当前位置:文档之家› 人教版九年级数学上册 圆 几何综合(篇)(Word版 含解析)

人教版九年级数学上册 圆 几何综合(篇)(Word版 含解析)

人教版九年级数学上册 圆 几何综合(篇)(Word版 含解析)
人教版九年级数学上册 圆 几何综合(篇)(Word版 含解析)

人教版九年级数学上册 圆 几何综合(篇)(Word 版 含解析)

一、初三数学 圆易错题压轴题(难)

1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD

的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .

(1)分别求点E 、C 的坐标;

(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.

【答案】(1)点C 的坐标为(-3,0)(2)2343333

y x x =++3)⊙M 与⊙A 外切 【解析】

试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;

(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;

(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么

∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.

试题解析:(1)在Rt△EOB 中,3

cot60232EO OB =??==, ∴点E 的坐标为(-2,0).

在Rt△COA 中,tan tan60333OC OA CAO OA =?∠=??==, ∴点C 的坐标为(-3,0).

(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得

()()30103a =++,

∴3

3

a =. ∴()()3

13y x x =

++,即 2343333

y x x =

++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,

∴MED B ∠=∠.

∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.

∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.

2.如图所示,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE//BD ,交BC 于点F ,交AB 于点E. (1)求证:∠E=∠C ;

(2)若⊙O 的半径为3,AD=2,试求AE 的长; (3)在(2)的条件下,求△ABC 的面积.

【答案】(1)证明见解析;(2)10;(3)485

. 【解析】

试题分析:(1)连接OB ,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;

(2)根据题意求出AB 的长,然后根据平行线分线段定理,可求解; (3)根据相似三角形的面积比等于相似比的平方可求解. 试题解析:(1)如解图,连接OB , ∵CD 为⊙O 的直径,

∴∠CBD =∠CBO +∠OBD =90°, ∵AB 是⊙O 的切线,

∴∠ABO =∠ABD +∠OBD =90°,

∴∠ABD =∠CBO . ∵OB 、OC 是⊙O 的半径, ∴OB =OC ,∴∠C =∠CBO . ∵OE ∥BD ,∴∠E =∠ABD , ∴∠E =∠C ;

(2)∵⊙O 的半径为3,AD =2, ∴AO =5,∴AB =4. ∵BD ∥OE , ∴=

, ∴

=,

∴BE =6,AE =6+4=10 (3)S △AOE ==15,然后根据相似三角形面积比等于相似比的平方可得

S △ABC =

S △AOE =

=

3.如图,在△ABC 中,∠C=90°,∠CAB=30°,AB=10,点D 在线段AB 上,AD=2.点P ,Q 以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .

(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示) (2)当线段FG 长度达到最大时,求m 的值; (3)在点P ,Q 整个运动过程中,

①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)

【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或104

33

与△ABC 的边相切.②点F 11365

72

【解析】

试题分析:(1)根据题意可得AP =2+m ,AQ =m ?2.

(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,

推出3

cos30cos302

FG EF PE EP =?=?=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.

(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .

当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )?(m ?2)=4,如图3中,设

O 切AC 于H .连接

OH .如图4中,设O 切BC 于N ,连接ON .

分别求解即可.

②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m ?2. 故答案为2+m ,m ?2. (2)如图1中,

在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,

3

cos30cos302

FG EF PE EP ∴=?=?=

, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553

AC BC EP AB ??=

== 3

tan30(2)EP AP m =?=+ 533

(2)23

m ∴

=+? ∴m =5.5

(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设

O 切AC 于H ,连接OH .

则有AD =2DH =2, ∴DH =DQ =1,即m =1.

当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )?(m ?2)=4, 如图3中,设

O 切AC 于H .连接OH .

则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设

O 切BC 于N ,连接ON .

在Rt △OBN 中, 43

sin60OB ON ==

43

10AO ∴=- 43

12AP ∴=-

43

2123

m ∴+=-

, 43

103

m ∴=-

, 综上所述,当m =1或4或43

103

-

时,O 与△ABC 的边相切。 ②如图5中,点F 的运动轨迹是F 1→F 2→B .

易知122353

,,53AF CF AC =

==,

122353113

53F F ∴=-

-=,

60,30FEP PEB ∠=∠=,

90FEB ∴∠=,

tan EF EP EBF EB EB

∴∠=

=为定值, ∴点F 的第二段的轨迹是线段2BF , 在2Rt BF C 中, 222222535

5(

)72

BF BC F C =+=+=,

∴点F 的运动路径的长为

115

37.62

+

4.如图1,四边形ABCD 中,

为它的对角线,E 为AB 边上一动点(点E 不与点

A 、

B 重合),EF ∥A

C 交BC 于点F ,FG ∥B

D 交DC 于点G ,GH ∥AC 交AD 于点H ,连接H

E .记四边形EFGH 的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD 为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD 中,若AB=4,BC=3,则它的“值”为 .

(1)等腰梯形(填“是”或“不是”)“四边形”;

(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.

【答案】“值”为10;(1)是;(2)最多有5个.

【解析】

试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可;

(1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;

(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断.

矩形ABCD中,若AB=4,BC=3,则它的“值”为10;

(1)等腰梯形是“四边形”;

(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有5个.

考点:动点问题的综合题

点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

5.已知:ABC内接于O,过点B作O的切线,交CA的延长线于点D,连接OB.

∠=∠;

(1)如图1,求证:DAB DBC

⊥于点M,连接AO,交BC于点N,

(2)如图2,过点D作DM AB

=;

BM AM AD

=+,求证:BN CN

(3)如图3,在(2)的条件下,点E 为

O 上一点,过点E 的切线交DB 的延长线于点

P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连

接CF ,若90DCF CDB ∠+∠=?,tan 2ECF ∠=,1

2

ON OQ =,610PQ OQ +=,求CF 的长.

【答案】(1)详见解析;(2)详见解析;(3)10=CF 【解析】 【分析】 (1)延长BO 交

O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后

根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;

(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;

(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据

610PQ OQ +=,即可分别求出a 和CF .

【详解】

解:(1)延长BO 交

O 于G ,连接CG

∵BD 是

O 的切线

∴∠OBD=90° ∴∠DBC +∠CBG=90° ∵BG 为直径 ∴∠BCG=90° ∴∠CBG +∠G=90°

∴∠DBC=∠G ∵四边形ABGC 为O 的内接四边形

∴∠DAB=∠G ∴∠DAB=∠DBC

(2)在MB 上截取一点H ,使AM=MH ,连接DH

∴DM 垂直平分AH ∴DH=AD ∴∠DHA=∠DAH ∵BM

AM AD =+,=+BM MH BH

∴AD=BH ∴DH=BH ∴∠HDB=∠HBD

∴∠DHA=∠HDB +∠HBD=2∠HBD 由(1)知∠DAB=∠DBC ∴∠DHA=∠DAB=∠DBC ∴∠DBC =2∠HBD ∵∠DBC =∠HBD +∠ABC ∴∠HBD=∠ABC ,∠DBC=2∠ABC ∴∠DAB=2∠ABC ∵∠DAB=∠ABC +∠C ∴∠ABC=∠C ∴AB=AC

∴点A 在BC 的垂直平分线上 ∵点O 也在BC 的垂直平分线上 ∴AO 垂直平分BC ∴BN CN =

(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,

∵90DCF CDB ∠+∠=? ∴∠DMC=90° ∵∠OBD=90° ∴∠DMC=∠OBD ∴CF ∥OB

∴∠BGE=∠ECF ,∠CFN=∠BON , ∴tan ∠BGE=tan ∠ECF=2 由(2)知OA 垂直平分BC ∴∠CNF=∠BNO=90°,BN=CN ∴△CFN ≌△BON

∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r ∵

1

2

ON OQ = ∴OQ=2a ∵CF ∥OB ∴△QGO ∽△QCF

∴=OG QO

CF QF

21

22==++OG a r a a a ∴OG=12

r

过点O 作OE ′⊥BG ,交PE 于E ′ ∴OE ′=OG ·tan ∠BGE=r=OE ∴点E ′与点E 重合 ∴∠EOG=90° ∴∠BOE=90°

∵PB 和PE 是圆O 的切线

∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r ∴四边形OBPE 为正方形

∴∠BOE=90°,PE=OB=r ∴∠BCE=

1

2

∠BOE==45° ∴△NQC 为等腰直角三角形 ∴NC=NQ=3a , ∴BC=2NC=6a

在Rt △CFN 中,

= ∵PQ OQ ⊥ ∴PQ ∥BC ∴∠PQE=∠BCG ∵PE ∥BG ∴∠PEQ=∠BGC ∴△PQE ∽△BCG ∴

=PQ PE

BC BG

即12

6=+PQ r

r a r

解得:PQ=4a

∵PQ OQ += ∴4a +

2a=解得:

=10 【点睛】

此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.

6.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =

1

3

,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.

【答案】(1)作图见解析;(2)PQ长最短是1.2;(3)四边形ADCF面积最大值是

81313

+

,最小值是81313

-

【解析】

【分析】

(1)连接线段OP交⊙C于A,点A即为所求;

(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短,根据勾股定理以及三角形的面积公式即可求出其最小值;

(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH 反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF 的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.【详解】

解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;

(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短.

理由:分别在线段AB,⊙C上任取点P',点Q',连接P',Q',CQ',如图2,

由于CP⊥AB,根据垂线段最短,CP≤CQ'+P'Q',

∴CO+PQ≤CQ'+P'Q',

又∵CQ=CQ',

∴PQ <P 'Q ',即PQ 最短. 在Rt △ABC 中2

2

2

2

8610AB AC BC =+=+=,11

22

ABC S AC BC AB CP ?=

?=?, ∴68

4.810

AC BC CP AB ??=

==, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2,

∴22226 4.8 3.6BP BC CP =

-=-=.

当P 在点B 左侧3.6米处时,PQ 长最短是1.2. (3)△ACF 的面积有最大和最小值. 如图3,取AB 的中点G ,连接FG ,DE . ∵∠EAF =90°,1tan 3

AEF ∠=, ∴

1

3

AF AE = ∵AB =6,AG =GB , ∴AC =GB =3, 又∵AD =9, ∴31

93AG AD ==, ∴

D

AF AE AG

A = ∵∠BAD =∠

B =∠EAF =90°, ∴∠FAG =∠EAD , ∴△FAG ~△EAD , ∴

1

3

FG AF DE AE ==, ∵DE =3, ∴FG =1,

∴点F 在以G 为圆心1为半径的圆上运动, 连接AC ,则△ACD 的面积=6

92722

CD AD ?

=?=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,

①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值,

在Rt △ABC 中,AC ===

∴sin

BC BAC AC ∠=

==

在Rt △ACH 中,sin 3GH AG BAC =?∠==

∴111F H GH GF =-=

-,

∴△ACF 面积有最小值是:

11127(1)22132

AC F H -?=?-=

∴四边形ADCF 面积最小值是:27812722

--+

=

; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形, ∴GH =MN ,

在Rt △GNP 中,∠NGF 2=90°, ∴PG >PN , 又∵F 2G =PG ,

∴F 2G +GH >PN +MN ,即F 2H >PM , ∴F 2H 是△ACF 的边AC 上的最大高, ∴面积有最大值,

∵221F H GH GF =+=

+,

∴△ACF 面积有最大值是

2111)22AC F H ?=?+=

∴四边形ADCF 面积最大值是27812722

+++

=

综上所述,四边形ADCF 面积最大值是812

+,最小值是812-

【点睛】

本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.

7.阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有

位将军曾向他请教一个问题﹣﹣如图1,从A点出发,到笔直的河岸l去饮马,然后再去B 地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.

解答问题:

(1)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;

(2)如图3,已知菱形ABCD的边长为6,∠DAB=60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P从点A出发,以每秒2个单位的速度,沿A→C 的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B 时,整个运动停止.

①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?

②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.

【答案】(1)PA+PC的最小值是32)①点M30)时,用时最少;②S与t之间的函数关系式是当3t3S=3﹣3t;当0<t3S =3t.当3t3S=﹣3t3

【解析】

【分析】

(1)延长AO交圆O于M,连接CM交OB于P,连接AC,AP+PC=PC+PM=CM最小;(2)①根据运动速度不同以及运动距离,得出当PB⊥AB时,点P能在最短的时间内到达点B处;

②根据三角形的面积公式求出从A到C时,s与t的关系式和从C3,0)以及到B 的解析式.

【详解】

解:(1)延长AO交圆O于M,连接CM交OB于P,连接AC,

则此时AP+PC=PC+PM=CM最小,∵AM是直径,∠AOC=60°,

∴∠ACM=90°,∠AMC=30°,

∴AC=1

2

AM=2,AM=4,由勾股定理得:CM=22

AM AC

=23.

答:PA+PC的最小值是23.

(2)①根据动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动,即为使点P能在最短的时间内到达点B处,

∴当PB⊥AB时,根据垂线段最短得出此时符合题意,

∵菱形ABCD,AB=6,∠DAB=60°,

∴∠BAO=30°,AB=AD,AC⊥BD,

∴△ABD是等边三角形,

∴BD=6,BO=3,由勾股定理得:AO=3

在Rt△APB中,AB=6,∠BAP=30°,BP=1

2

AP,由勾股定理得:AP=3,BP=3,

∴点M30)时,用时最少.②当0<t3AP=2t,

∵菱形ABCD,

∴∠OAB=30°,

∴OB=1

2

AB=3,

由勾股定理得:AO=CO=3,

∴S =

12AP ×BO =1

2

×2t ×3=3t ;

③当t AP =2t ﹣2t ,

∴S =

12AP ×BO =1

2

×(2t )×3=﹣3t .

当t

S =

12AB ×BP =1

2

﹣(t ﹣]=﹣3t

答:S 与t 之间的函数关系式是当<t 时,S =3t ;当0<t S =

3t .当t S =﹣3t 【点睛】

本题主要考查对含30度角的直角三角形,勾股定理,三角形的面积,轴对称-最短问题,圆周角定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.

8.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3). (1)①点B 到⊙O 的最大值,最小值;

②在A 1(5,0),A 2(0,10),A 3)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;

(2)在直线y =

x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.

【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;

(3)3≤m ≤1或≤m ≤﹣4

【解析】 【分析】

(1)①根据点与圆的位置关系求解即可;

②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线

:l y x b =

+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;

(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.

【详解】

(1)①点B 到⊙O 的最大值是314BO r +=+= 点B 到⊙O 的最小值是312BO r -=-=;

②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1

由(1)知,点B 到⊙O 的最大值是4,最小值是2

因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点” 故答案为1A ;

(2)∵点B 到⊙O 的最大值是4,最小值是2

428BQ ∴≤≤

如图1,过点O 作OD l ⊥

由直线:3

l y x b =

+的解析式可知:60,DCO OC b ∠=?=

由直角三角形的性质可得:1,2CD b OD === 则点D 到⊙O

1-

,即直线:l y b =+上的点到⊙O

的最小值为1-

要使直线:3

l y x b =

+上存在点A 与点B 是⊙O 的一对“倍点”

18-≤

解得:b ≤

b -≤≤; (3)由(2)知,428BQ ≤≤

依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:

①当20m -≤<时,顶点(1,1)N m +到⊙O

14<,此时顶点N 不符题意

②当01m ≤≤时,顶点(,1)M m 到⊙O

14<,此时顶点M 不符题意

③当1m ,如图2,正方形MNST 处于1号正方形位置时 则顶点S 和T 的坐标为(1,0),(,0)S m T m +

此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O

的最小值为

1

1

则14

18m +≥?≤

,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时

则顶点S 和T 的坐标为(1,2),(,2)S m T m +

此时,点M 到⊙O 的最小值为2

21

1m +-,最大值为2211m ++;点S 到⊙O 的最小值为22(1)21m ++-,最大值为22(1)21m +++

则2222

114(1)218

m m ?++≥??++-≤??,解得:22771m ≤≤-或77122m --≤≤-(舍去)

故当1m 时,m 的取值范围为3771m ≤≤-

④当2m <-时,正方形MNST 处于3号正方形位置时 则顶点S 和T 的坐标为(1,0),(,0)S m T m +

此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O 的最小值为

2211m +-,最大值为2211m ++

则22

4118

m m -≥??+-≤??,解得:454m -≤≤- 当正方形MNST 处于4号正方形位置时 则顶点S 和T 的坐标为(1,2),(,2)S m T m +

此时,点N 到⊙O 的最小值为22(1)11m ++-,最大值为22(1)11m +++;点T 到⊙O 的最小值为2221m +-,最大值为2221m ++

则2222

(1)114218

m m ?+++≥??+-≤??,解得:77122m -≤≤--或22177m -≤≤(舍去)

故当2m <-时,m 的取值范围为774m -≤≤- 综上,m 的取值范围为3771m ≤≤

-或774m -≤≤-.

【点睛】

本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.

9.如图,平行四边形ABCD中,AB=5,BC=8,cosB=4

5

,点E是BC边上的动点,以C为

圆心,CE长为半径作圆C,交AC于F,连接AE,EF.

(1)求AC的长;

(2)当AE与圆C相切时,求弦EF的长;

(3)圆C与线段AD没有公共点时,确定半径CE的取值范围.

【答案】(1)AC=5;(2)

410

5

EF=;(3)03

CE

≤<或58

CE

<≤.

【解析】【分析】

(1)过A作AG⊥BC于点G,由cos

4

5

B=,得到BG=4,AG=3,然后由勾股定理即可求出

AC的长度;

(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF的长度;

(3)根据题意,可分情况进行讨论:①当圆C与AD相离时;②当CE>CA时;分别求出CE的取值范围,即可得到答案.

【详解】

解:(1)过A作AG⊥BC于点G,如图:

在Rt△ABG中,AB=5,

4 cos

5

BG

B

AB

==,

∴BG=4,

∴AG=3,

∴844

CG=-=,

∴点G是BC的中点,

在Rt△ACG中,22

345

AC+=;

相关主题
文本预览
相关文档 最新文档