当前位置:文档之家› 植物提取物对SGLT2和URAT1的抑制作用 报告 (1)

植物提取物对SGLT2和URAT1的抑制作用 报告 (1)

植物提取物对SGLT2和URAT1的抑制作用 报告 (1)
植物提取物对SGLT2和URAT1的抑制作用 报告 (1)

植物提取物对URAT1和SGLT2的抑制作用筛选研究

研究负责人签字:日期:

2014年3月17日天津市新药安全评价研究中心

目录

摘要 (4)

1.课题名称 (4)

2.研究机构 (4)

3.委托机构 (4)

4.研究期间 (4)

5.课题负责人 (5)

6.课题研究参与人员 (5)

7. 最终报告 (5)

8.研究目的 (6)

9.材料与方法 (6)

9.1.测试化合物 (6)

9.2.待测化合物溶液的准备 (7)

9.2.1 DE降糖植物提取物A1的配制 (7)

9.2.2 DE降糖植物提取物B1的配制 (7)

9.2.3 DE降糖植物提取物C1的配制 (7)

9.2.4 FAM1号的配制 (7)

9.2.5 FAM2号的配制 (8)

9.3.检测系统 (8)

9.3.1.材料 (8)

9.3.2.实验步骤1), 2) (9)

9.4.结果分析 (10)

9.4.1.抑制作用 (10)

9.4.2.统计学方法 (10)

10.结果 (10)

11结论 (11)

12.参考文献 (12)

Table 1. DE降糖植物提取物A1、B1、C1对葡萄糖转运体(SGLT2)介导的14C-Glucose 转运活性的影响 (13)

Table 2. FSM1号、FSM2号对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性的影响 (14)

Fig. 1. DE降糖植物提取物A1、B1、C1对葡萄糖转运体(SGLT2)介导的14C-Glucose 转运活性影响的柱形图 (15)

Fig. 2. FSM1号对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响的柱形图。 (16)

Fig. 3. DE降糖植物提取物B2对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响的柱形图。 (17)

Fig.4. FAM1号对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响非线性回归曲线 (18)

摘要

本研究的目的是评价DE降糖植物提取物A1、B1、C1 对葡萄糖转运体(SGLT2)的抑制作用以及FSM1号、FSM2号对人尿酸转运体(hURAT1)的抑制作用。测定A1、B1、C1(药物浓度分别为0.1,0.3,1mg/mL)对放射性标记探针底物(14C-Glucose)摄入活性的影响,测定A2、B2(药物浓度分别为0.03,0.1,0.3,1,3,10mg/mL)对放射性标记探针底物(14C-URIC ACID)摄入活性的影响,计算50%摄入活性抑制作用浓度(IC50)。试验结果显示,A1、B1、C1对SGLT2的转运活性均有抑制作用,其中A1的IC50为2.14mg/mL,B1的IC50为0.27mg/mL,C1的IC50为0.97mg/mL;FSW1号对hURAT1的转运活性有抑制作用,IC50为2.50mg/mL,FSW2号对hURAT1的转运活性基本没有抑制作用,IC50﹥10mg/mL。

1. 课题名称

植物提取物URAT1和SGLT2的抑制作用筛选研究

2. 研究机构

天津药物研究院

天津市新药安全评价研究中心

释药技术与药代动力学国家重点实验室

天津市南开区鞍山西道308号,邮编300193

3. 委托机构

天津纳图生物科技有限公司

天津市和平区云琅新居A-1-1202

4. 研究期间

2014年2-3月

5. 课题负责人

慈小燕

6. 课题研究参与人员

慈小燕

伊秀林

李亚卓

7. 最终报告

最终报告的结果包括文本和图表。

8. 研究目的

本研究的目的是评价DE降糖植物提取物A1、B1、C1 对葡萄糖转运体(SGLT2)的抑制作用以及FAM1号、FAM2号对人尿酸转运体(hURAT1)的抑制作用。研究中使用了稳定表达hURAT1药物转运体基因和SGLT2药物转运体基因的HEK293细胞系。通过A1、B1、C1在不同浓度下对SGLT2细胞介导的放射性标记探针底物14C-Glucose转运活性的影响,考察药物对SGLT2转运体的抑制作用;FSM1号、FSM2号在不同浓度条件下对hURAT1细胞介导的放射性标记探针底物14C-Uric acid转运活性的影响,考察药物对hURAT1转运体的抑制作用。

9. 材料与方法

9.1. 测试化合物

名称:DE降糖植物提取物A1

生产批号:20140115-1

提供商:天津纳图生物科技有限公司

保存条件:4o C

名称:DE降糖植物提取物B1

生产批号:20140115-2

提供商:天津纳图生物科技有限公司

保存条件:4o C

名称:DE降糖植物提取物C1

生产批号:20140215-4

提供商:天津纳图生物科技有限公司

保存条件:4o C

名称:FAM1号

生产批号:20140115-3

提供商:天津纳图生物科技有限公司

保存条件:4o C

名称:FAM2号

生产批号:20140304-5

提供商:天津纳图生物科技有限公司

保存条件:4o C

9.2. 待测化合物溶液的准备

9.2.1 DE降糖植物提取物A1的配制

首先,将称量(BS 124 S,Sartorius)的中药A1 100.3mg溶解在5mL DPBS中,涡旋1min、超声10min,10000rpm离心5min,得到浓度为20mg/mL 的母液。然后用DPBS稀释母液,分别至最终浓度含有2,6,20 mg/mL 的A1。

9.2.2 DE降糖植物提取物B1的配制

首先,将称量(BS 124 S,Sartorius)的中药B1 10.2mg溶解在5mL DPBS 中,涡旋1min、超声10min,10000rpm离心5min,得到浓度为2mg/mL 的母液。然后用DPBS稀释母液,分别至最终浓度含有0.2,0.6,2mg/mL 的B1。

9.2.3 DE降糖植物提取物C1的配制

首先,将称量(BS 124 S,Sartorius)的中药C1 10.1mg溶解在5mL DPBS 中,涡旋1min、超声10min,10000rpm离心5min,得到浓度为2mg/mL 的母液。然后用DPBS稀释母液,分别至最终浓度含有0.2,0.6,2mg/mL 的B1。

9.2.4 FSM1号的配制

首先,将称量(BS 124 S,Sartorius)的FAM1号81.1mg溶解在4055μL DPBS中,涡旋1min、超声10min,10000rpm离心5min,得到浓度为20mg/mL 的母液。然后用DPBS稀释母液,分别至最终浓度含有0.06,0.2,0.6,2,6,20 mg/mL的FSM1。

9.2.5 FSM2号的配制

首先,将称量(BS 124 S,Sartorius)的FAM2号81.3mg溶解在4065μL DPBS中,涡旋1min、超声10min,10000rpm离心5min,得到浓度为20mg/mL 的母液。然后用DPBS稀释母液,分别至最终浓度含有0.06,0.2,0.6,2,6,20 mg/mL的FSM2。

9.3. 检测系统

9.3.1. 材料

a. 人药物转运体URAT1基因稳定表达HEK293细胞:Human Embryonic

Kidney 293 cells(HEK293细胞)是源于组织培养中生长的人胚胎肾细

胞的特定细胞系。以插入了人药物转运体URAT1基因的哺乳类动物表

达pcDNA3.1载体转染该细胞,并以geneticin筛选耐性细胞,进而获得

细胞膜表面尿酸转运体稳定高表达的细胞株。

b. 人药物转运体SGLT2基因稳定表达HEK293细胞:以插入了人药物转运

体SGLT2基因的哺乳类动物表达pcDNA3.1载体转染该细胞,并以

geneticin筛选耐性细胞,进而获得细胞膜表面SGLT2稳定高表达的细胞

株。

c. 培养基

含有10%胎牛血清(Lot No.1227693, Invitrogen’s Gibco)的高糖DMEM

培养基(Lot No.NYM1045, Hyclone)用于本研究的细胞培养。

d. 胰酶

0.25% Trypsin-EDTA(1×)(Lot No.1155732, Invitrogen’s Gibco)

e. 放射性标记探针底物

Uric acid, [8-14C]- (Lot No. 742-107-0578-B-20121130-SBA, Moravek)

Glucose D, [14C(U)]- (Lot No. 120319, ARC)

f. 缓冲溶液

Dulbecco’s Phosphate Buffered Saline, DPBS (Lot No. 070M8306,

Sigma-Aldrich)

9.3.2. 实验步骤1), 2)

a. HEK293单层细胞培养

胰酶消化后,药物转运体URAT1基因表达细胞和药物转运体SGLT2基

因表达细胞接种于赖氨酸包被24孔培养盘(Lot No. 20130801,CHI

SCIENTIFIC),细胞接种密度为105 cells/well,在37 ℃、5% CO2、饱

和湿度的培养箱内培养2天。

b. 放射性标记探针底物浓度

制备浓度为60μM的Uric acid, [8-14C]-,然后与待测化合物等体积混合,

使其最终浓度为30μM。

制备浓度为60μM的Glucose D, [14C(U)],然后与待测化合物等体积

混合,使其最终浓度为30μM。

c. 非标记化合物浓度

各种待测样品(2×终浓度),并与60 μM放射性标记Uric acid, [8-14C]-

和60μM的Glucose D, [14C(U)]等体积混合。A1的最终浓度为1、3、

10 mg/mL,B1的最终浓度为0.1、0.3、1mg/mL,C1的最终浓度为0.1、

0.3、1mg/mL,FSM1的最终浓度为0.03、0.1、0.3、1、3、10mg/mL,

FSM2的最终浓度为0.03、0.1、0.3、1、3、10mg/mL。

d. 细胞摄入试验

先移去培养板内培养液,将培养细胞用DPBS清洗两次,并在37°C

DPBS缓冲液中温浴10min,然后以500μL含放射性标记的探针底物溶

液置换DPBS开始药物的细胞内摄入;2min后,用冰浴DPBS缓冲液终

止反应,并清洗3次;然后各孔添加500μl 0.1mol/L NaOH裂解细胞;

提取裂解液于闪烁瓶中,添加3mL的闪烁液(Aquasol-2),并用Tri-Carb

2910TR液闪仪(PerkinElmer,Waltham, USA)测定样品中的放射性强

度。细胞摄入试验中每个浓度重复3次(n=3)。

9.4. 结果分析

9.4.1.抑制作用

将不含非放射性标记的探针底物和待测化合物物的放射性标记的探针底物的摄入活性定义为100%(control),以此为标准计算各种化合物存在条件下的吸收百分比。

9.4.2. 统计学方法

Mean±standard error (SD)用Microsoft? Excel 2010软件计算。每个数值代表一个实验的两个测定值的平均值。GraphPad Prism 5.0软件用于绘制非线性回归曲线图,并计算化合物对药物转运体转运活性影响的IC50。

10. 结果

表1:DE降糖植物提取物A1、B1、C1对葡萄糖转运体(SGLT2)介导的14C-Glucose转运活性的影响

表2:FSM1、FSM2对尿酸转运体(hURAT1)介导的14C-URIC ACID 转运活性的影响

图1:DE降糖植物提取物A1、B1、C1对葡萄糖转运体(SGLT2)介导的14C-Glucose转运活性影响的柱形图。如图所示,没有添加抑制剂条件下,SGLT2对14C-Glucose的摄入比例定义为100%(control)。不同浓度A1、B1、C1的添加,使SGLT2介导的14C-Glucose摄入比例随A1、B1、C1浓度的增加明显下降,并具有显著的统计学差异。由各浓度点计算得到A1的IC50为2.14mg/mL,B1的IC50为0.27mg/mL,C1的IC50为0.97mg/mL。

图2:FSM2对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响的柱形图。如图所示,没有添加抑制剂条件下,hURAT1对14C-URIC ACID的摄入比例定义为100%(control)。不同浓度FSM1的添加,使hURAT1

介导的14C-URIC ACID摄入比例随浓度的增加明显下降,并具有显著的统计学差异。

图3:FSM2对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响的柱形图。如图所示,没有添加抑制剂条件下,hURAT1对14C-URIC ACID的摄入比例定义为100%(control)。不同浓度FSM2的添加,使hURAT1介导的14C-URIC ACID摄入比例随浓度的增加而下降,但不具有统计学差异。

图4: FSM1号对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响非线性回归曲线。横轴为药物浓度的对数,纵轴为control摄入活性的百分比。各浓度点与曲线呈良好的相关性(R2=0.9827),由各浓度点计算得到A2对尿酸转运体(hURAT1)介导的14C-URIC ACID的抑制作用IC50=2.50mg/mL。

11 结论

试验结果显示,A1、B1、C1对SGLT2的转运活性均有抑制作用,其中对SGLT2的抑制作用活度顺序为B1(IC50=0.27mg/mL)>C1(IC50=0.97mg/mL)>A1(IC50=2.14mg/mL);FSM1对hURAT1的转运活性有抑制作用,IC50为2.50mg/mL,FSM2对hURAT1的转运活性基本没有抑制作用,IC50﹥10mg/mL。

12. 参考文献

1) Enomoto, A. et al.: Molecular identification of a renal urate-anion exchanger that

regulates blood urate level. Nature. 2002 May 23;417 (6887):447-52.

2) Shin, HJ. et al.: Interactions of urate transporter URAT1 in human kidney with

uricosuric drugs. Nephrology. 2011 Feb;16(2):156-62.

Table 1. DE降糖植物提取物A1、B1、C1对葡萄糖转运体(SGLT2)介导的14C-Glucose转运活性的影响

%平均值* %标准差T-test 化合物浓度

control 100 3.8 ---

1mg/mL A1 71.0 1.9 0.00108

3mg/mL A1 40.7 2.4 0.00008

10mg/mL A1 15.2 0.9 0.00001

0.1mg/mL B1 67.6 2.1 0.00078

0.3mg/mL B1 48.3 3.7 0.00027

1mg/mL B1 35.8 2.0 0.00005

0.1mg/mL C1 88.0 5.6 0.09471

0.3mg/mL C1 81.6 7.1 0.04880

1mg/mL C1 49.2 5.7 0.00081

*: n=3

Table 2. FSM1号、FSM2号对尿酸转运体(hURAT1)介导的14C-URIC ACID 转运活性的影响

%平均值* %标准差T-test 化合物浓度

control 100 5.1 ---

1μM Benzbromarone 20.9 0.8 0.00002

0.03mg/mL A2 89.8 3.7 0.27030

0.1mg/mL A2 86.7 8.2 0.17520

0.3mg/mL A2 87.1 4.0 0.12987

1mg/mL A2 67.5 10.4 0.02547

3mg/mL A2 46.5 3.6 0.00927

10mg/mL A2 30.0 2.3 0.00566

0.03mg/mL B2 103 8.1 0.57898

0.1mg/mL B2 101 6.9 0.79229

0.3mg/mLB2 94.1 2.5 0.24891

1mg/mL B2 97.2 6.7 0.78147

3mg/mL B2 81.3 1.8 0.00645

10mg/mL B2 68.9 4.2 0.00286

*: n=3

Fig. 1. DE降糖植物提取物A1、B1、C1对葡萄糖转运体(SGLT2)介导的14C-Glucose转运活性影响的柱形图

Each value represents the mean±SD of three determinations.

Fig. 2. FSM1号对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响的柱形图。

Each value represents the mean±SD of three determinations.

Fig. 3. FSM2号对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响的柱形图。

Each value represents the mean±SD of three determinations.

Fig.4. FSM1号对尿酸转运体(hURAT1)介导的14C-URIC ACID转运活性影响非线性回归曲线

Each value represents the mean±SD of three determinations.

植物学课件-被子植物常见科的特征

1、木兰科Magnoliaceae 木兰科的识别特征: 木本。花大、萼、瓣不分,雄蕊、雌蕊多数、离生,螺旋状排列于柱状的花托上,花托于果时延长。聚合蓇葖果。 原始特征:同被花,柱状花托,雌雄蕊多数,螺旋状着生在柱状花托上。花丝短,花药长;柱头和花柱分化不明显。 2、毛茛科Ranunculaceae 本科约37属,1200种,主产北温带。我国约有36属,570多种,各省均有。 本科的识别特征:草本。萼片、花瓣各5个,或无花瓣,萼片花瓣状,雄雌蕊多数、离生,果为瘦果。 3 锦葵科识别特征: 单叶,单体雄蕊,花药1室,蒴果或分果。如棉花、麻、洋麻,锦葵、蜀葵等。 4、葫芦科Cucurbitaceae 葫芦科识别特征: 具卷须的草质藤本。叶掌状分裂。花单性;下位子房;花药折叠。瓠果。 5十字花科识别特征: 植株具辛辣味。十字形花冠,四强雄蕊,角果,侧膜胎座,具假隔膜。 6 蔷薇科识别特征: 花为5基数,心皮离心或合生,子房上位或下位,周位花,蔷薇型花。果实为核果、梨果、瘦果等。 根据心皮数、花托类型、子房位置和果实特征分为四个亚科: 1.蓇葖果;心皮5,分离;常无托叶------------------------绣线菊亚科 1.果不开裂;具托叶。 2.子房上位;心皮1或2至多数,分离。 3.心皮2至多数,分离;聚合瘦果或蔷薇果--------蔷薇亚科 3.心皮单生;核果-------------------------------------------梅亚科 2.子房下位;心皮2-5,合生;梨果-------------------------苹果亚科 7豆科识别特征: 叶常为羽状复叶或3出复叶,有叶枕。花冠多为蝶形或假蝶形,雄蕊为2体、单体或分离,雌蕊由1心皮构成。果实为荚果。 1.花辐射对称,花瓣镊合状排列,雄蕊多数------------------------------------含羞草亚科 1.花两侧对称,花瓣覆瓦状排列,雄蕊10。 2.假蝶形花冠,上升覆瓦状排列,旗瓣位于最内方;雄蕊分离-----------苏木亚科 2.蝶形花冠,下降覆瓦状排列,旗瓣位于最外方;二体雄蕊-------------蝶形花亚科 8伞形科识别特征: 草本,叶柄基部成鞘状抱茎,伞形、复伞形花序,双悬果。 9 旋花科识别特征:

各元素在植物的作用

各元素在植物的作用 1. 氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2. 磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。 抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量(增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积,形成花青素(紫色) 3. 钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收;

抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变,减少病菌所需养分; 4. 钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5. 镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、Al3+、NH4+可引起Mg缺乏; 镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少6. 硫(S)的生理功能-----中量元素 生理功能:蛋白质和许多酶的组成成分,参与呼吸作用、脂肪代谢和氮代谢和淀粉合成。组成维生素B1、辅酶A和乙酰辅酶A等生理活性物质。 硫素缺乏:籽粒中蛋白质含量降低;影响面粉的烘烤质量; 蛋白质合成受阻,与缺氮症状类似,但是先出现在幼叶。 7.铁(Fe)生理功能:微量元素 生理功能:叶绿素合成所必需;参与体内氧化还原反应和电子传递; 参与核酸和蛋白质代谢;参与植物呼吸作用;还与碳水化合物、有机酸和维生素的合成有关。

大一植物学野外实习报告

大一植物学野外实习报告 XX年5月22日早上,我们专业准备前往深圳大亚湾东山珍珠岛进行为期五天的“植物学·生态学·动物学”野外实习。这是我们第一次外出实习。 实习时间:XX年5月22日——XX年5月26日地点:深圳大亚湾东山珍珠岛 任务:常见的植物分类,外出辨别野外植物,采集和压制标本 环境:深圳是中国南部海滨城市,位于北回归线以南,东经113°46′至114°37′,北纬22°27′至22°52′。地处广东省南部,珠江口东岸,大亚湾位于其东面。大亚湾地处惠州市东南,在惠东县、惠阳区和深圳市之间。东考红海湾,西临大鹏湾。 实习内容: (一)辨认标本 通过第一学期所学的《植物学》内容以及平时积累的,为这次野外实习特别准备的知识和有关的资料,通过植物的形态特征,比较分析,辨认出其所属的科。在实习过程中,植物学老师几乎每天都带我们外出认识植物,老师除了介绍

植物的特征外,还教我们如何去辨认各科的特征。 (二)采集和制作标本 在这次植物学野外实习中还有一个重要的内容,那就是如何采集和压制标本。在采集标本的过程中,要注意的问题很多,并不是所有的植物都可以制作成标本的,所以在采集标本时,一定要选择其特征明显的部位,以便于将来的标本鉴定。采集完好的标本只是压制标本的开始,在压制标本时,要注意的问题更多,一定要讲究技巧,对于不同的植物有不同的压法,还要经常换纸。要制作一个成功的标本不是一件容易的事。 (三植物的分类 在这次野外实习中我们一共辨认了几十个科的植物,所达的的种类超过一百种,以下就列举一些常见的种类:被子植物: 木兰科:木兰 榆科:朴树 桑科:垂叶榕、斜叶榕、木菠萝 桃金娘科:乌墨葡桃、番石榴 苋科:红龙草、刺苋、野苋菜、土牛膝、空心莲子草

最新常见科属特征识别及代表植物

一、裸子植物:用种子进行繁殖(又称种子植物),因胚珠或种子外没有象被1 子植物那样的子房包着,故称裸子植物,在世代交替中,配子体已经不能独立2 生活,只能寄生在孢子体上,而孢子体发达具强大的根、茎、叶等营养器官对3 陆地的适应性强。 4 1、苏铁科: 5 苏铁属:茎干粗短,不分枝或少分枝。叶有两种:一为呈褐色的鳞片状6 叶,其外有粗糙绒毛;一为生于茎端呈羽状的营养叶。雌雄异株,各成顶生大7 头状花序,雄球花序的小孢子叶呈螺旋状排列,小孢子叶扁平鳞片状或盾状;8 雌球花序的大孢子叶呈扁平状,全体密被黄褐色绒毛,上部呈羽状分裂。 9 代表植物:苏铁、华南苏铁等。 10 2、银杏科: 11 银杏属:枝有长、短枝之分,一年生的长枝呈浅棕黄色,后则变为灰白12 色,并有细纵裂纹,短枝密被叶痕。叶扇形,有二叉状叶脉,顶端常2裂,基13 部楔形,有长柄;互生于长枝而簇生于短枝上。雌雄异株,雌花生于短枝顶端14 的叶腋或苞腋;雄球花4-6朵,无花被,长圆形,下垂,呈柔荑花序状。 15 代表植物:银杏。 16 3、南洋杉科: 17 南洋杉属:大枝轮生,叶螺旋状互生,雌雄异株,雄球花单生或簇生叶18 腋,或生枝顶;雌球花单生枝顶。 19 代表植物:南洋杉、诺福克南洋杉、大叶南洋杉。 20 4、松科: 21

①雪松属:枝有长枝、短枝之分。叶针状,通常三棱形,坚硬,在长枝 22 上螺旋状排列,在短枝上簇生状,叶灰绿色。雌雄异株,雌雄球花异枝。 23 代表植物:雪松。 24 ②松属:大枝轮生,叶有两种,一种为原生叶,呈褐色鳞片状,单生于 25 长靶上,除在幼苗期外,退化成苞片;另一种为次生叶,针状,常2针、3针26 或5针为一束,生于苞片的腋内极不发达的短枝顶端,每束针叶基部为8-127 2个芽鳞组成的叶鞘所包围,宿存或早落。雌雄同株;花单性,雄球花多数,28 聚生于新梢下部,呈橙色;雌球花单生或聚生于新梢的近顶端处。 29 代表植物:五针松、马尾松。 30 5、杉科: 31 树干端直,树皮裂成长条片脱落;大枝轮生或近轮生;树冠尖塔形或圆32 锥形。叶螺旋状互生。雌雄同株,单性;雄球花单生、簇生或成圆锥花序状; 33 雌球花单生顶端。 34 代表植物:杉木、柳杉、池杉、水杉。 35 6、柏科: 36 ①侧柏属:幼树树冠尖塔形,老树广圆形;大枝斜出;小枝直展,无白 37 粉。叶为鳞片状。雌雄同株,单性,雌球花单生小枝顶端,雄球花有6对雄蕊; 38 球果卵形,熟前绿色,肉质,种鳞顶端反尖头,成熟后变木质,开裂,红褐色。 39 代表植物:侧柏、洒金千头柏。 40 ②柏木属:干皮淡褐灰色,成长条状剥离;小枝下垂,圆柱形,生叶小 41 枝扁平。鳞叶端尖。 42

一氧化氮的药用价值

一氧化氮:从普通分子到医药明星 2008-12-17 19:00:12 来源: 网易探索(广州) 网友评论 6 条点击查看 以前治疗心血管疾病的药物主要是硝酸甘油,但医学界对这药物的作用机制并不清楚,而伊格纳罗和他的同仁发现其实真正起作用的是一氧化氮。 诺贝尔在一百多年前制造安全炸药时,曾把硝酸甘油作为主要原料之一。当时他患有严重的心绞痛,医生让他服用含“硝酸甘油”的药,却遭到他的激烈反对,在弥留之际,他曾这样说:“医生给我开的药竟是硝酸甘油,这难道不是对我一生巨大的讽刺吗?” 其实这并非讽刺。科学家在后来的研究中发现:硝酸甘油能舒张血管平滑肌,从而扩张血管。他们认为,肯定有一种叫做“内皮细胞舒张因子”的东西,如果找到它,就能打开人体机理奥秘的一片新天地,从而找到更有效的方式治疗心肌梗死等病。 这个因子究竟是什么?

1986年,这一百年谜团终于被伊格纳罗博士和其他两位药理学家破译,它不是猜测已久的蛋白质类大分子,而是简简单单的一氧化氮!顿时,一氧化氮摇身变成了明星分子。伊格纳罗(LouisJ.Ignarro)博士和其他两位研究者共同发现的,他们因发现有关一氧化氮在心血管系统中具有独特信号分子作用而于1998年获得诺贝尔医学奖。 伊格纳罗出生于美国,并且他所有的研究工作也是在美国完成的。他在纽约长大并完成了学前教育,在纽约的哥伦比亚大学获得化学和药物学专业的学位,然后在明尼苏达大学医学专业深造。获得了药理学博士学位,随后又考取了心血管病方面的专业资格。 虽然具有医学方面的教育背景,但是伊格纳罗并没有成为一名医生。尽管许多在学校学医的人立志要成为一名医生,治病救人,伊格纳罗却与众不同,选择了做研究工作。这一决定最终使他取得了巨大的事业成就。伊格纳罗的专业是新血管领域,因此他经常在课堂上谈到治疗心血管病的药物。要对学生讲解硝酸甘油,扩张血管、促进血液流动的药物。他说,当病人出现胸痛、心绞痛的时候,就意味着心脏的供氧不足。病人舌下含服硝酸甘油片不超过五分钟,疼痛便会消失。由于这种立竿见影的功效,一个多世纪以来,硝酸甘油被普遍用于治疗胸痛。 “硝酸甘油是一种药,但是它同时也是一种烈性的爆炸物,用于制造炸药。因此在我讲课的时候,也很想在自己的脑海里弄清楚,硝酸甘油这样的爆炸品怎么就能够用来治疗心绞痛的。我去了图书馆,想查看它到底是什么样的作用机理,但是我发现根本就没有人了解。”这位科学家回忆道。 伊格纳罗决定在实验室对硝酸甘油进行研究。经过三年的研究,他发现硝酸甘油本身并不是一种药物,可是当人体摄入之后,它就转变、代谢为一氧化氮。发现这一点之后,伊格纳罗开始研究一氧化氮的其他效用。他发现一氧化氮具有的健康益处远远超出他最初的猜想:它能降低血压,预防中风和心脏病。 然而令人吃惊的是,当时人们并不知道,人体本身居然可以产生一氧化氮,伊格纳罗介绍说,一氧化氮是一种随处可见的化合物,就是在空气中也存在。 在人体中,一氧化氮是一种非常小的分子,类似于氧气,出现在动脉内膜中。换而言之,是动脉内膜的细胞在制造一氧化氮。 “一氧化氮一旦生成之后,就与动脉中的肌肉细胞接触并使之放松,它扩张了动脉。这样就使得血压降低,从而改善血流”。 更重要的是,他接着说,这种化学品还能预防血液在一些危险的部位发生凝结。如果血液在心脏或脑部发生凝结,则病人就会罹患心脏病或中风。只要人体产生足够数量的一氧化氮,那么前面谈到的问题发生的几率就会大大降低。 伊格纳罗的发现还打破了人们认为一氧化氮是有毒物品这种错误观念。

各元素在植物的作用(同名8940)

各元素在植物的作用(同名 8940) 各元素在植物的作用 1.氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2.磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳 水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量 (增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积, 形成花青素(紫色)

3.钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、 脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收; 抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变, 减少病菌所需养分; 4.钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5.镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、AI3+、NH4+可引起Mg缺乏;镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少 6.硫(S)的生理功能-----中量元素

校园植物种类调查实验报告

校园植物种类调查实验报告 一、目的要求 1.通过本实验使学生熟悉观察、研究区域植物及其分类的基本方法。 2.认识校园内外的常见植物。 二、材料用品 照相机、铅笔、笔记本、检索表等。 三、调查方法 实地调查、实物标本、查阅资料、访谈、小组讨论。 1、实地调查:小组成员分工参观并初步认识校园内植物,拍照,做好记录,将不认识的植物重点记录、做记号。 2、采集标本:采集植物的叶片、枝条或花朵等特征部分,压制做成植物标本。 3、采访讨教:带着植物照片及植物标本向教师或学校花工师傅请教,弄清植物的名称、特性。 4、查阅资料:到图书馆或利用网络查阅相关植物的资料,获取各种植物的详细信息。 5、整理资料:集中、收集所有成员的资料,对资料进行全面整理、筛选、分类。 6、实验报告:将资料、图片打印,汇集成实验报告。 7、制作PPT:用演示文稿形式,记录和呈现我们的探究过程,分享我们的研究心得。 三、调查内容 (一) 校园和公园植物形态特征的观察

植物种类的识别、鉴定必须在严谨、细致的观察研究后进行。在对植物进行观察研究时,首先要观察清楚每一种植物的生长环境,然后再观察植物具体的形态结构特征。植物形态特征的观察应起始于根(或茎基部),结束于花、果实或种子。先用眼睛进行整体观察,细微、重要部分再借助放大镜观察。特别是对花的观察、研究要极为细致、全面,从花柄开始,通过花萼、花冠、雄蕊,最后到雌蕊。必要时要对花进行解剖,分别作横切和纵切,观察花各部分的排列情况、子房的位置、组成雌蕊的心皮数目、子房室数及胎座类型等。只有这样,才能全面、系统地掌握植物的详细特征,才能正确、快速地识别和区分植物。 (二)植物种类的识别和鉴定 在对植物观察清楚的基础上,识别、鉴定植物就会变得很容易。对校园内外特征明显、自己又很熟悉的植物,确认无疑后可直接写下名称;生疏种类须借助于植物检索表等工具书进行检索、识别。 在把区域内的所有植物鉴定、统计后,写出名录并把各植物归属到科。 (三)植物的归纳分类 在对校园内外的植物进行识别、统计后,为了全面了解、掌握园内的植物资源情况,还须对它们进行归纳分类。分类的方式可根据自己的研究兴趣和植物具体情况进行选择。对植物进行归纳分类时要学会充分利用有关的参考文献。下面是几种常见的植物归纳分类方式。 1.按植物形态特征分类木本植物、乔木、灌木、木质藤本、草本植、一年生草本、二年生草本、多年生草本 2.按植物系统分类:苔藓植物、蕨类植物、裸子植物、被子植物、双子叶植物、单子叶植物

常见种子植物108科的野外识别要点

常见种子植物108科的野外识别要点 1.松科:木本;叶针形或线形,螺旋状排列,单生或簇生;球果种鳞与苞鳞离生。 2.杉科:乔木;叶披针形、钻形、条形或鳞形;种鳞除水杉为交互对生外均为螺旋状排列;种鳞与苞鳞半合生或合生。 3.柏科:木本;叶鳞形,叶与种鳞均为交互对生或轮生;种鳞与苞鳞合生。 4.罗汉松科:常绿木本;叶线形、披针形或阔叶状圆形、针状或鳞片状,互生,稀对生;种子核果状或坚果状,为肉质假种皮所包被着生于种托上。 5.三尖杉科:常绿木本,小枝对生;叶线形,对生,基部扭曲而成二列状排列;种子核果状,为由珠托发育而成的肉质假种皮所包被。 6.红豆杉科:常绿木本,小枝对生;叶线形或针形,互生或对生,常二列;种子核果状或坚果状,为由珠托发育而成的肉质假种皮所全包或半包。 7.木兰科:木本;单叶互生,托叶包被芽、早落、并在节上留有环痕;雄蕊和雌蕊多数、离生、螺旋状排列;蓇葖果或稀带翅坚果。 8.八角科:常绿木本;单叶互生,无托叶,具香气;心皮离生,轮状排列;蓇葖果。 9.五味子科:藤本;单叶互生,无托叶;花单性;聚合果呈球果状或散生于极延长的花托上;种子藏于肉质果肉内。 10.樟科:木本;单叶互生,具樟脑味;花药瓣裂,第三轮雄蕊外向;核果。 11.毛茛科:草本;裂叶或复叶;花两性,各部离生,雄蕊和雌蕊螺列于膨大的花托上;聚合瘦果。 12.睡莲科:水生草本;具根状茎;叶盾状或心形;花大,单生;坚果埋于海绵质的花托内或为浆果状。 13.小檗科:花单生或总状花序,花瓣常变为蜜腺,雄蕊与花瓣同数且与其对生,花药活板状开裂;浆果或蒴果。 14.木通科:藤本;常掌状复叶互生;花单性,单生或总状花序,花部3基数,花药外向纵裂;肉质的蓇葖果或浆果。 15.防己科:藤本;单叶互生,常为掌状叶脉;花单性异株,心皮离生;核果。 16.马兜铃科:草本或藤本;叶常心形;花两性,常具腐肉气,花被通常单层、合生、3裂,子房下位或半下位;蒴果。 17.胡椒科:叶具离基三出脉,常有辛辣味;花小,裸花;核果。 18.罂粟科:植物体有白或黄色汁液;无托叶;萼早落,雄蕊多数,离生;侧膜胎座;蒴果。

钠元素对植物的危害和钾元素对植物的作用

钠元素对植物的危害和钾元素对植物的作用 以下是钠元素对植物的危害和钾元素对植物的作用详解。 一.钠离子对植物的危害 盐碱对植物可造成两种危害:一是毒害作用,当植物吸收进较多的钠离子或氯离子时,就会改变细胞膜的结构和功能。例如,植物细胞里的钠离子浓度过高时,细胞膜上原有的钙离子就会被钠离子所取代,使细胞膜出现微小的漏洞,膜产生渗漏现象,导致细胞内的离子种类和浓度发生变化,核酸和蛋白质的合成和分解的平衡受到破坏,从而严重影响植物的生长发育。同时,因盐分在细胞内的大量积累,还会引起原生质凝固,造成叶绿素破坏,光合作用率急剧下降。此外,还会使淀粉分解,造成保卫细胞中糖分增多、膨压增大,最终导致气孔扩张而大量失水。这些危害,都会造成植物死亡。二是提高了土壤的渗透压,给植物根的吸收作用造成了阻力,使植物吸水发生困难。结果植物体内出现严重缺水,光合作用和新陈代谢无法进行;同时,还会出现细胞脱水、植株萎蔫,最后导致植物死亡。 二.钾对植物的作用 1、酶类活化 在化学反应过程中,酶起着催化剂的作用。酶将各种分子聚集在一起,促成化学反应的进行。植物生长过程所涉及的60多种不同类型的酶均需要钾加以“活化”。钾可改变酶分子的物理构型,使适宜的化学活性位置暴露出来,参加反应。细胞的含钾量可决定酶的活化量,进而决定化学反应的速度,因此,钾进入细胞的速度可控制某一反应进行的速度。钾对酶的活化作用或许是钾在植物生长过程中最重要的功能之一。 2、水分利用 钾在植物根系内积累从而产生渗透压梯度,使水分吸入根系。缺钾植株吸水能力减弱,遇供水不足时,较易遭受胁迫。植株亦依靠钾素来调节其气孔(叶片与大气交换二氧化碳、水蒸汽和氧气的孔隙)的启闭。气孔作用的正常发挥有赖于供钾充足。当钾进入气孔两侧的保卫细胞时,细胞因充水而膨胀,孔隙张开,使气体能自由进出。当供水不足时,钾则被泵出保卫细胞外,孔隙关闭,以防水分亏损。若供钾不足,气孔将变得反应迟钝,造成水蒸汽逸损;反之,供钾充足的植株则不易遭受水分胁迫。 3、光合作用 利用太阳能将二氧化碳和水化合成糖分这一过程最初形成的高能物质是三磷酸腺苷(ATP),ATP 继而作为能源用于其他化学反应。钾离子可以使ATP生成位置的电荷保持平衡状态。当植株缺钾时,光合作用和ATP 生成速度均减慢,因而所有依靠ATP的过程都受到抑制。钾在光合作用中的作用较为复杂,但在调节光合作用方面,钾对酶的活化和在ATP制造过程的作 用比它对气孔的调节作用更为重要。 4 、糖分运输 植物通过韧皮部将光合作用产生的糖分运输到植物的其他部位供利用或贮藏起来。植物的运输系

校园常见植物实验报告

实验十校园常见植物识别与分类 基础生物学实验(植物生物学实验) 一、实验目的 1 识别校园植物中一些常见的种类,了解其主要形态特点、进化地位和经济利用价值。 2 学习观察和鉴定植物的基本方法。 二、实验内容 1 观察不同植物的新鲜材料,了解其外部形态特点,比较不同类群间的差异。 2 解剖观察代表植物的花,了解其结构特点,分析其进化程度及其分类学意义。 3 识别校园植物。 三、实验原理 被子植物是日前地球上种类最多,分类最广的植物,也是与人类关系最为密切的植物类群。在长期的系统演化过程中,被子植物分化形成了许多不同的种类,它们形态各异,并有各自特定的分布区。因此在本实验中,可根据不同地区的环境特点以及学校所在地区的植被类型,选择一些常见的代表进行观察,并尽可能考虑到被子植物中一些主要的科、属,如:木兰科、毛茛科、蔷薇科、豆科、菊科、百合科、禾本科等。 四、实验步骤 1 取不同植物的标本或新鲜材料,对照检索表或植物志等工具书进行观察,了解不同植物的外部形态特点。 2 在实体显微镜下,运用解剖针,解剖刀等工具对代表植物花的结构进行解剖观察,了解其结构特点,分析其进化程度,并比较不同类群植物在花结构上的差异。 四.校园植物名录 序 中文名学名属名科名号 1 假连翘Duranta repens 假连翘属马鞭草科 Ligustrum quihoui 女贞属木犀科2 小叶女 贞 3 九里香Murraya exotica 九里香属芸香科 4 垂叶榕Ficus benjamina 榕属桑科 Phoenix roebelenii O’Brien 刺葵属棕榈科5 美丽针 葵 6 鱼尾葵Caryota ochlandra 鱼尾葵属棕榈科 7 刺桐Erythrina variegata 刺桐属蝶形花科 8 朱缨花Calliandra haematocephala 朱缨花属含羞草科 9 芒果Mangifera vndica linn 芒果属漆树科 10 红花檵Loropetalum chinense 檵木属金缕梅科

一氧化氮对人体的重要作用

一氧化氮对人体的重要作用 1.调节血管紧张度,降低血压 早期高血压没有明显症状,可能表现不出来。由于受损的内皮细胞不能产生足量的一氧化氮,一氧化氮缺乏导致了一系列心脑血管病,使血压更高、动脉硬化更严重,进入了恶性循环。与体内其他任何因素相比,一氧化氮能更好地舒张血管平滑肌(降低血管的阻力),随着平滑肌的舒张,血管扩张血流更容易通过,从而降低血压的目的。 2.改善糖尿病及其并发症;一氧化氮能够降低胰岛素抵抗力,提升胰岛素对血糖的敏感度,从而加快体内血糖的代谢;另一方面,一氧化氮能够修复血管内皮细胞,降低因糖质代谢而引发的血管、神经病变,从根本上抑制及改善糖尿病并发症。最后一氧化氮还能够清除体内的自由基,提升胰岛素受体敏感度,更好的起到代谢血糖的作用。 3.清除血管炎症,防止动脉硬化内皮的损伤能减少一氧化氮的生成。为了保持心血管的健康,机体需要产生有益于健康的足量的一氧化氮。事实上,当机体正在生成足量甚至过量的一氧化氮时,不可能形成斑块和动脉粥样硬化,甚至可逆转这些情况。 4.改善睡眠质量;科学家们在研究过程中发现如果一氧化氮配方科学有效的话,还可以改善睡眠质量。帕米诺一氧化氮采用科学的原料配比,在增加血管、神经供血量及营养供应的同时,又能够舒暖血管平滑肌,促进体内松果体素的自然分泌,从根本上改善睡眠质量。 5.防止凝血,清除血栓,预防心脑血管疾病在一氧化氮的诸多作用中,以舒张血管作用最为重要,这有助于调整血流至全身的每一个部位。一氧化氮可舒张和扩张血管以确保心脏的足够供血。一氧化氮也可以阻止血栓形成,血栓可诱发卒中和心脏病发作,同时一氧化氮可调节血压。一氧化氮的另一个重要作用就是减慢动脉硬化斑块在血管壁的沉积。在冠状动脉内,胆固醇和脂肪逐渐增多并形成动脉硬化斑块,结果是动脉变窄、甚至阻塞动脉,从而使心脏血液供应减少,一氧化氮可以消除这种斑块,从根本上改善甚至逆转心脑血管病。一氧化氮是维持冠状动脉舒张反应的重要物质。冠状动脉内一定量的一氧化氮的释放,能够维持较低的冠状动脉阻力,保证心脏充足的供血,特别是慢性心脑血管的人,能大大减少冠状动脉缺血的危害,防止冠心病的发作。 6.清除自由基,抗发炎,消肿胀,防止病毒入侵,抑制癌细胞一氧化氮能使引发心血管病发生的氧化应激降到最低。当大量存在的自由基未被清除之前,它们会抑制机体生成一氧化氮。当机体处于氧化应激时机体比正常产生较少的一氧化氮。抗氧化剂对改善这种状况有很好的帮助,机体的抗氧化剂类似清道夫,在自由基产生损伤前寻早并中和它们。白细胞利用一氧化氮不仅可以杀死一系列细菌、真菌和支原体到呢个病原体,而且对肿瘤也有对抗作用,由于一氧化氮能够诱导细胞的死亡和凋亡过程,故一氧化氮能很好的抑制肿瘤的生长,达到了防癌抗癌的目的。 结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义 精神源学说认为,在外因刺激下,病人出现较长期或反复较明显的精神紧张、焦虑、烦躁等情绪变化时,大脑皮层兴奋抑制平衡失调,导致交感神经末梢释放儿茶酚胺增加(主要是去甲肾上腺素和肾上腺素),从而使小动脉收缩,周围血管阻力上升,血压增高。

一氧化氮说明

一氧化氮产品说明 一氧化氮性质 化学品中文名称:一氧化氮 化学品英文名称:nitrogen monoxide 中文名称2:氧化氮 英文名称2:nitric oxide 纯度:99.9% 规格:40L CAS No.:10102-43-9 EINECS号:233-271-0 分子式:NO 分子量:30.01 分子键长:115.08pm 键解离能:941.69kJ/mol 磁性:顺磁性 一氧化氮用途 一、化学工业 一氧化氮也可用于硝化生产工艺,它可与烯烃加成,生成二亚硝基化合物,后者可 被氧化为硝基化合物。 聚氯乙烯行业的聚合反应中止剂。 二、电子工业 一氧化氮主要用于电子工业中的硅氧化膜形成、氧化、化学气相沉积。 三、航天工业 一氧化氮可用于航天火箭和卫星的推进剂。 四、计量标准气、校正气 标准气、校正气、大气检测混合气。 环保检测。 五、生命科学和医疗 一氧化氮在疾病治疗中的应用包括两个方面: 一是直接输入气体一氧化氮(如吸入一氧化氮缓解肺动脉高压与呼吸窘迫),或利 用一氧化氮供体产生一氧化氮作用于靶器官或组织(如冠心病、心肌缺血、内毒素 性休克、肺动脉高压及阳痿等),从而起到缓解或治疗作用。 二是加入相关药物调节机体一氧化氮的生成速度,如L-精氨是合成一氧化氮的前体,对许多疾病(心血管疾病如高血压、高胆固醇血症、充血性心力衰竭等,肾脏疾病如急性肾衰、阻塞性肾病、慢性肾病及胃黏膜溃疡等)具有有益的治疗作用。 一氧化氮使用注意事项

操作注意事项:严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿透气型防毒服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。远离易燃、可燃物。防止气体泄漏到工作场所空气中。避免与卤素接触。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与易(可)燃物、卤素、食用化学品分开存放,切忌混储。储区应备有泄漏应急处理设备。 以上资料由谱源气体收集整理,欢迎广大客户学习借鉴

校园植物种类调查实验报告

校园植物种类调查实验报告

校园植物种类调查实验报告 一、目的要求 1.通过本实验使学生熟悉观察、研究区域植物及其分类的基本方法。 2.认识校园内外的常见植物。 二、材料用品 照相机、铅笔、笔记本、检索表等。 三、调查方法 实地调查、实物标本、查阅资料、访谈、小组讨论。 1、实地调查:小组成员分工参观并初步认识校园内植物,拍照,做好记录,将不认识的植物重点记录、做记号。 2、采集标本:采集植物的叶片、枝条或花朵等特征部分,压制做成植物标本。 3、采访讨教:带着植物照片及植物标本向教师或学校花工师傅请教,弄清植物的名称、特性。 4、查阅资料:到图书馆或利用网络查阅相关植物的资料,获取各种植物的详细信息。 5、整理资料:集中、收集所有成员的资料,对资料进行全面整理、筛选、分类。

6、实验报告:将资料、图片打印,汇集成实验报告。 7、制作PPT:用演示文稿形式,记录和呈现我们的探究过程,分享我们的研究心得。 三、调查内容 (一) 校园和公园植物形态特征的观察 植物种类的识别、鉴定必须在严谨、细致的观察研究后进行。在对植物进行观察研究时,首先要观察清楚每一种植物的生长环境,然后再观察植物具体的形态结构特征。植物形态特征的观察应起始于根(或茎基部),结束于花、果实或种子。先用眼睛进行整体观察,细微、重要部分再借助放大镜观察。特别是对花的观察、研究要极为细致、全面,从花柄开始,通过花萼、花冠、雄蕊,最后到雌蕊。必要时要对花进行解剖,分别作横切和纵切,观察花各部分的排列情况、子房的位置、组成雌蕊的心皮数目、子房室数及胎座类型等。只有这样,才能全面、系统地掌握植物的详细特征,才能正确、快速地识别和区分植物。(二)植物种类的识别和鉴定 在对植物观察清楚的基础上,识别、鉴定植物就会变得很容易。对校园内外特征明显、自己又

植物学重点科特征及代表植物

1.木兰科的主要形态特征: 木本。单叶互生;托叶大,脱落后在小枝上留下环状托叶痕。花单生,花被常成花瓣状,3基数。花药长,花丝短;雌雄蕊多数离生,螺旋状排列于伸长的花托上。多为聚合蓇葖果。 代表植物及常见植物:玉兰(白玉兰) 紫玉兰鹅掌楸(马褂木) 八角白兰(白兰花) 含笑花五味子 2.毛茛科主要形态特征: 草本或藤本。叶分裂或复叶。花两性,5基数,常有花瓣花萼的分化;雌雄蕊多数离生,螺旋状排列于膨大的花托上。聚合瘦果或蓇葖果。代表植物:牡丹芍药乌头毛茛白头翁飞燕草黄连 3.睡莲科的主要特征: 水生草本。有根状茎。叶心形、戟形到盾状。花单生与莲科相似,而心皮大多合生,无大而平顶、蜂窝状的花托(与莲科不同)。代表植物: 莲(荷) 王莲睡莲芡实萍蓬草莼菜 4.桑科形态特征: 多木本,常有乳状液汁。单叶互生,托叶早落。花小,集成多种花序;花单性单被;雄蕊与花被同数且对生;2心皮合生子房。聚花果。代表植物:桑树构树无花果. 榕树拓树印度橡皮树 5.石竹科形态特征: 草本,茎节膨大;单叶对生;花单生或二歧聚伞花序,花两性;雄蕊为花瓣的2倍;子房上位,特立中央胎座。果实为蒴果。代表植物:繁缕蚤缀(鹅不食草)石竹什样锦康乃馨粘毛卷耳蔓樱草(矮雪轮)满天星 6.蓼科主要形态特征: 草本。单叶全缘,互生,膜质托叶鞘。花两性,单被。子房3心皮1室,1胚珠。瘦果三棱形或凸镜形,常包于 宿存花被内。代表植物及常见植物:荞麦酸模属蓼属大黄属竹节 7.锦葵科形态特征: 多草本,韧皮纤维发达,常具星状毛或粘液。单叶互生,常具掌状脉。花两性,常有副萼;单体雄蕊,花药1室。中轴胎座。蒴果或分果。代表植物:陆地棉锦葵蜀葵苘麻红麻. 野西瓜苗黄秋葵木槿扶桑 8. 葫芦科的形态特征: 攀援或蔓生草质藤本,卷须生叶腋。叶互生,常掌状分裂。单性花,5基数;花丝常两两连合,一枚独立;3心皮合生,下位子房。果为瓠果。代表植物:南瓜笋瓜黄瓜甜瓜葫芦丝瓜冬瓜西瓜罗汉果苦瓜 9. 杨柳科形态特征: 木本。单叶互生。花单性异株,葇荑花序。每花有一苞片,无花被,有花盘或腺体。雄蕊2,雌蕊1,子房1 室上位。蒴果,2~4瓣裂,种子小,多数,基部有长毛。代表植物: 毛白杨山杨垂柳胡杨大叶柳 10. 十字花科主要形态特征: 草本,单叶互生,基生叶呈莲座状;花两性,总状花序,十字形花冠。四强雄蕊。 2心皮合生子房,被假隔膜分为2室,侧膜胎座。角果。代表植物:油菜青菜羽衣甘蓝大白菜甘蓝菜花和西兰花榨菜萝卜 11.山茶科的主要特征: 多常绿木本。单叶互生,常革质。花两性,辐射对称。雄蕊多数,外轮常集生为数束,着生花瓣基部。中轴胎座,蒴果。 代表植物: 茶普洱茶油茶山茶南山茶金花茶厚皮香木荷

钙元素在植物中的作用

酸性土壤主要分布于南方地区,种类有:棕壤、褐土、娄土、灰褐土、灌淤土等。 碱性土壤多分布于北方地区,种类有:碱土、黄绵土、黑垆土、棕钙土、栗钙土等。 土壤的主要类型: 1.棕壤:棕壤又称棕色森林土,主要分布于半湿润半干旱地区的山地垂直带谱中,如秦岭北坡、吕梁山、中条山、六盘山等高山与洮河流域的密茂针叶林或针阔混交林的林下。在褐土分布区之上。 具有深达1.5-2m发育良好的剖面,有枯枝落叶层、腐殖质聚积层,粘化过渡层,疏松的母质层等。表土层厚约15-20cm,质地多为中壤。其下则为粘化紧实的心土层,粘粒聚合作用明显,厚约30-40,富含胶体物质和粘粒,有明显的核状或棱块状结构,在结构体表面有明显的铁锰胶膜复被。再下逐渐过渡至轻度粘化的底土层。K、Ca、Mg、Mn在表层腐殖质中有明显聚积。土壤胶体吸收性较强,土壤代换总量约5—25当量/100g土,土壤吸收性复合体大部分为盐基所饱和,盐基饱和度达80%以上。土壤呈微酸性反应,PH值6.5左右。发育在酸性基岩母质上的棕壤,PH值可达5.5-6,盐基饱和度也较低,约在60—70%。棕壤土养分释放迅速,因土壤质地粘重,结构和通透性差,水分不易入渗,在地势较高的山坡地,易受干旱威胁,在地势低洼地带,又易形成内涝。 2.褐土:褐土分布区为暖温带半干旱半湿润的山地和丘陵地区,在水平分布上处于棕壤以西的半湿润地区,在垂直分布上,位于棕壤带以下,在黄土高原地区主要分布于秦岭北坡、陇山、吕梁山、伏牛山、中条山等地形起伏平缓、高度变化不大的山地丘陵和山前平原以与河谷阶地平原。 褐土多发育在各种碳酸盐母质上,其成土过程,主要是粘化过程和碳酸钙的淋溶淀积过程。典型的褐土剖面包括暗灰色的腐殖质层(A层)、鲜褐土的粘化层(B层)、碳酸钙积聚的钙积层(BCa)和母质层(C层)。土体中的粘化现象明显,粘化层紧实而具有核状或块状结构,物理性粘粒含量一般在30—50%。钙积层碳酸钙含量20—30%。土壤上层呈中性或微酸性反应,下层呈中性或微碱性。土壤代换量较高,可达20—40mg当量/100g土,代换性盐基以钙、镁为主,粘粒矿物以水云母和蛭石为主。具有良好的渗水保水性能,但水分的季节性变化明显,表现为春旱明显。土壤胶体吸收能力强,盐基饱和度高。在自然植被下,有机质含量为1—3%,但由于褐土适于耕作,大部分已辟为农地,致使有机质含量逐渐减少(一般为1%左右),氮磷贮量少。褐土肥效反应快,但稳肥性差。由于粘化现象明显,土壤易板结,耕性较差。 3.碱土:分布面积很小,主要分布在银川平原西大滩一带的洼地。其主要特征是土壤胶体复合体吸收了大量的交换性钠,土壤呈碱性,PH值大于9,农作物和高等植物均无法生长。 4.娄土:主要分布在潼关以西、宝鸡以东的关中平原地区,在山西的南部,河南的西部也有一定面积的分布。 娄土是褐土经人为长期耕种熟化、施肥覆盖所形成的优良农业土壤。其剖面构型大体可分上

《植物学》被子植物常见科的特征

《植物学》 1、木兰科Magnoliaceae 木兰科的识别特征: 木本。花大、萼、瓣不分,雄蕊、雌蕊多数、离生,螺旋状排列于柱状的花托上,花托于果时延长。聚合蓇葖果。 原始特征:同被花,柱状花托,雌雄蕊多数,螺旋状着生在柱状花托上。花丝短,花药长;柱头和花柱分化不明显。 2、毛茛科Ranunculaceae 本科约37属,1200种,主产北温带。我国约有36属,570多种,各省均有。 本科的识别特征:草本。萼片、花瓣各5个,或无花瓣,萼片花瓣状,雄雌蕊多数、离生,果为瘦果。 3 锦葵科识别特征: 单叶,单体雄蕊,花药1室,蒴果或分果。如棉花、麻、洋麻,锦葵、蜀葵等。 4、葫芦科Cucurbitaceae 葫芦科识别特征: 具卷须的草质藤本。叶掌状分裂。花单性;下位子房;花药折叠。瓠果。 5十字花科识别特征: 植株具辛辣味。十字形花冠,四强雄蕊,角果,侧膜胎座,具假隔膜。 6 蔷薇科识别特征: 花为5基数,心皮离心或合生,子房上位或下位,周位花,蔷薇型花。果实为核果、梨果、瘦果等。 根据心皮数、花托类型、子房位置和果实特征分为四个亚科: 1.蓇葖果;心皮5,分离;常无托叶------------------------绣线菊亚科 1.果不开裂;具托叶。 2.子房上位;心皮1或2至多数,分离。 3.心皮2至多数,分离;聚合瘦果或蔷薇果--------蔷薇亚科 3.心皮单生;核果-------------------------------------------梅亚科 2.子房下位;心皮2-5,合生;梨果-------------------------苹果亚科 7豆科识别特征: 叶常为羽状复叶或3出复叶,有叶枕。花冠多为蝶形或假蝶形,雄蕊为2体、单体或分离,雌蕊由1心皮构成。果实为荚果。 1.花辐射对称,花瓣镊合状排列,雄蕊多数------------------------------------含羞草亚科 1.花两侧对称,花瓣覆瓦状排列,雄蕊10。 2.假蝶形花冠,上升覆瓦状排列,旗瓣位于最内方;雄蕊分离-----------苏木亚科 2.蝶形花冠,下降覆瓦状排列,旗瓣位于最外方;二体雄蕊-------------蝶形花亚科 8伞形科识别特征:

各种元素对植物的作用

各种元素对植物的作用 钾: 钾对植物的生长发育也有着重要的作用,但它不象氮、磷一样直接参与构成生物大分子。它的主要作用是,在适量的钾存在时,植物的酶才能充分发挥它的作用。钾能够促进光合作用。有资料表明含钾高的叶片比含钾低的叶片多转化光能50%-70%。因而在光照不好的条件下,钾肥的效果就更显著。此外钾还能够促进碳水化合物的代谢、促进氮素的代谢、使植物经济有效地利用水分和提高植物的抗性。由于钾能够促进纤维素和木质素的合成,因而使植物茎杆粗壮,抗倒伏能力加强。此外,由于合成过程加强,使淀粉、蛋白质含量增加,而降低单糖,游离氨基酸等的含量,减少了病原生物的养分。因此,钾充足时,植物的抗病能力大为增强。例如,钾充足时,能减轻水稻纹枯病、白叶枯病、稻瘟病、赤枯病及玉米茎腐病,大小斑病的危害。钾能提高植物对钾能增强植物对各种不良状况的忍受能力。 缺乏钾的症状是:首先从老叶的尖端和边缘开始发黄,并渐次枯萎,叶面出现小斑点,进而干枯或呈焦枯焦状,最后叶脉之间的叶肉也干枯,并在叶面出现褐色斑点和斑块。 镁: 镁是叶绿素的组成部分,也是许多酶的活化剂,与碳水化合物的代谢、磷酸化作用、脱羧作用关系密切。植物缺镁时的症状首先表现在老叶上。开始时,植物缺镁时的症状表现在叶的尖端和叶缘的脉尖色泽退淡,由淡绿变黄再变紫,随后向叶基部和中央扩展,但叶脉仍保持绿色,在叶片上形成清晰的网状脉纹;严重时叶片枯萎、脱落。 铁: 铁是形成叶绿素所必需的,缺铁时便产生缺绿症,叶于呈淡黄色,甚至为白色。铁还参加细胞的呼吸作用,在细胞呼吸过程中,它是一些酶的成分。由此可见,铁对呼吸作用和代讨过程有重要作用。铁在植物体中的流动性根小,老叶子中的铁不能向新生组织中转移,因而它不能被再度利用。因此缺铁时,下部叶片常能保持绿色,而嫩叶上呈现失绿症。 缺铁症状:缺铁时,下部叶片能保持绿色,而嫩叶上呈现失绿症。 铜: 铜是植物正常生长繁殖所必需的微量营养元素,是植物体内多种氧化酶的组成成分。植物中有许多功能酶,如抗坏血酸氧化酶、酚酶、漆酶等都含有铜。它还参与植物的呼吸作用,影响到作物对铁的利用,在叶绿体中含有较多的铜,因此铜与叶绿素形成有关。不仅如此,钢还具有提高叶绿素稳定性的能力,避免叶绿素过早遭受破坏,这有利于叶片更好地进行光合作用。铜能催化若干植物过程在氮的代谢中,缺铜能影响蛋白质的合成,使氨基酸的比例发生变化,降低蛋白质的含量;在碳水化合物的代谢中,缺铜可抑制光合作用的活性,使叶片畸形和失绿;在木质素的合成中,缺铜会抑制木质化,使叶、茎弯曲和畸形,木质部导管干缩萎蔫。缺铜时叶绿素减少,叶片出现失绿现象,幼叶的叶尖因缺绿而黄化并干枯,

植物形态观察报告

深圳大学实验报告课程名称:生命科学基础实验 实验项目名称:校园植物观察 学院: 专业: 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务处制

龙船花全株侧枝向上挺直生长且平滑,叶子表面光滑革质对生,全缘而呈倒卵形状或是椭圆形。一般长度约9厘米-12厘米左右,宽约4 是深绿色,背面的颜色较浅。花属于顶生的伞房花序,每簇花丛大约有 小花由其冠筒上长出后分裂4-5片椭圆形花瓣,冠筒长约2.5 红砖色。20-30朵聚生的小花整体呈现一个大圆球状,花团锦簇。

对生的二回羽状复叶舌状花瓣

茎钝四棱形或近圆柱形,披淡褐色鳞片状糙毛。单叶对生,长椭圆形或卵形,先端钝尖,基部近圆形或浅心形,全缘,叶片坚纸质,两面披淡褐色糙毛及短柔毛,长约4-12厘米,宽约3-8厘米;叶脉5-7条基出;叶柄长约 厘米。 花为聚伞花序,长于分枝顶端,近头状,由3-7朵花组成,稀单生,基部具叶状总苞;花梗密披鳞片状糙毛,长约3-20亳米;花萼 宽,内侧红色,外侧披淡褐色鳞片状糙毛,先端渐尖,萼管壶形,长约 花瓣5片,倒卵形,先端圆形,粉红色或玫瑰红色,密披缘毛,离瓣花;雄蕊10枚,5长5短,较长的雄蕊基部黄色直立,上部呈关节状弯曲,状似镰刀,连接紫红色半圆形的花药,短的雄蕊黄色,并未分两节,连接黄色的花药;雌蕊柱状,墨绿色;花柱线形,紫红色。

茎肉质,直立,粗壮。叶互生;叶柄长约1-3cm,两侧有数个腺体;叶片披针形,长4-12cm,宽1-3cm,先端长渐尖,基部渐狭,边缘有锐锯齿,侧脉对。 花梗短,单生或数枚簇生叶腋,密生短柔毛;花大,通常粉红色或杂色,单瓣或重瓣;萼片2,宽卵形,有疏短柔毛;旗瓣圆,先端凹,有小尖头,背面中

相关主题
文本预览
相关文档 最新文档