当前位置:文档之家› 基站天线选型

基站天线选型

基站天线选型
基站天线选型

基站天线选型

一.天线概念

在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。

在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。

基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。

按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。

按外形来区分主要有:鞭状天线、平板天线、帽形天线等。

在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。

另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。

半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。1.天线增益

天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有增加所辐射信号的能量,它只是通过天线振子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指

标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:dBi=dBd+2.17

dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。

dBd定义为实际的方向性天线(包括全向天线)相对于半波振子天线能量集中的相对能力,“d”即表示偶极子——Dipole。

两种增益单位的关系见图1:

图1 dBi与dBd的关系

天线增益不但与振子单元数量有关,还与水平半功率角和垂直半功率角有关。

2.天线方向图

天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。

天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。

天线具有方向性本质上是通过振子的排列以及各振子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某

些方向上能量被减弱,即形成一个个波瓣(或波束)和零点。能量最强的波瓣叫主瓣,上下次强的波瓣叫第一旁瓣,依次类推。对于定向天线,还存在后瓣。图2是一定向天线的水平及垂直方向图。

图2 定向天线水平与垂直方向图

波束宽度也是天线的重要指标之一,它包括水平半功率角与垂直半功率角。分别定义为在水平方向或垂直方向相对于最大辐射方向功率下降一半(3dB)的两点之间的波束宽度。常用的基站天线水平半功率角有360°、210°、120°、90°、65°、60°、45°、 33°等,垂直半功率角有6.5°、13°、25°、78°等。

前后抑制比是指天线在主瓣方向与后瓣方向信号辐射强度之比,天线的后向180°±30°以内的副瓣电平与最大波束之差,用正值表示。一般天线的前后比在18~45dB之间。对于密集市区要积极采用前后比抑制大的天线。

零点填充,基站天线垂直面内采用赋形波束设计时,为了使业务区内的辐射电平更均匀,下副瓣第一零点需要填充,不能有明显的零深。高增益天线由于其垂直半功率角较窄,尤其需要采用零点填充技术来有效改善近处覆盖。通常零深相对于主波束大于-26dB即表示天线有零点填充,有的供应商采用百分比来表示,如某天线零点填充为10%,这两种表示方法的关系为:

Y (dB)=20lg(X%/100%)

如:零点填充10%,即X=10;用dB表示:Y=20lg(10%/100%)=-20dB

上副瓣抑制,对于小区制蜂窝系统,为了提高频率复用效率,减少对邻区的同频干扰,基站天线波束赋形时应尽可能降低那些瞄准干扰区的副瓣,提高D/U值(有用和无用信号强度之比),上第一副瓣电平应小于-18dB,对于大区制基站天线无这一要求。

3.极化方式

极化是描述电磁波场强矢量空间指向的一个辐射特性,当没有特别说明时,通常以电场矢量的空间指向作为电磁波的极化方向,而且是指在该天线的最大辐射方向上的电场矢量来说的。

电场矢量在空间的取向在任何时间都保持不变的电磁波叫直线极化波,有时以地面作参考,将电场矢量方向与地面平行的波叫水平极化波,与地面垂直的波叫垂直极化波。电场矢量在空间的取向有的时候并不固定,电场失量端点描绘的轨迹是圆,称圆极化波;若轨迹是椭圆,称之为椭圆极化波,椭圆极化波和圆极化波都有旋相性。

不同频段的电磁波适合采用不同的极化方式进行传播,移动通信系统通常采用垂直极化,而广播系统通常采用水平极化,椭圆极化通常用于卫星通信。

天线的极化方式有单极化天线、双极化天线两种,其本质都是线极化方式。双极化天线利用极化分集来减少移动通信系统中多径衰落的影响,提高基站接收信号质量的,通常有0°/90°、45°/-45°两种。对于CDMA频段,水平极化波的传播效

果不如垂直极化,因此目前很少采用0°/90°的交叉极化天线。

4.下倾(Downtilt)

天线下倾是常用的一种增强主服务区信号电平,减小对其他小区干扰的一种重要手段。通常天线的下倾方式有机械下倾、电子下倾两种方式。机械下倾是通过调节天线支架将天线压低到相应位置来设置下倾角;而电子下倾是通过改变天线振子的相位来控制下倾角。当然在采用电子下倾角的同时可以结合机械下倾一起进行。

电子下倾天线一般倾角固定,即我们通常所说的预置下倾。最新的技术是倾角可调的电子下倾天线,为区分前面的电子下倾天线,这种天线我们通常称作电调天线。

5.电压驻波比(VSWR)

VSWR在移动通信蜂窝系统的基站天线中,其最大值应小于或等于1.5:1。若Z A 表示天线的输入阻抗,Z0为天线的标称特性阻抗,则反射系数为

|Г|=|Z A-Z0|

|Z A+Z0|,VSWR=1+|Г|

1-|Г|,其中Z0为50欧姆。也可以用回波损耗表示端口

的匹配特性,R.L.(dB)=20log|Г|,VSWR=1.5:1时,R.L.= 13.98dB。

天线输入阻抗与特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成驻波,其相邻电压最大值和最小值之比就是电压驻波比。电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。

6.端口隔离度

对于多端口天线,如双极化天线、双频段双极化天线,收发共用时端口之间的隔离度应大于30dB。

7.功率容量

指平均功率容量,天线包括匹配、平衡、移相等其它耦合装置,其所承受的功率是有限的,考虑到基站天线的实际最大输入功率(单载波功率为20W),若天线的一个端口最多输入六个载波,则天线的输入功率为120W,因此天线的单端口功率容量

应大于200W(环境温度为65℃时)。

8.天线输入接口

为了改善无源交调及射频连接的可靠性,基站天线的输入接口采用7/16DIN-Female,在天线使用前,端口上应有保护盖,以免生成氧化物或进入杂质。

9.无源互调(PIM)

所谓无源互调特性是指接头,馈线,天线,滤波器等无源部件工作在多个载频的大功率信号条件下由于部件本身存在非线性而引起的互调效应。通常都认为无源部件是线性的,但是在大功率条件下无源部件都不同程度地存在一定的非线性,这种非线性主要是由以下因素引起的:不同材料的金属的接触;相同材料的接触表面不光滑;连接处不紧密;存在磁性物质等。

互调产物的存在会对通信系统产生干扰,特别是落在接收带内的互调产物将对系统的接收性能产生严重影响,因此系统中对接头,电缆,天线等无源部件的互调特性都有严格的要求。我们选用的厂家的接头的无源互调指标可达到-150dBc,电缆的无源互调指标可达到-170dBc,天线的无源互调指标可达到-150dBc。

10.天线尺寸和重量

为了便于天线储存、运输、安装及安全,在满足各项电气指标情况下,天线的外形尺寸应尽可能小,重量尽可能轻。

目前运营商对天线尺寸、重量、外观上的要求越来越高,因此在选择天线时,不但要关心其技术性能指标,还应关注这些非技术因素。一般市区基站天线应该选择重量轻、尺寸小、外形美观的天线,郊区、乡镇天线一般无此要求。

11.风载荷

基站天线通常安装在高楼及铁塔上,尤其在沿海地区,常年风速较大,要求天线在36m/s 时正常工作,在55m/s 时不破坏。

天线本身通常能够承受强风,在风力较强的地区,天线通常是由于铁塔、抱杆等原因而遭到损坏。因此在这些地区,应选择表面积小的天线。

12.工作温度和湿度

基站天线应在环境温度-40℃~+65℃范围内正常工作。基站天线应在环境相对湿度0~100%范围内正常工作。

13.雷电防护

基站天线所有射频输入端口均要求直流直接接地。

14.三防能力

基站天线必须具备三防能力,即:防潮、防盐雾、防霉菌。对于全向天线满足天线倒置安装要求,同时满足三防要求。

二.选型中的天线特性考虑

1.天线波束宽度与增益之间的关系

天线是一种能量集中的装置,在某个方向辐射的增强意味着其他方向辐射的减弱。通常可以通过水平面波瓣宽度的缩减来增强某个方向的辐射强度以提高天线增益。在天线增益一定的情况下,天线的水平半功率角与垂直半功率角成反比,其关系可以表示为:

Ga=32600/(?*?)

其中,Ga为天线增益,单位:dBi;

?为垂直半功率角,单位:度;

?为水平半功率角,单位:度。

根据上述公式,当我们已知某一天线的增益和水平半功率角时,可以估算出其垂直半功率角。

例如:某一全向天线,增益11dBi,水平半功率角360 °,其垂直半功率角为:?=32600/11/360=8.23

由于设计和制造工艺上的差异,实际全向天线的垂直半功率角往往比上述计算结果要小。两者差别越小,说明天线设计得越好。

天线增益、垂直半功率角、水平半功率角三者的关系如图3所示:

图3 天线增益与半功率角的关系

由此可知,当天线增益较小时,天线的垂直半功率角和水平半功率角通常较大;而当天线增益较高时,天线的垂直半功率角和水平半功率角通常较小。

另外,天线增益取决于振子的数量。振子越多,增益越高,天线的孔径(天线有效接收面积)也越大。对于全向天线,增益增加3dB,天线长度约增加一倍,因此全向天线通常增益不会超过11dBi,此时天线长度约3米。

2.极化方式的对比

垂直单极化天线与双极化天线的比较:从发射的角度来看,由于垂直于地面的手机更容易与垂直极化信号匹配,因此垂直单极化天线会比其他非垂直极化天线的覆盖效果要好一些。特别是在开阔的山区和平原农村就更明显。实验证明,在开阔地区的山区或平原农村,这种天线的覆盖效果比双极化(±45°)天线更好。但在市区由于建筑物林立,建筑物内外的金属体很容易使极化发生旋转,因此无论是单极化还是±45°双极化天线在覆盖能力上没有多大区别。

从接收的角度来看,由于单极化天线要用两根天线才能实现分集接收,而双极化天线只要一根就可以实现分集接收,因此单极化天线需要更多的安装空间,且在以后的维护工作方面要比双极化天线要大。至于空间分集与极化分集增益差别不大,一般空间分集增益在3.5dB左右。从天线尺寸方面来说由于双极化天线中不同极化方向的振子即使交叠在一起也可保证有足够的隔离度,因此双极化天线的尺寸不会比单极化天线更大。

45°/-45°双极化天线与0°/90°双极化天线的比较: 45°/-45°方式下的所有天线子系统都可用作发射信号。而0°/90°双极化天线一般只采用垂直极化振子发射信号。经验表明若用水平极化天线发射信号要比垂直极化天线发射信号低得多。在理想的自由空间中(假定手机接收天线是垂直极化),采用垂直极化振子进行发射时要比采用45°/-45°发射时的覆盖能力要强3dB左右。但在实际应用环境中,考虑到多径传播的存在,在接收点,各种多径信号经统计平均,上述差别基本消失,各种实验也证明了此结论的正确。但在空旷平坦的平原,上述差异或许还存在,但具体是多少,还有待进一步实验证明。综上所述,在实际应用中,两种双极化方式的差别不大,目前市场上±45°正交极化天线比较常见。

3.天线增益的选择

基站全向天线增益范围一般在:2dBi~14dBi。规格有:2dBi、9dBi、11dBi、12dBi、14dBi等。

而定向天线的增益范围一般在:3dBi~22dBi。规格有: 3dBi、8.5dBi、10dBi、13dBi、15dBi、15.5dBi、17dBi、18dBi、21dBi、22dBi等。

低增益天线,天线增益小覆盖范围及干扰可以得到较好的控制。通常与微基站、微蜂窝配合使用,主要用于室内覆盖及室外的补点(补盲),如大厦的背后,新的生活小区,新的专业市场等。这种天线的尺寸较小,便于安装,如在隧道口内侧可以采用八木天线等。这种天线价格较低廉。

中等增益天线,在城区适合使用中等增益,一方面这种增益天线的体积和尺寸比较适合城区使用;另一方面,在较短的覆盖半径内由于垂直面波束宽度较大使信号更加均匀。中等增益天线在相邻扇区方向比高增益天线覆盖的信号强度更加合理。在建设初期,一般基站覆盖半径较大(1km以上),可以选择采用增益较高的定向天

线。随着网络的建设,基站密度变高,覆盖半径变小,此时应该选择增益较低的定向天线,同时考虑预置下倾或电调下倾天线。

高增益天线,在进行广覆盖时通常采用此种天线。用于高速公路、铁路、隧道、狭长地形广覆盖。这种天线的波瓣宽度较窄,零点较深,因此天线挂高较高时要注意选用采用了零点填充或预置电子下倾的天线来避免覆盖近端的零深效应。另外这种天线由于振子数量较多故而体积较大,安装时应注意可安装性,如有的隧道口可能就不宜安装这种天线。另外要注意风载荷。在沿海风大的地区更要注意。这种天线的成本相对也较高。

4.机械下倾与电子下倾的比较

天线波束下倾通常有三种方法:机械下倾、电子下倾(也叫预置倾角)、电调天线(也叫可调电子下倾)。电调天线在调整天线下倾角度过程中,天线本身不动,是通过电信号调整天线振子的相位,改变合成分量场强强度,使天线辐射能量偏离原来的零度方向。天线每个方向的场强强度同时增大或减小,从而保证了在改变倾角后,天线方向图形状变化不大,水平半功率宽度与下倾角的大小无关。而机械天线在调整天线下倾角度时,天线本身要动,需要通过调整天线背面支架的位置,改变天线的倾角。倾角较大时,虽然天线主瓣方向的覆盖距离明显变化,但与天线主瓣垂直的方向的信号没有几乎改变,所以天线方向图严重变形,水平半功率角随着下倾角的增大而增大。预置倾角天线与电调天线原理基本相似,只是其倾角是固定不能调整的(但仍可以通过机械下倾方法调整)。

电调天线的优点是:在下倾角度很大时,天线主瓣方向覆盖距离明显缩短,天线方向图形状变化不大,能够降低呼损,减小干扰。而机械下倾会使方向图变形,倾角越大变形越严重,干扰不容易得到控制。图3-4给出这两种不同的调整方式下天线水平方向图的变化情况。当然这与天线垂直半功率角有关。

图4 不同下倾角时水平方向图的变化情况

另外电调下倾与机械下倾在对后瓣的影响方面也不同,电调下倾会使得后瓣的影响得到进一步的控制,而机械下调可能会使后瓣的影响扩大。如图3-5所示:

图5 不同的下倾方式对后瓣的不同影响

机械下倾较大时,该天线辐射信号会通过后瓣传播到背面方向的高层建筑物内,从而导致意外的干扰。

除此以外,在进行网络优化、管理和维护时,若需要调整天线下倾角度,使用电调天线时整个系统不需要关机,这样就可利用移动通信专用测试设备,监测天线倾角调整,保证天线下倾角度为最佳值。电调天线调整倾角的步进度数为0.1癬,而机械天线调整倾角的步进度数为1

癬,因此电调天线的精度高,效果好。电调天

线安装好后,在调整天线倾角时,维护人员不必爬到天线安放处,可以在地面调整天线下倾角度,还可以对高山上、边远地区的基站天线实行远程监控调整。而调整机械天线下倾角度时,要关闭该小区,不能在调整天线倾角的同时进行监测,机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差。另外机械天线调整天线下倾角度非常麻烦,一般需要维护人员在夜间爬到天线安放处调整,而且有些天线安装后,再进行调整非常困难,如山顶、特殊楼房处。另外,一般电调天线的三阶互调指标也优于机械下倾天线。而三阶互调指标对消除邻频干扰和杂散干扰非常重要,特别在基站站距小、载频多的高话务密度区,需要三阶互调指标达到-150 dBc左右,否则就会产生较大的干扰。

电调天线的缺点是价格相对昂贵。在一些城市网络频率计划较为紧张时建议推广采用电调天线。预制下倾天线技术成熟可靠,价格也比较合理,建议在一些频繁调整及对覆盖控制要求高的场合优先选用预置下倾天线。但要根据覆盖需要选择合适倾角大小的预制下倾天线,天线倾角详细计算方法请参见《天线倾角规划调整》。

5.预置下倾与零点填充的作用比较

预置下倾与零点填充都可以用来解决由于天线零点所带来的塔下黑问题。但二者又有所区别,预置下倾的采用会缩小主瓣的覆盖范围,但在下倾角普遍较大的场合可以增大天线下倾角的可调范围。而零点填充作为一种赋形技术,可以获得较好的方向图,此时上副瓣一般得到抑制,因此这种天线不会对别的方面造成什么影响,当然它不能增加天线下倾角的可调范围。某种天线可能同时具备这两种特性,也可能只具备其中的一种,也可以是一种都没有。这在规划阶段天线选型时要结合具体的覆盖要求进行选择。

很多场合下天线的高度不是太高(超过50米),即使不采用预置下倾及零点填充技术,天线的零深效应也是不明显的。因此这两种技术在广覆盖时用得更多,而这时覆盖范围的增加是更为重要的,天线下倾角的调整范围是次要的,因此建议多采用零点填充天线。而在市区等需要更大下倾角调整范围的场合,天线的零深效应又不明显,可以不选用零点填充天线,而是着眼于较大下倾角调整范围建议选用预置下倾的天线。

6.倾角调整

对于全向天线来说,不可以调整下倾角,但可选择预置倾角天线。

对定向天线来说,在不同的应用场合,对下倾角的调整范围有不同的要求。对覆盖范围控制要求较严的市区要求下倾角的调整范围较大,一般在X~18°,X可以为0°,也可以是一固定的预置电下倾如3°。而有些机械下倾天线下倾角最大只能打到12°,这对干扰控制是不利的,特别是在紧密复用的场合下。因此要根据规划区域的实际情况来选择合理的下倾范围。

而在干扰问题不是主要矛盾的场合,对下倾角的调整范围要求就很小,如在进行广覆盖时,有时就根本不需要考虑下倾角。

高增益赋形全向天线的最大增益为12dBi,该类型天线的零点填充水平为25%(即第一零点的深度为-12dB)、3°固定电下倾。这种天线用于山区、丘陵覆盖比较理想,可以有效解决由于天线挂高太高而出现的塔下黑现象。由于赋形天线只对天线下方第一个零点进行填充,因此如果天线挂高过高,该天线也将无能为力。因此建议需要有效覆盖的建筑物距离天线的径向距离R与天线挂高H满足以下关系:H<R×tg18°

表1 径向距离与天线挂高的关系

中等增益的赋形和普通全向天线更适合用于周遍环山(山比基站天线高出较多,天线对山梁的仰角大于4°)的不太发达的乡镇,由于其垂直面的波束较宽,因此指向山上的信号较强。但要注意避免时间色散的影响。

7.波束宽窄的选择

波束宽窄的选择包括水平波瓣与垂直半功率角的选择,而这两者又是互相关联的。选择的主要依据是具体的覆盖要求及干扰的控制。在市区水平半功率角不宜大

于65°,主要着眼点是从干扰控制出发的,90°及90°以上的天线由于其覆盖范围过大而不利于频率复用及干扰的控制。而在郊区频率计划一般较为宽裕,这时干扰不是主要问题,可以选择水平半功率角为90°以上的天线以增强对周边地区的覆盖。在天线增益及水平半功率角选定后,垂直半功率角一般来说也是确定的。但有时也会从垂直方向的覆盖要求进行考虑,如基站建在建在山上,而要覆盖的地区在山下的地方,就宜选用垂直波束很宽的天线进行覆盖,垂直波束宽度在20 °左右的天线。垂直波瓣越窄,一般意味着天线增益越高,定向性越好,但同时天线的零深效应会越明显,注意采取预置下倾或零点填充技术来解决零点问题。垂直波瓣越窄,也意味着天线越长,重量越重,这时就要考虑可安装性问题,同时价格也会越贵。

一般双极化天线水平面内的最大波束宽度不大于90°。

8.地形匹配波束的选用

在有些应用场合下基站周围需要覆盖的区域与不需要覆盖的区域可以很明显地区分开来,那么在这些地方可以选用与该处地形匹配的波束进行覆盖。天线主波束水平方向图形状的选择主要是从基站周边的覆盖要求来定的,结合基站的位置,周边覆盖地区的分布及形状来选定,即天线波束形状与需覆盖的地形相匹配。常见地形匹配波束的有八字形、心形等,这些天线都是由全向天线改造而成。

八字形全向变形天线是由普通全向天线与对称两根辅助反射金属管组成,反射金属管的作用是通过耦合改变全向天线水平面的方向图,水平方向图呈“∞”形。这种天线对于一些纯公路覆盖很重要。纯公路覆盖是指无人居住的山区、沙漠的重要等级公路覆盖,话务量少,为减少基站数量,降低建设成本,通常采用O2以下站型,因此覆盖距离应尽量远。象这种无线覆盖区域,采用地形匹配天线是最理想的。而八字形的变形全向天线可以增加需要覆盖方向的增益(在最大方向上增益约增加3dB),减少公路两旁无用户区的覆盖能量。这种天线的站址选择很重要,公路的延伸方向应与天线方向图匹配。这种天线实际上就是对于纯粹的公路覆盖或其它无建筑物覆盖可以不考虑塔下黑,因为信号进入车内的衰减比进入建筑物内的衰减小得多。

在农村地区,许多小村镇建在公路的一侧,在做公路覆盖时可以兼顾这些村镇的覆盖,采用变形全向天线(心形方向图),在公路和村镇方向的天线增益可以提高

到13~15dBi,可以使村镇和公路覆盖更有效。

9.前后比的选择

一般天线的前后比在22dB左右,但有时在规划及优化时这一前后比往往不能满足要求,而需要具有更高前后比的天线。在频率紧密复用的场合下,后瓣过大容易产生邻频(甚至同频)干扰,从而影响网络质量。前后比大于35dB天线为高前后比天线,增益、波束宽度的规格与普通定向天线一样。高前后比天线采用对数周期偶极子单元组阵而成,因此从外形上看,这种天线比较厚,但比较窄。两副高前后比天线的价格比一副相同增益和半功率角的双极化天线高出35%。但为了提高网络质量,还是有必要推荐使用这种天线。

而在某些应用条件下,天线的前后比不宜太高,如在进行高速公路覆盖时,基本上都是快速移动用户,基站采用两小区进行覆盖,若天线的前后比太低的话由于两小区的交叠深度很小会不利于切换的正常进行。

10.天线尺寸的选用

天线尺寸的选用主要是从可安装的角度来考虑,在某些安装条件受限的区域,如在进行铁路隧道覆盖规划时,这条因素是很重要的,甚至成为天线可选与否的决定因素。

首先天线的尺寸与各个厂家的工艺水平有关,由此造成在其他各种指标都相同的条件下不同厂家的天线尺寸不同的情况。

其次天线的尺寸主要与天线的增益有关,增益越大的天线所需的振子数量越多,一般就表现在天线的长度的增加上。

11.天线阻抗

合路器的输入阻抗为50 欧姆,要减小天线驻波比,天线的特性阻抗要与其匹配,即等于50 欧姆。一般天线的特性阻抗均满足此要求,但在选择新天线时需要关注该项指标。

三.不同应用环境下的天线选型

在移动通信网络中,天线的选择是一个很重要的部分,应根据网络的覆盖要求、话务量、干扰和网络服务质量等实际情况来选择天线。天线选择得当,可以改善覆盖效果,减少干扰,改善服务质量。根据地形或话务量的分布可以把天线使用的环境分为8 种类型:市区(高楼多,话务大)、郊区(楼房较矮,开阔)、农村(话务少)、公路(带状覆盖)、山区(或丘陵,用户稀疏)、近海(覆盖极远,用户少)、隧道、大楼室内。

1.市区基站天线选择

应用环境特点:基站分布较密,要求单基站覆盖范围小,希望尽量减少越区覆盖的现象,减少基站之间的干扰,提高频率复用率。

1.1.天线选用原则

(1) 极化方式选择:由于市区基站站址选择困难,天线安装空间受限,建议选用双极化天线。

(2) 方向图的选择:在市区主要考虑提高频率复用度,因此一般选用定向天线。

(3) 半功率波束宽度的选择:为了能更好地控制小区的覆盖范围来抑制干扰,市区天线水平半功率波束宽度选60~65°。在天线增益及水平半功率角度选定后,垂直半功率角也就定了。

(4) 天线增益的选择:由于市区基站一般不要求大范围的覆盖距离,因此建议选用中等增益的天线。同时天线的体积和重量可以变小,有利于安装和降低成本。根据目前天线型号,建议市区天线增益视基站疏密程度及城区建筑物结构等选用15~18dBi增益的天线。若市区内用作补盲的微蜂窝天线增益可选择更低的天线如10~12dBi的天线。

(5) 预置下倾角及零点填充的选择:市区天线一般都要设置一定的下倾角,因此为增大以后的下倾角调整范围,可以选择具有固定电下倾角的天线(建议选3 °~6°)或电调天线。由于市区基站覆盖距离较小,零点填充特性可以不作要求。

(6) 下倾方式选择:由于市区的天线倾角调整相对频繁,且有的天线需要设置较大的倾角,而机械下倾不利于干扰控制,所以在可能的情况下建议选用预置下倾天线。条件成熟时可以选择电调天线。

(7) 下倾角调整范围选择:要求天线支架的机械调节范围在0~15°。

推荐:半功率波束宽度65°/中等增益/带固定电下倾角或可调电下倾 + 机械下倾的双极化天线。

2.农村基站天线选择

应用环境特点:基站分布稀疏,话务量较小,覆盖要求广。有的地方周围只有一个基站,覆盖成为最为关注的对象,这时应结合基站周围需覆盖的区域来考虑天线的选型。一般情况下是希望在需要覆盖的地方能通过天线选型来得到更好的覆盖。

2.1.天线选用原则

(1) 极化方式选择:从发射信号的角度,在较为空旷地方采用垂直极化天线比采用其他极化天线效果更好。从接收的角度,在空旷的地方由于信号的反射较少,信号的极化方向改变不大,采用双极化天线进行极化分集接收时,分集增益不如空间分集。所以建议在农村建议选用垂直单极化天线。

(2) 方向图选择:如果要求基站覆盖周围的区域,且没有明显的方向性,基站周围话务分布比较分散,此时建议采用全向基站覆盖。需要特别指出的是:这里的广覆盖并不是指覆盖距离远,而是指覆盖的面积大而且没有明显的方向性。同时需要注意的是:全向基站由于增益小,覆盖距离不如定向基站远。同时全向天线在安装时要注意塔体对覆盖的影响,并且天线一定要与地平面保持垂直。如果运营商对基站的覆盖距离有更远的覆盖要求,则需要用定向天线来实现。一般情况下,应当采用水平面半波束宽度为90 °、120 °的定向天线;在某些基站周围需要覆盖的区域呈现很明显的形状,可选择地形匹配波束天线进行覆盖。

(3) 天线增益的选择:视覆盖要求选择天线增益,建议在农村地区选择较高增益(16~18dBi)的定向天线或11dBi的全向天线。

(4) 预置下倾角及零点填充的选择:由于预置下倾角会影响到基站的覆盖能力,所以在农村这种以覆盖为主的地方建议选用不带预置下倾角的天线。但天线挂高在50米以上且近端有覆盖要求时,可以优先选用零点填充(大于15%)的天线来避免塔下黑问题。

(5) 下倾方式的选择:在农村地区对天线的下倾调整不多,其下倾角的调整范

围及特性要求不高,建议只采用机械下倾方式。

(6) 对于定向站型推荐选择:半功率波束宽度90°/中、高增益/单极化空间分集,或90°双极化天线,主要采用机械下倾角/零点填充大于15% 。

(7) 对于全向站型推荐:零点填充的天线;若覆盖距离不要求很远且天线很高,可以采用电下倾(3°或5°)。天线相对主要覆盖区挂高不大于50m时,可以使用普通天线。

另外,对全向站还可以考虑双发天线配置以减小塔体对覆盖的影响。此时需要通过功分器把发射信号分配到两个天线上。

3.郊区基站天线选择

应用环境特点:郊区的应用环境介于城区环境与农村环境之间,有的地方可能更接近城区,基站数量不少,频率复用较为紧密,这时覆盖与干扰控制在天线选型时都要考虑。而有的地方可能更接近农村地方,覆盖成为重要因素。因此在天线选型方面可以视实际情况参考城区及农村的天线选型原则。

在郊区,情况差别比较大。可以根据需要的覆盖面积来估计大概需要的天线类型。

3.1.天线选用原则

(1) 根据情况选择水平面半功率波束宽度为65 °的天线或选择半功率波束宽度为90 °的天线。当周围的基站比较少时,应该优先采用水平面半功率波束宽度为90 °的天线。若周围基站分布很密,则其天线选择原则参考城区基站的天线选择。若周围基站较很少,且将来扩容潜力不大,则可参考农村的天线选择原则。

(2) 考虑到将来的平滑升级,所以一般不建议采用全向站型。

(3) 是否采用预置下倾角应根据具体情况来定。即使采用下倾角,一般下倾角也比较小。

推荐选择:半功率波束宽度90°/中、高增益的天线,可以用电调下倾角,也可以是机械下倾角。

4.公路覆盖基站天线选择

应用环境特点:该应用环境下话务量低、用户高速移动、此时重点解决的是覆盖问题。而公路覆盖与大中城市或平原农村的覆盖有着较大区别,一般来说它要实现的是带状覆盖,故公路的覆盖多采用双向小区;在穿过城镇,旅游点的地区也综合采用三向、全向小区;再就是强调广覆盖,要结合站址及站型的选择来决定采用的天线类型。不同的公路环境差别很大,一般来说有较为平直的公路,如高速公路、铁路、国道、省道等等,推荐在公路旁建站,采用S1/1/1、或S1/1站型,配以高增益定向天线实现覆盖。有蜿蜒起伏的公路如盘山公路、县级自建的山区公路等等。得结合在公路附近的乡村覆盖,选择高处建站。站型得灵活配置,可能会用到全向加定向等特殊站型。不同的路段环境差别也很大,如高速公路与铁路所经过的地形往往复杂多变,有平原、高山、树林、隧道等,还要穿过乡村和城镇,所以对其无线网络的规划及天线选型时一定要在充分勘查的基础上具体对待各段公路,灵活规划。

在初始规划进行天线选型时,应尽量选择覆盖距离广的高增益天线进行广覆盖,在覆盖不到的盲区路段可选用增益较低的天线进行补盲。

4.1.天线选型原则

(1) 方向图的选择:在以覆盖铁路、公路沿线为目标的基站,可以采用窄波束高增益的定向天线。可根据布站点的道路局部地形起伏和拐弯等因素来灵活选择天线形式。如果覆盖目标为公路及周围零星分布的村庄,可以考虑采用全向天线或变形全向天线,如八字形或心形天线。纯公路覆盖时根据公路方向选择合适站址采用高增益(14dBi)8字型天线(O2/O1),或考虑S0.5/0.5 的配置,最好具有零点填充;对于高速公路一侧有小村镇,用户不多时,可以采用210 °~220°变形全向天线。

(2) 极化方式选择:从发射信号的角度,在较为空旷地方采用垂直极化天线比采用其他极化天线效果更好。从接收的角度,在空旷的地方由于信号的反射较少,信号的极化方向改变不大,采用双极化天线进行极化分集接收时,分集增益不如空间分集。所以建议在进行公路覆盖时选用垂直单极化天线。

(3) 天线增益的选择,若不是用来补盲,定向天线增益可选17dBi~22dBi的天线。全向天线的增益选择11dBi。若是用来补盲,则可根据需要选择增益较低的天线。

(4) 预置下倾角及零点填充的选择:由于预置下倾角会影响到基站的覆盖能力,所以在公路这种以覆盖为主的地方建议选用不带预置下倾角的天线。在50米以上且近端有覆盖要求时,可以优先选用零点填充(大于15%)的天线来解决塔下黑问题。

(5) 下倾方式的选择:公路覆盖一般不打下倾。对天线的下倾调整不多,其下倾角的调整范围及特性要求不高,建议选用价格较便宜的机械下倾天线。

(6) 前后比:由于公路覆盖大多数用户都是快速移动用户,所以为保证切换的正常进行,定向天线的前后比不宜太高,否则可能会由于两定向小区交叠深度太小而导致切换不及时造成掉话的情况。

对于高速公路和铁路覆盖,建议优先选择“8”字形天线或S0.5/0.5 配置,以减少高速移动用户接近/离开基站附近时的切换。

5.山区覆盖基站天线选择

应用环境特点:在偏远的丘陵山区,山体阻挡严重,电波的传播衰落较大,覆盖难度大。通常为广覆盖,在基站很广的覆盖半径内分布零散用户,话务量较小。基站或建在山顶上、山腰间、山脚下、或山区里的合适位置。需要区分不同的用户分布、地形特点来进行基站选址、选型、选择天线。以下这几种情况比较常见的:盆地型山区建站、高山上建站、半山腰建站、普通山区建站等。在盆地中心选址建站,如果盆地范围不大,推荐采用全向O2站型;如果盆地范围较大,或需要兼顾到某条出入盆地的交通要道,推荐采用S1/1/1或O+S的站型。有时受制于微波传输的因素,必须在某些很高的山上建站,此时天线离用户分布面往往有150米以上的落差。如果覆盖的目标区域就在山脚下附近,此时需配以带电子下倾角的全向天线,使信号波形向下,避免出现“塔下黑”的现象。在半山腰建站,基站天线的挂高低于山顶,山的背面无法覆盖。因此只需用定向小区,用半功率角较大的天线,覆盖山的正面。普通地形起伏不大的山区,推荐采用S1/1/1站型,尽量增加信号强度,给信号衰减留下更多的余量。

5.1.天线选择原则

(1) 方向图的选择:视基站的位置、站型及周边覆盖需求来决定方向图的选择,可以选择全向天线,也可以选择定向天线。对于建在山上的基站,若需要覆盖的地

天线的分类与选择

第二讲天线的分类与选择 移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。 2.3 机械天线 所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。

基站天线的结构、种类和工作原理教案

在移动通信系统中,空间无线信号的发射和接收都是依靠移动天线来实现的。因此,天线对于移动通信网络来说,起着举足轻重的作用,如果天线的选择不好,或者天线的参数设置不当,都会直接影响到整个移动通信网络的运行质量。本章将介绍天线的基本工作原理、结构、种类、技术参数以及天线的选择等知识。 11.1 天线的基本工作原理 当导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长 度和形状有关。如图11-1a、b所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,电场就散播在周围空间,如图11-1c所示,这时两导线的电流方向相同,由两导线所产生的感应电动势方向相同,因而电磁波辐射能 力较强。 a)两导线平行 b)两导线平行呈现一定夹角 c)两导线平行呈现180° 图9-1 电磁波的辐射能力与导线的形状 从实质上讲天线是一种转换器,它可以把在封闭的传输线中传输的电磁波转换为 在空间中传播的电磁波,也可以把在空间中传播的电磁波转换为在封闭的传输线中传 输的电磁波。 当导线的长度远小于波长时,导线的电流很小,辐射很微弱;当导线的长度增大 到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。通常将 上述能产生显著辐射的直导线称为振子。两臂长度相等的振子叫做对称振子。每臂长 度为四分之一波长的对称振子称为半波振子;两臂总长与波长相等的振子,称为全波 对称振子。将振子折合起来的,称为折合振子。半波振子如图11-2所示。 图11-2 半波振子 由于单个天线的辐射方向性不够强,为了得到方向性较强的天线,常采用天线阵

列的形式,所谓天线阵列就是将许多个天线按照一定的方式进行排列所形成的阵列,输入到每个天线的信号的幅度和相位都可以是不同的,这样通过合理控制各天线输入信号的幅度与相位,就可以得到所需要的天线特性。 电磁波在自由空间或传输线内的传播过程中是相互独立的,向左传播的电磁波的存在不会影响向右传播的电磁波,因此一副天线可以同时作为接收和发射天线进行工作。 11.2 基站天线的种类 基站天线按照水平方向图的特性可分为全向天线与定向天线两种,全向天线在水平面内的所有方向上辐射出的无线电波能量都是相同的,但在垂直面内不同方向上辐射出的无线电波能量是不同的。定向天线在水平面与垂直面内的所有方向上辐射出的无线电波能量都是不同的。 按照极化特性可分为单极化天线与双极化天线两种。一般来说,全向天线多为单极化天线,定向天线有单极化天线和双极化天线两种。 单极化天线多为垂直极化天线,其振子单元的极化方向为垂直方向,而双极化天线多为45°斜极化天线,其振子单元为左斜45°与右斜45°极化相交叉的振子,如图11-3所示。 图11-3 双极化方式天线结构 双极化天线相当于两副单极化天线合并在一副天线中,采用双极化天线可以减少塔上天线数量,减少工程安装的工作量,因而可以减少系统成本,因此目前得到广泛的使用。 按照应用的场合可以分为室外天线与室内天线。 11.3 基站天线的结构 在移动通信系统中使用的基站天线由多个基本单元振子、馈电网络、天线接头和天线罩组成,如图11-4所示。

基站天线选型

基站天线选型 一.天线概念 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。1.天线增益 天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有增加所辐射信号的能量,它只是通过天线振子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指

标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:dBi=dBd+2.17 dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。 dBd定义为实际的方向性天线(包括全向天线)相对于半波振子天线能量集中的相对能力,“d”即表示偶极子——Dipole。 两种增益单位的关系见图1: 图1 dBi与dBd的关系 天线增益不但与振子单元数量有关,还与水平半功率角和垂直半功率角有关。 2.天线方向图 天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。 天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。 天线具有方向性本质上是通过振子的排列以及各振子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某

增益天线种类详解

电源招聘专家 增益天线种类详解 着无线产品价格的逐渐走低,许多人都在企业或家里构筑了无线网络,大大方便了日常应用。不过,家里面积大了,企业间的距离远了,无线网络不稳定、数据传输受阻等技术开始出现。怎样才能解决这些棘手的技术呢? 更换网络设备花销过大,不符合经济节约的消费理念,而更换、加装增益天线却是极为经济切增强无线网络传输能力、稳定性的方法。 了解增益天线 作为增益天线的基本属性,增益是指定方向上的最大辐射强度和天线最大辐射强度的比值,即天线功率放大倍数。在一般情况下,增益的强弱将干扰到天线辐射或接收无线信号的能力。也就是说,在同等条件下,增益越高,无线信号传播距离就越远。增益的单位为dBi,室内天线大多为4dBi~5dBi,室外天线大多为8.5dBi~14dBi。 通常情况下,由于增益的大小和无线带宽成反比,即增益越大,其带宽就越窄;增益越小,带宽则较大。因此,较大增益的天线主要在远距离传输,而小增益天线则更适合于无线信号大覆盖范围的应用环境。 目前在无线网络应用中,天线分为点对点应用、点对多点应用两种,用户可根据不同的应用范围选购不同类型的无线天线,使无线信号能够顺利地被各个无线设备接收和发送。 天线种类扫描 在上文中,我们说明了增益天线的定义和作用。其实,增益天线仅是一个统称而已,我们可以笼统地将它看做是无线天线。在这个天线家族中,还有许多不为人所知的新面孔。在此,我们让大家“见识”一下它们的实力。 1.种类全接触 无线天线可分为全向天线、定向天线、扇形天线、平板天线等类型。 其中全向天线适在各无线接点距离较近、需要覆盖较多数量无线设备及客户端的场合,但这些设备的增益大多较小,信号传递距离较短。 定向天线包括八木定向天线、角型定向天线、抛物面定向天线等品种,适在各无线接点位置距离很远,并且无线接入点集中、数量较少且位置固定的环境。这种天线具有信号传递距离长、能量汇聚能力强的特点。 扇形天线可以多角度的覆盖,如果无线接入点集中在该天线的覆盖范围内,可考虑选购此类天线,它具有能量定向和汇聚功能。 平板天线的角度范围可分为30度和15度,比扇形天线的信号覆盖范围小,但它的能量汇聚能力更强,可用在无线接入点相对较远、更为集中的环境。 2.主流天线详解 在诸多不同类型的天线中,使用全向天线和定向天线的企业和个人非常多,它们也是笔者要重点推荐大家使用的天线。 ●全向天线 所谓全向天线,是指在水平面上辐射和接收无最大方向的天线。由于辐射和接收无方向性,所以此类天线安装起来比较方便,不需要考虑传输点的天线安装角度技术。 不过全向天线没有最大方向,它的天线增益相对较低,这就导致无线信号的传输距离较短。因此,这类天线一般比较适合在传输距离规则不太高的点对多点通信环境使用。例如,在对等网络和无线漫游网络的中心无线AP上使用此类天线,通过中心无线AP,可以均匀地将

天线选型

短波无线电通信天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。 2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

基站详细介绍

基站介绍 一、基站类型 目前基站主要有三种类型: 1、定向基站 一般情况下,每个定向基站有三个定向扇区,每个扇区需要1付双极化定向天线或2付单极化定向天线来完成无线信号的收发功能。 定向基站的主要优点是可容纳载频多,可容纳的话务量高;另外由于定向天线增益高,覆盖距离远,可增加覆盖面积。缺点是在话务量低的地区,使用定向基站可能造成载频浪费,增加投资。 市区及话务量高的其他地区,主要采用定向基站,可以满足容量需求;在话务量低、但基站密度小、站距大的农村地区,也可采用定向基站+高增益天线来满足覆盖要求。 2、全向基站 一般情况下,每个全向基站只有一个扇区,需要2付全向天线来完成无线信号的收发功能。一般需要一个机柜。 全向基站的主要优点是在话务量低的地区,使用全向基站节约载频,可以适当降低投资。缺点是可容纳的话务量低,覆盖面积小。 全向基站主要是适用于话务量低的农村地区。另外在做室内分布时,主要采用全向基站。 3、混合型基站 在全向基站的基础上,增加一个或两个定向扇区,可以增加局部地区的覆盖和容量,又比定向基站节约载频。主要是用于农村地区。 目前,由于话务量越来越高,而且对覆盖的要求也越来越高,因此定向基站的比例比较高,混合型基站很少。 二、基站设备 1、基站配套设备

开关电源: 电池: 空调 传输设备 墙挂式交流箱、室内总接地排。 2、基站主设备 山东移动现网的2G设备主要采用爱立信的RBS系列设备,只有部分沿海地区的近海覆盖设备采用华为和中兴的大功率基站设备,数量很少。 3、三种RBS无线机架: RBS200:每机架最多4个载频,做定向站时每扇区需3条馈线,3付定向天线;做全向站时需3条馈线,3付全向天线一发两收。爱立信早已停止供货,现网数量比较少。 RBS2202:每机架最多6个载频,做定向站时每扇区需2条馈线,2付单极化定向天线(或1付双极化定向天线);做全向站时,需2条馈线,2付全向天线。爱立信从本期停止供货,在现网中占绝大多数。 RBS2206:每机架最多12个载频,体积与RBS2202一样,其它情况与 RBS2202也基本相同。使用RBS2206,在占用机房面积相同的情况下,可以提供更大的话务容量,降低对基站机房面积的要求;从本期开始全面供货,在现网中目前比重较小,但以后比重会越来越大。 三、天馈部分 目前天馈系统的安装一般分地面塔、楼顶塔(楼顶支架)、楼顶抱杆三种。 1、楼顶抱杆一般用于市区或县城 这些地方的基站具有以下特点:基站密度相对较大、天线挂高相对较低、有较高的建筑可放置天线、自建铁塔受到城市规划的限制。 楼顶抱杆的突出优点是投资较低、建设周期短;缺点是受业主的限制较多,如果关系协调不好,对以后的优化、维护会带来很多不便。

2.4 GHz天线的选择和选择标准

Options and Selection Criteria for 2.4 GHz Antennas 2.4 GHz is a sweet spot for modern-day RF design can be demonstrated by mentioning a few well-known names: Bluetooth, ZigBee, Wi-Fi and WLAN. One can also toss cellular applications into the mix. Clearly, this unlicensed band allows a variety of handheld, mobile, and fixed base station designs that communicate either point-to-point, or are routed through a cellular or mesh network. Popularity, however, brings technical issues. Even with channel s egmentation, one standard’s signal can step on another and clog up throughput. Fortunately, frequency allocations, algorithms, time-slicing, and back-off timers, among other techniques, help let everyone share the band and play nicely together. Even so, achieving optimum performance and meeting reliability goals calls for superior antenna design and close attention to the associated components that keep everything resonant. What is more, whether balanced or single ended, the transmit gain and receive sensitivity depend on the physical nature of the antenna and its radiation pattern. This article takes a look at 2.4 GHz antennas and the coupling networks that make them work. It examines commercially available single-chip antennas that are designed to work in the 2.4 GHz ISM band. It discusses antenna types, RF distribution patterns, and range and design issues associated with using a single-chip antenna, as opposed to a connector- mounted external antenna or PCB antenna. All parts, datasheets, development kits and training modules referenced here are available on Digi-Key’s website. The signal path Key in making your antenna perform as desired is the signal path to the antenna. While most RF chips have good output stages, matching, filtering, and splitting still may be needed, especially if a single antenna is used for more than one communications standard. As such, the typical RF output stages must still connect to either a single ended, balanced, or diplexed matching network (Figure 1).

天线的基础知识

天线的基础知识(2009-05-17 22:14:38) 1 天线工作原理及作用是什么? 天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。 2 天线有多少种类? 天线品种繁多,主要有下列几种分类方式: 按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas),还有就是手持对讲机用的天线(handhold transceiver antennas)。基地电台俗称棒子天线;车载天线俗称苗子;手台天线由于绝大部分是橡胶外皮的因此俗称橡胶天线或橡胶棒儿。 按工作频段可划分为超长波、长波、中波、短波、超短波和微波。 按其方向可划分为全向和定向天线。 3 如何选择天线? 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。因此,用户在选择天线时最好向厂家联系咨询或在往上对比分析其技术指标。 4 什么是天线的增益? 增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。 5 什么是电压驻波比? 天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通

各种天线参数和分类

汽车天线 汽车天线又叫车载天线,一般汽车上的天线用于车上的收音机和电台,可分汽车内置天线和外置天线。但根据不同用途的汽车也有安装其他的天线。如公交车有DVB-T天线,车载TV天线。物流及出租车还装有GSM天线、GPS卫星天线。收音机和电台天线主要就是AM/FM天线、软PCB数字天线、AM/FM/TV天线等。根据不同的功能和用途,所用的天线的频率也不同。 目录 名词释义: 又叫车载天线,是指设计安装在车辆上的移动通讯天线。最常见就是吸盘天线。由于吸盘天线安装摆放容易,所以在一些简易设台场合常常用吸盘天线代替基地天线。 结构分类: 车载天线结构上有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线,理论上它们的效率依次增加,同样工作频段的天线的长度也依次增加。 缩短型: 由于车辆本身有限高,加上过长的天线在车辆高速行进时形成的风阻,过桥洞、进入地下车库都是问题,所以车载天线并不是越长越好,一般要求轿车天线不超过70厘米,面包车类要求天线更短。缩短型天线体积小巧,虽然增益不高,但适合使用于需要隐蔽天线的场合。 八分之五波长和中部加感型

一般的警用车辆建议安装高增天线,尤其是在活动区域范围比较大的车辆,350MHZ高增益天线多分为八分之五波长加感的形式,在距天线顶部二分之一波长距离处有一个加感线圈。400MHZ频段双二分之一波长天线具有较高的增益,它的外观特征是天线的振子上有两个加感线圈。八分之五波长和中部加感型也有较高的增益,且价格比较便宜,因此得到广泛的使用。在作为临时固定台天线使用的场合可以考虑选用增益高的吸盘天线,天线的长度不必有过多限制。由于吸盘天线是根据汽车使用环境而设计所以在作为固定使用时在其下吸一块半径大于1米的金属板(如铁皮)会有更好的使用效果。由于进口原装的车载天线价格非常昂贵且优势不突出,所以一般都选用国产车载天线。在天线选型阶段主要参考天线的外型和增益。建议选用大厂家的名牌产品,他们提供的参数真实性比较高,制造工艺也有保证。如果是批量采购完全可以到专业天线制造厂家按使用频段定制,以取得最佳的使用效果。 汽车天线(8张) 频率分类: GSM天线 1. 工作频率:900MHZ/1800MHZ 900MHZ增益:3dBi 1800MHZ 增益:3dBi 2. VSWR:GSM〈1.8 DCS 〈1.8 3.线长:RG174线,3米/5米 4.安装方式:磁铁吸附 5.适用接头:SMA/SMB/GT5/BNC/MCX/MMCX 6.工作温度:-20℃~+85℃ 7.贮藏温度:-40℃~+90℃ TV天线 1.电源电压DC 10.5∽16.5V 2.电源60∽100MA 3.工作频率48∽860MHZ 4.增益15±3DB 5.噪声系数≤7DB 6.输出阻抗 75Ω 7.输出驻波≤3 8.环境温度 -20℃∽+70℃

波尔威基站天线结构及设计方案详细介绍

波尔威基站天线结构及设计方案详细介绍 1 引言基站天线用于将发射机馈给的射频电能转换为电磁波能,或者把电磁波能转化为射频电能并输送到接收机。天线的工作带宽、转换效率以及满足覆盖要求的方向图性能是设计方案的基本考虑要素。此外,一款优秀的产品还会综合考虑制造工艺、生产成本等因素。 目前市场上有众多基站天线产品,其设计各不相同,但基站天线的主体结构均由外罩、反射板、馈电网络以及振子组成。手动电调天线/遥控电调天线(MET/RET)还包括移相器。 2 基站天线的结构天线外罩是保护天线系统免受外部环境影响的结构物。它应具有良好的电磁辐射透过性能,且在结构上能经受外部恶劣环境(如暴风雨、冰雪、沙尘以及太阳辐射等)的侵袭。使用天线罩可以保证天线系统的工作性能稳定可靠,同时减轻天线系统的磨损、腐蚀和老化,延长使用寿命。另外天线外罩可以降低风负荷和风力矩,减小转动天线的驱动功率,减轻机械安装件的重量,减小惯量,提高固有频率。 基站天线使用的外罩材料主要有玻璃钢、PVC和ASA。GRP外罩强度高,重量重,损耗大,通常用于多频或大尺寸天线。PVC和ASA外罩强度不如GRP外罩,通常用于单频或小尺寸天线,损耗小,成本也更低。反射板起着支撑天线各部件的作用,而反射板的形状主要影响天线的前后比特性及水平面辐射方向图。反射板的设计需依据振子及馈电网络的设计方案而定,目前市场上各品牌天线大相径庭,主要区别体现在振子及馈电网络的设计方案上。 馈电网络的作用是将射频电能按照一定关系分配到各个辐射单元,分配的幅度比和相位差决定了辐射方向图和增益。有基于同轴电缆和基于微带线的设计。振子是基站天线最重要的部件之一,其设计方案的好坏直接决定了天线的辐射性能。虽然辐射单元的结构形状各异,但从辐射原理上可分为微带贴片和对称振子两种方案。 移相器是电调天线的核心部件,通过调节分配到各辐射单元的相位差实现下倾角的变化。改变相位差主要有两种途径:一是改变馈电点位置;二是使用介质移相。 3 波尔威天线设计方案设计独特的天线安装套件不仅可以方便稳固地安装,还可提供精确

天线的分类及应用

天线的分类及应用 只要使用到无线电波,就有可能需要用到天线以协助电波的发射与接收;天线依工作频段,由低到高可区分为超长波、长波、中波、短波、超短波和微波,应用层面遍及国防、民生工业,依据不同波长、天线大小长短因此有很大差异,例如使用100MHz 左右的天线,与使用2.4GHz 频段的WLAN。若按其方向可大略区分为全向性(Omni-directional)天线和指向性(directional)天线。 全向性天线的名称说明了电磁场的辐射能量在每个方位都会一致,目前最普遍的全向性天线当属偶极(DIPole)天线,绝大部分的基地台(ACCess Point),都是内建偶极天线,其水平辐射范围是360度的波束,由于水平每个方向的能量都均等,由天线上方往下看形成类似甜甜圈的波束形状,若压缩其垂直辐射范围,传输距离将随着波束的集中而延伸,波束形状则会趋近于薄饼。下图是由天线上方与侧面描绘波束的图形,如果偶极天线的增益越大,表示波束垂直的半功率波束宽度(HPBW)越小,能传输的距离也越大。因为全向性天线可以涵盖所有水平方向,因此通常安装于开阔、开放环境的中央位置;若是应用于户外,全向式天线必须安装在大楼顶端或高处,并且位于讯号涵盖区的中央位置,以便与其他指向性天线装置通讯,构成单点对多点(Point-to-Multipoint)的星状拓朴。 指向性天线只能用于一定的方位,但相对地传输距离会比较远,指向性天线有各种不同的款式与形状,例如:Patch 天线、Panel 天线和八木(Yagi)天线,经常用于无线区域网路中短距离的桥接(Bridge);举例来说跨马路的两栋大楼,或者空间宽广的厂房、仓库都是理想的应用环境。 此外还有专门用于长距离通讯的高方向性天线,有极窄的波束宽度与很高的增益值,也可称为高增益指向性天线;例如:碟形(dish)天线和格状(grid)天线,通常用于点对点的通讯连接,传输距离可以高达25英哩;因为波束非常地窄,天线彼此之间必须很精准的瞄准,而且天线之间的直视(Light of Sight)必须没有任何阻碍物。

基站天线电机参数

基站天线设置需要重点考虑下倾角、方向角、天线挂高、天线分集距离和隔离距离等参数。在移动通信基站中,通过对基站天线的水平方位角和下倾角进行调节以达到最佳的辐射范围和辐射距离。水平方位角是指基站天线绕轴心线旋转过的角度,该水平方位角影响到基站天线的辐射范围;下倾角是指基站天线与水平地面之间的夹角,该下倾角影响到基站天线的辐射距离。基站天线电机是应用在5G、4G信号通讯基站天线的电调电机齿轮箱,属于非标定制齿轮箱电机,主要传动结构由驱动电机、齿轮箱等;驱动电机可采用直流无刷电机、直流有刷电机、步进电机,齿轮箱可采用行星齿轮箱、蜗轮蜗杆齿轮箱、定制非标齿轮箱;通常按照需求定制齿轮箱中,例如驱动电机类型、齿轮箱结构类型、减速比、输出转速、输出扭矩、规格直径、电压、电流、功率等参数是按需定制。 基站天线电机参数: 产品名称:22MM金属减速齿轮箱 产品分类:五金行星齿轮箱 外径:22mm 材质:五金 旋转方向:cw&ccw 齿轮箱回程差:≤2°(可定制) 轴承:烧结轴承;滚动轴承 轴向窜动:≤0.1mm(烧结轴承);≤0.1mm(滚动轴承) 输出轴径向负载:≤120N(烧结轴承);≤170N(滚动轴承) 输入速度:≤15000rpm 工作温度:-30 (100)

定制参数、规格型号范围: 尺寸规格系列:3.4mm、4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、24mm、28mm、32mm、38mm; 材质系列:塑胶行星齿轮箱、金属行星齿轮箱、蜗轮蜗杆齿轮箱 驱动电机:步进电机、无刷电机、有刷电机、空心杯电机 输出力矩范围:1gf-cm至50kg-cm; 减速比范围:5-1500; 输出转速范围:5-2000rpm;

基站天线基本原理

基站天线基本原理 网优雇佣军微信号:hr_opt 通信路上,我们一起走! 蜂窝通信系统要求从基站到移动台的可靠通信,对天线系统有特别的要求。蜂窝系统是一个双工系统,理想的天线是在发射和接收两个方向提供同样的性能。天线的增益、覆盖方向、波束、可用驱动功率、天线配置、极化方式等都影响系统的性能。 1天线增益 天线增益一般常用dBd和dBi两种单位。dBi用于表示天线在最大辐射方向场强相对于全向辐射器的参考值;而dBd表示相对于半波振子的天线增益。两者有一个固定的dB差值,即0dBd等于2.15dBi,如图错误!文档中没有指定样式的文字。-1所示。 2.15dB 图错误!文档中没有指定样式的文字。-1 dBi与dBd的不同参考示意图0dBd=2.15dBi 目前国内外基站天线的增益范围从0dBi到20dBi以上均有应用。用于室内微蜂窝覆盖的天线增益一般选择0-8 dBi,室外基站从全向天线增益9dBi到定向天线增益18dBi应用较多。增益20dBi左右波束相对较窄的天线多用于地广人稀的道路等方向性较强的特殊环境的覆盖。 2辐射方向图 基站天线辐射方向图可分为全向辐射方向图和定向辐射方向图两大类,分别被称为全向天线和定向天线。如图错误!文档中没有指定样式的文字。-2所示,左边所示分别为全向天线的水平截面图和立体辐射方向图;右边所示分别为定向天线的水平截面图和立体辐射方向图。全向天线在同一水平面内各方向的辐射强度理论上是相等的,它适用于全向小区;图中红色所示为定向天线罩中的金属反射板,它使天线在水平面的辐射具备了方向性,适用于扇形小区。

图错误!文档中没有指定样式的文字。-2 空间辐射方向图(全向天线和定向天线) 3波瓣宽度 3.1水平波瓣宽度 在天线的水平面(垂直面)方向图上,相对于主瓣最大点功率增益下降3dB的两点之间所张的角度,定义为天线的水平(垂直)波瓣宽度,也称水平(垂直)波束宽度或者水平(垂直)波瓣角。天线辐射的大部分能量都集中在波瓣宽度内,波瓣宽度的大小反映了天线的辐射集中程度。 全向天线的水平波瓣宽度为360°,而定向天线的常见水平波瓣宽度有20°、30°、65°、90°、105°、120°、180°多种(如图错误!文档中没有指定样式的文字。-3)。 图错误!文档中没有指定样式的文字。-3 基站天线水平波瓣3dB宽度示意图 各种水平波瓣宽度的天线有相应的适用环境,水平波瓣宽度为20°、30°的天线一般增益较高,多用于狭长地带或高速公路的覆盖;65°天线多用于密集城市地区典型基站三扇

基站天线选型方法

基站天线选型方法 谢瑞华 (中兴通讯上海第二研究所射频开发部) 摘要本文针对基站天线的各项性能参数,阐述了基站天线选型的基本方法和注意事项。 一、引言 近年来,在风风火火的移动通讯领域,国内国外天线品牌种类繁多使人目不暇接,而我们的客户中国移动和中国联通对天线的要求也逐渐由浅入深日趋细致,如何在满足覆盖降低成本的前提下,恰当选取天线各类参数,为客户提供良好的服务成为关键。天线的合理选型会给公司带来事半功倍的效果。以下将结合天线的各类电性能和机械性能参数,并总结曾经碰到的客户的各种天线选型要求,阐述基站天线选型的基本方法及其注意事项。 二、基站天线的选型方法 1、天线的电性能参数 天线工作频段的选取 对各类基站而言,所选天线的工作频段应包含客户要求的频段,例如,为GSM900系统(890-960MHz)配置天线,工作频段为890-960MHz、870-960MHz、807-960 MHz和890-1880 MHz的双频天线均为可选。从降低带外干扰信号的角度考虑,所选天线的带宽刚好满足频带要求即可。但考虑到今后基站的扩容需要,宽频带天线也很受客户欢迎。如可工作于GSM900和GSM1800频带的890-1880 MHz的双频天线。它的价格较普通天线贵些。

天线辐射方向图的选取 基站天线辐射方向图可分为全向辐射方向图和定向辐射方向图两大类,分别被称为全向天线和定向天线。如图一所示,图中左边所示分别为全向天线的水平截面图和立体辐射方向图;图中右边所示分别为定向天线的水平截面图和立体辐射方向图。全向天线在同一水平面内各方向的辐射强度理论上是相等的,它适用于全向小区;图中红色所示为定向天线罩中的金属反射板,它的存在使天线在水平面的辐射具备了方向性,适用于扇形小区的覆盖。 图一:基站天线及其空间辐射方向图 天线极化方式的选取 基站天线多采用线极化方式,如图二。其中单极化天线多采用垂直线极化;双极化天线多采用±45?双线极化。由于一根双极化天线是由极化彼此正交的两根天线封装在同一天线罩中组成的(图三),采

天线的种类及选型

1.天线的基本原理 天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。在移动网络通信中从基站天线到用户手机天线,或从用户手机天线到基站天线的无线连接,它的运行质量在整个网络运行质量中所占的位置是十分明显的。因此,网络优化也就自然与天线密切相关。 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。 为了便于介绍,先从天线的几个基本特性谈起。(见下图)

【选择攻略】2.4GHz 频段天线选择

2.4GHz 频段天线选择 天线(antenna)是一种能量变换器,它把传输线上传播的导行波,变换成在无界媒介中传播的电磁波,或者进行相反的变换。对于设计一个应用于射频系统中的小功率、短距离的2.4GHz无线收发设备,天线的设计和选择是其中的重要部分,良好的天线系统可以使通信距离达到最佳状态。2.4GHz天线的种类也很多,不同的应用需要不用的天线。 天线简介 图1 天线传输原理 为保证天线的传输效率,天线的长度大约是电磁波波长的1/4,所以信号频率越低,波长越长,天线的长度越长;信号频率越高,波长越短,天线的长度越短。则常用的2.4GHz 频段频率高,波长短,天线的长度短,可用内置天线,也可以用外置天线。天线做的更短,如1/8波长或1/16波长,也可以使用,只是效率会下降。某些设备会采用“短天线+LNA”的方式,也能达到长天线的接收效果。但是短天线要达到长天线的发射效果,就需要提升发射功率了,因此对讲机需要发射信号,都是长的外置天线,而FM收音机只收不发,有内置接收天线。例如2G(900MHz)、4G(700-2600MHz)、WIFI和蓝牙(2.4GHz)、GPS(1.5GHz),这些常用的物联网通信方式,可以做内置天线。 对于手持机、穿戴设计、智能家居等小尺寸产品,很少使用外置天线,普遍采用内置天线。集成度高,产品外观更美观,性能比外置天线略弱一点。物联网、智能硬件产品,要联网传输数据,都需要有天线。空间越小、频段越多,天线设计越复杂。外置天线一般都是标准品,买频段合适的,无需调试,即插即用。例如快递柜、售货机这些,普遍使用磁吸的外置天线,吸在铁皮外壳上即可。这些天线不能放在铁皮柜里面,金属会屏蔽天线信号,所以

无线网络设备天线种类及选配技巧

无线网络设备天线种类及选配技巧 天线是发射和接收电磁波的一个重要的无线电设备。无线电发射机(如AP)输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去;电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机,由此完成数据的传输,如图。 可见,作为电磁波的发射和接收设备,没有天线也就没有无线电通信,凡是利用电磁波来传递信息的,都依靠天线来进行工作。 当前企业级无线产品中,天线也是不可或缺的配件。一般来讲,无线局域网产品中天线有内置和外置两种,而外置产品的天线品种繁多,主要是供不同频率、不同用途、不同场合、不同要求等情况下使用。那么,天线到底有哪些种类,各种类有什么特点,如何应用呢?下面我们具体来看看。 1、全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性。一般情况下波瓣宽度越小,增益越大。全向天线在通信系统中应用距离近,覆盖范围大,价格便宜。 2、半定向天线,即只向某一个方向辐射信号,常应用于中短距离通信。常见半定向天线主要主要有平板天线、八木天线(如下图)。平板天线常用于接入点到STA的定向覆盖或者过道、走廊的无线覆盖,其覆盖范围取决于AP的功率、天线增益、天线波束宽度以及建筑材料对射频信号的衰减程度;八木天线一般用于中短距离(如3km)点对点通信,高增益的八木天线也可以用于远距离通信。

半定向天线的另外一个优点是可以安装在墙壁的高处,并向下倾斜对准需要覆盖的区域。由于信号几乎不会从半定向天线的后侧泄露出去,因此半定向天线可以提供良好的垂直覆盖。全向天线不具备这个优点,因为如果天线的一端向下倾斜,则另一端会向上翘起。 3、高度定向天线仅在点对点通信中使用,一般用于提供两栋建筑物之间的网络桥接。在所有类型的天线中,高度定向天线的波束宽度最为狭窄和集中。 高度定向天线分为抛物面天线和栅格天线两类。从外观上看,抛物面天线类似于安装在屋顶的数字卫星电视天线,栅格天线类似于烧烤使用的烤架。栅格天线需要接收的信号波长决定了天线网格的间距大小。 高度定向天线的传输距离较远,波束宽度较窄,这使得它容易受到天线风载(大风引起的天线移动或偏移称为风载)的影响。对高度定向天线而言,哪怕是轻微的移动都会使得射频波束偏离接收天线,从而导致射频通信中断。而栅格天线网格较大,抗风载能力很强,因此在强风环境中应使用栅格天线。 4、从本质上说,天线阵列是一种天线系统,它由多个天线构成。这些天线协同进行一种被称为波束成型的工作。波束成型是一种将射频能量汇聚的方法。能量如果被汇聚意味着信号强度增强,接收方信噪比增强,因此传输效果更好。 无线产品是否能否实现更远距离的信号稳定传送,除了与协议、无线模块和本身的设计有关外,天线的作用同样是不能忽视。那么不同设备、场景下面该如何选择天线呢?下面我们总结了选择天线时主要应注意的几个因素。 无线标准:无线标准是无线设备最基本的参数,相应的无线标准对应相应的无线天线的频率

相关主题
文本预览
相关文档 最新文档