及压力,并在工况变化时,具有相应的压力-流量调节功能。显然,一种柱塞式变量泵是实现此种功能的基础元件, 但是如何令其同时响应压力和流量两个参数的变化呢?一位从事本项目研 究的工程师开发了一种新的液压补偿器以同时感应系统压力和流量的需求,并使柱塞泵能对流量压力需求的变化做出正确响应。负载敏感液压泵从此诞生了!从技术角度讲,这是一种压力-流量补偿式的变排量柱塞式液压泵。

(完整版)液压传动基础知识含答案,推荐文档

一.填空题: 1.液压油的主要物理性质有(密度)、(闪火点)、(粘度)、(可压缩性),液压油选择时, 最主要考虑的是油液的(粘度)。 2.液体受压力作用而发生的性质称为液体的可压缩性,当液压油中混有空气时,其抗压缩 能力将(降低)。 3.液压油的常见粘性指标有(运动)粘度、(动力)粘度、和(相对)粘度,其中表示液 压油牌号的是(运动)粘度,其单位是(厘斯)。 4.我国油液牌号以( 40℃)时油液的平均(运动)黏度的(cSt)数表示。 5.我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。 6.油的粘性易受温度影响,温度上升,(粘度)降低,造成(泄漏)、磨损增加、效率降低 等问题;温度下降,(粘度)增加,造成(流动)困难及泵转动不易等问题。 7.液压传动对油温变化比较敏感,一般工作温度在(15)~(60)℃范围内比较合适。 8.液压油四个主要的污染根源是(已被污染的新油)、(残留)污染、(侵入性)污染和(内 部生成)污染。 9.流体动力学三大方程分别为(连续性方程)、(伯努利方程)和(动量方程)。 10.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。 11.绝对压力等于大气压力+(相对压力),真空度等于大气压力-(绝对压力)。 12.根据液流连续性原理,同一管道中各个截面的平均流速与过流断面面积成反比,管子细 的地方流速(大),管子粗的地方流速(小)。 13.理想液体的伯努利方程的物理意义为:在管内作稳定流动的理想液体具有(比压能)、 (比位能)和(比动能)三种形式的能量,在任意截面上这三种能量都可以(相互转化),但总和为一定值。 14.在横截面不等的管道中,横截面小的部分液体的流速(大),液体的压力(小)。 15.液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。 16.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损 失和(局部压力)损失两部分组成。 17.孔口流动可分为(薄壁)小孔流动和(细长)小孔流动,其中(细长)小孔流动的流量受 (温度)影响明显。 18.液流流经薄壁小孔的流量与(小孔通流面积)的一次方成正比,与(压力差)的1/2 次方成正比。通过小孔的流量对(温度)不敏感,因此薄壁小孔常用作可调节流阀。19.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正 比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。 20.为防止产生(空穴),液压泵距离油箱液面不能太高。 21.在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现 象称为(液压冲击)。 二.判断题: 1.液压油具有粘性,用粘度作为衡量流体粘性的指标。(√) 2.标号为N32的液压油是指这种油在温度为40℃时,其运动粘度的平均值为32mm2/s。(√) 3.空气的粘度主要受温度变化的影响,温度增高,粘度变小。(√) 4.液压油的密度随压力增加而加大,随温度升高而减小,但一般情况下,由压力和温度引起的这种变化较小,可以忽略不计。(√) 5.液压系统对液压油粘性和粘温特性的要求不高。(×)

挖掘机负载敏感系统介绍(中文)

三位六通换向控制阀块 (open center) 液压控制技术 在液压控制技术起初,加工机械厂的加工运动的速度取决于控制阀的横截面及液压流体的粘度。 对于速度的灵敏控制只能通过严格操纵才能实现。 接着,根据3位6通换向阀的原理对第一个控制阀块做一个重大改进,就使得一个机床工人同时相应地控制几个加工运动成为可能。 下面用M1控制阀块的例子来图解这个工作原理 M1单阀块截面图

在阀杆中位,油液通过铸造的通道无压的从P口流到T口(中位循环),泵和执行机构工作油路的接口A和B连接切断。可利用机械式的手柄或依靠液压方式在a1或b1口引入先导压力,使阀杆离开中位而移动。 依靠阀杆的换向和对阀杆的控制,减少P口到T口连接的通道,随着其进一步位移,进一步减少流通面积,使流阻增大(流通面积的缩减导致流阻的增加),以至于压力因此增加。随着从P口到T口的流通面积减少,P口到A口或P口到B口的连接通道将打开,液体将流到执行器接口。当由于压力和液压缸面积产生的力超过作用在液压缸上的负载外力时,油缸开始移动。P→A(或P→B)的流通面积直接决定了流量,从而也决定了液压缸或液压马达的速度。安全阀限制系统最高压力,活塞上单向阀能防止阀杆在中位时油缸下降。 以上所述的工作原理同样适用于几个阀杆,根据液压泵提供有效流量,所有操作能从停止到最大速度相应并行地受到控制。 三位六通换向阀的控制原理,也称作“节流控制”,它在元件布置方面是简单的,操作可靠,经济划算,系统可使用定量或变量泵。缺点是节流调速时,有部分多余的压力油直接回油箱,造成功率损失。 而且,其控制特点是与压力相关的,在并联油路几个执行机构同时动作时,可能彼此互相影响。 这就是开发与负载压力无关的负载传感系统的决定性原因。 负载传感系统 同样就负载传感系统而言,执行机构的速度是由控制块内主阀芯的位置决定的。打开的通量截面较大也就意味着速度较高。最基本的差异是用负载传感,流量是可控的。 泵只需要提供当前所需的流量,其功能是通过把从液压控制系统的压力反馈到泵上来实现的。 该泵设计成控制器在系统内能以恒定的标准值来保持一定的压力差,以输出所需的流量。 Steuer- block Regl

液压挖掘机讲座三——多路阀液压系统(中位闭式负载敏感和压力补偿)

多路阀液压系统(中位闭式负载敏感和压力补偿) 一、液压传动存在的问题 液压传动是工程机械理想的传动装置,工程机械的进步和发展依赖液压技术。目前工程 机械是液压工业最大的市场,液压件一半以上用于工程机械,工程机械对液压技术提出了很高的要求,液压技术的发展主要是满足工程机械的需要,液压技术的水平主要体现在工程机械上,例如:液压件的大型化、小型化和高压化等,最高使用压力已达70MPa。工程机械和液压技术两者互相促进共同发展。 因此有必要深入分析液压传动的特点及其存在的问题,工程机械对液压传动所提出的要求,以便进一步提高和改进液压传动的性能。 液压传动通过管道连接传递能量,恰如生物血管,只需管路就能把能量输送到需要的地方。给设计布置上带来了很大的灵活性和方便性,液压传动容易实现各种运动形式,很适合工程机械多处需要动力,多作业装置,实现复杂运动的要求。 液压传动传递的功率密度大(单位体积或单位重量所传递的功率)、结构紧凑、重量轻,适合工程机械强劲有力,重型大马力的要求。 液压传动具有优良的传动性能,传动平稳,易防止过载,调速简单,具有无级变速性能,维修简单,使用寿命长等,能很好地满足工程机械的传动性能要求。 液压传动具有良好的操纵控制性能,液压是机械和电子的接口,电液控制是机电信一体化的关键技术。 但是液压传动存在着不尽人意的不足之处,有的已经改进,还有待解决的问题需进一步动脑筋。在工程机械使用过程中存在着以下需解决的问题。 1.节能要求:适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。要 求液压系统能反向吸收作业装置的能量,具有能量再生利用的储能功能。 1

负载敏感技术在液压系统中的应用

1-负载敏感泵#2-节流阀#3-梭阀#4-流量阀#5-压力阀 图1负载敏感控制原理图 中图分类号:TH137 文献标识码:B 文章编号:1672-8904(2007)05-0028-003 收稿日期:2007-05-08 作者简介:黄新年,工程硕士,工程师。 第5期(总第24期) 2007年9月 No.5(SerialNo.24) Sep.,2007 FluidPowerTransmissionandControl 液压技术是基于帕斯卡定律(Pascallaw)的一种利用静压来实现功率传递的应用技术。该技术真正意义上的大规模得以应用还是近百年来的事。液压技术可应用在需要传递高功率密度及负载运动需精确控制的场合。 对于液压系统来说,主要涉及的变量有两个,即:速度(流量)与力(压力)。液压系统的压力是由负载来确定的,而流量是系统重点要控制的变量。 流量与压力的乘积为功率,因此,采用何种方式来对上述两个变量进行控制,便关系到系统的功率利用率问题。 在上世纪60年代以前,液压界的人士一直无法回避的是液压系统效率低下问题。随着负载敏感技术的日益成熟,这种情况正逐渐得到改善。 简言之,负载敏感技术就是将负载所需的压 力、流量与泵源的压力流量匹配起来以最大程度提高系统效率的一种技术。 要提高系统的功率利用效率,一方面要将负载所需的压力与泵源的输出压力匹配,另一方面,泵源的输出流量正好满足负载驱动速度的需要。此外,还需要实现待机状态的低功耗。 如图1所示,实现负载敏感控制的系统由如下元件组成:负载敏感变量柱塞泵1;速度调节元件(节流阀)2;压力传感元件(梭阀)3。 在负载敏感泵1上集成有流量阀4及压力阀5。压力阀5用于限定泵的最高工作压力pe。负载的驱动压力pL则通过梭阀3反馈到泵的控制口X,流量阀4用于限定泵出口至液压缸进油口之间的压 差Δp。这样连接的结果是:液压缸运动的速度取决于节流阀2的开度。在此系统中,节流阀2与流量阀4共同构成了一个调速阀。 只要在pL!pe-Δp的范围内,无论负载如何变化,泵提供的流量始终与负载的要求相适应,而泵的输出压力则为pL+Δp。 这样,液压系统的效率(不计泵的效率及液压缸的效率)为pL/(pL+Δp)。 当液压系统未工作而处于待机状态时,负载压力pL=0,系统的待机功率损耗为: P=Δpqd 其中,qd为泵的外泄漏及控制流量损失。 采用负载敏感技术的好处是:系统的输出压力及流量直接取决于负载的要求,可以大大提高系统 负载敏感技术在液压系统中的应用 黄新年 张志生 陈忠强 (煤炭科学研究总院上海分院液压研究所 上海 200230) 摘要:简要介绍了负载敏感技术的背景及工作原理,并给出了一些工程应用的实例。对从事工程设计的人员具有一定的实用意义。 关键词:液压技术;负载敏感;变量泵;节能引言 1负载敏感技术的原理

相关主题
文本预览
相关文档 最新文档