当前位置:文档之家› 立体几何_二面角问题方法归纳

立体几何_二面角问题方法归纳

立体几何_二面角问题方法归纳
立体几何_二面角问题方法归纳

二面角的求法

一、 定义法:

从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1(全国卷Ⅰ理)如图,四棱锥S

ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD

,AD =

2DC SD ==,点M 在侧棱SC 上,ABM

∠=60°

(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=?,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最

大角的正切值为

2

E —A

F —C 的余弦值.

二、三垂线法

三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。

例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。

(1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。

练习2(天津)如图,在四棱锥ABCD P -中,底面ABCD 是矩形.

已知

60,22,2,2,3=∠====PAB PD PA AD AB .

(Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小;

(Ⅲ)求二面角A BD P --的大小.

三.补棱法

本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD

的中点,PA ⊥底面ABCD ,PA =2.

(Ⅰ)证明:平面PBE ⊥平面PAB ;

(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.

练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600

的角,侧面BCC 1B 1⊥底面ABC 。 A B

C E D

P E

A

B

C F

E

A B C

D

D

(1)求证:AC 1⊥BC ;

(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 四、射影面积法(cos s S

q

=

射影)

凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜

射S S =

θ

)求出二面角的大小。

例4.(北京理)如图,在三棱锥P ABC -中,2AC BC ==,90

ACB ∠=,

AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;

(Ⅱ)求二面角B AP C --的大小;

练习4: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值.

五、向量法

向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。 例4:(天津卷理)如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=

1

2

AD

(I) 求异面直线BF 与DE 所成的角的大小;(II) 证明平面AMD ⊥平面CDE ; 求二面角A-CD-E 的余弦值。

练习5、(湖北)如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB .

(Ⅰ)求证:

AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为θ,二面角

1A BC A --的大小为?

,试判断θ与

?的大小关系,并予以证明.

A

B

P

A

D B C

E D B

C A 图

二面角大小的求法的归类分析

一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例1 在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B-PC —-D 的大小。

二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,例2 在四棱锥P-ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角

三、 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,

二面角的平面角所在的平面与棱垂直; 例3

在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求B-PC-D 的大小。

四、射影面积法(cos s S

q

=

射影)

凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜

射S S =

θ

)求出二面角的大小,其中θ为平面角的大小,此方法不必在图形中画出平面角;

例4 在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

五、补棱法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。 例5、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角 的大小。(补形化为定义法)

六、向量法:向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。

例6、(湖北)如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB .

(Ⅰ)求证:

AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为θ

,二面角

1A BC A --的大小为?

,试判断θ与?的大小关系,并予以证明.

由此可见,二面角的类型和求法可用框图展现如下:

二面角大小的求法答案

定义法:本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1(2009全国卷Ⅰ理)证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点

F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM

⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是

SC 的中点,∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。则GFB ∠即为所求二面角.. ∵2=SM

,则22

=

GF ,又∵6==AC SA ,∴2=AM , ∵

2==AB AM ,0

60

=∠ABM ∴△

ABM

是等边三角形,∴3=BF

, 在△GAB 中,

2

6

=

AG ,

2=AB ,090=∠GAB ,∴2

11

423=

+=

BG F

G

366

23

2

2221132

12cos 2

2

2

-=-=??-

+=?-+=∠FB GF BG FB GF BFG ,∴二面角S AM B --的大小为)3

6arccos(-

练习1(2008山东)分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。(答案:二面角的余弦值为

5

15

) 二、三垂线法本定理亦提供了另一种添辅助线的一般规律。如(例2)过二面角B-FC 1-C 中半平面BFC 上的一已知点B 作另一半平面FC 1C 的垂线,得垂足O ;再过该垂足O 作棱FC 1的垂线,得垂足P ,连结起点与终点得斜线段PB ,便形成了三垂线定理的基本构图(斜线PB 、垂线BO 、射影OP )。再解直角三角形求二面角的度数。

例2.(2009山东卷理) 证(1)略解(2)因为AB=4, BC=CD=2, 、F 是棱AB 的中点,所以BF=BC=CF,△BCF 为正三角形,取CF 的中点O,则OB ⊥CF,又因为直四棱柱ABCD-A 1B 1C 1D 1中,CC 1⊥平面ABCD,所以CC 1⊥BO,所以OB ⊥平面CC 1F,过O 在平面CC 1F 内作OP ⊥C 1F,垂足为P,连接BP,则∠OPB 为二面角B-FC 1-C 的一个平面角, 在△BCF 为正三角形中

,OB

=在Rt △CC 1

F 中, △OPF ∽△

CC 1F,∵11OP OF CC C F =

∴2OP 在Rt △OPF 中

,BP =

cos OP OPB BP ∠=所以二面角B-FC 1-C

.

练习2(2008天津)分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD ⊥平面PAB 后,容易发现平面PAB ⊥平面ABCD ,点P 就是二面角P-BD-A 的半平面上的一个点,于是可过点P 作棱BD 的垂线,再作平面ABCD 的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角A BD P

--的大小为4

39

arctan

) 三.补棱法

例3(2008湖南)分析:本题的平面PAD 和平面PBE 没有明确的交线,依本法显然要补充完整(延长AD 、BE 相交于点F ,连结PF .)再在完整图形中的PF .上找一个适合的点形成二面角的平面角解之。

(Ⅰ)证略解: (Ⅱ)延长AD 、BE 相交于点F ,连结PF .

过点A 作AH ⊥PB 于H ,由(Ⅰ)知,平面PBE ⊥平面PAB ,所以AH ⊥平面PBE . 在Rt △ABF 中,因为∠BAF =60°,所以,AF =2AB =2=AP . 在等腰Rt △PAF 中,取PF 的中点G ,连接AG . 则AG ⊥PF .连结HG ,由三垂线定理的逆定理得,PF ⊥HG .所以∠AGH 是平面PAD 和平面PBE 所成二面角的平面角(锐角).

在等腰

Rt △PAF

中,

2

AG PA ==在Rt △PAB 中,

AP AB AH PB ====

所以,在Rt △AHG 中,

sin AH AGH AG ∠===故平面PAD 和平面PBE

所成二面角(锐角)的大小是 练习3提示:本题需要补棱,可过A 点作CB 的平行线L (答案:所成的二面角为45O

) 四、射影面积法(cos s S

q

=

射影)

例4.(2008北京理)分析:本题要求二面角B —AP —C 的大小,如果利用射影面积法解题,不难想到在平面ABP 与平面ACP

中建E

A B

C

F E 1 A 1 B 1

C 1

D 1

D

F 1 O

P

A

B

C

E

D P

F

G

H A C

B

B 1

C 1

A 1

L

立一对原图形与射影图形并分别求出S 原与S 射

于是得到下面解法。解:(Ⅰ)证略(Ⅱ)

AC BC =,AP BP =,APC BPC ∴△≌△.

又PC AC ⊥,PC BC ∴⊥.又90ACB ∠=,即AC BC ⊥,且AC PC C =,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,.AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影,CE AP ∴⊥.

∴△ACE 是△ABE 在平面ACP 内的射影,于是可求得:

2

222=+===CB AC AP BP AB ,

622=-=AE AB BE ,2==EC AE 则1222

121=?=?==?CE AE S S ACE

射,

3622

1

21=?=?=

=?EB AE S S ABE 原, 设二面角B AP C --的大小为?,则33

31cos =

==原射S S ? ∴二面角B AP C -

-的大小为3

3

arccos

=? 练习4:分析 平面AB 1E 与底面A 1B 1C 1D 1交线即二面角的棱没有给出,要找到二面角的平面角,则必须先作两个平面的交线,这给解题带来一定的难度。考虑到三角形AB 1E 在平面A 1B 1C 1D 1上的射影是三角形A 1B 1C 1,从而求得两个三角形的面积即可求得二面角的大小。(答案:所求二面角的余弦值为cos θ=3

2

).

五、向量法

例4:(2009天津卷理)现在我们用向量法解答:如图所示,建立空间直角坐标系,以点

A 为坐标原点。设,1=A

B 依题意得

(),,,001B (),,,011C (),,,020D (),,,110E (),,,100F .

2112

1M ??

? ??,, (I )(),,,解:101-= (),

,,110-

=.2

1221

00=?++=

于是所以异面直线BF 与

DE 所成的角的大小为060.

(II )证明:,,,由??? ?

?=21121AM (),

,,101-= ()0020=?=,可得,,, .AMD CE A AD AM .AD CE AM CE .0平面,故又,因此,⊥=⊥⊥=?

.CDE AMD CDE CE 平面,所以平面平面而⊥?

(III )????

?=?=?=.

0D 0)(CDE E u u z y x u ,,则,,的法向量为解:设平面 .111(1.00),,,可得令,于是==???=+-=+-u x z y z x

又由题设,平面ACD 的一个法向量为).100(,,

=v 练习5、(2008湖北)分析:由已知条件可知:平面ABB 1 A 1⊥平面BCC 1 B 1⊥平面ABC 于是很容易想到以B 点为空间坐标原点建立

坐标系,并将相关线段写成用坐标表示的向量,先求出二面角的两个半平面的法向量,再利用两向量夹角公式求解。 (答案:2

2

arcsin

c

a a +=φ

总之,上述五种二面角求法中,前三种方法可以说是三种增添辅助线的一般规律,后两种是两种不同的解题技巧,考生可选择使用。

1.、

AB=AD=a PA AB PA AD PB PD AB AD a ⊥??⊥?=??==?,PB PD BC DC PBD PDC PC PC =?

?

=??????

=?

, 过B 作BH⊥PC 于H ,连结DH

DH⊥PC 故∠BHD

为二面角B-PC-D 的平面角 因

1

2

PB·BC=S△PBC=

1

2

PC·BH

BH=

3

=DH 又, 在△BHD 中由余弦定理,得:

A

C

B

E P

cos∠BHD=)

2

2

2

222

1

22

BH DH BD BH BD ??

+-??+--

, 又0<∠BHD<π 则∠BHD=

23

π ,二面角B-PC-D 的大小是

23

π。

2解:(三垂线法)如图 PA⊥平面BD ,过A 作AH⊥BC 于H ,连结PH ,则PH⊥BC 又AH⊥BC,故∠PHA 是二面角P-BC-A 的平面角,在Rt△ABH 中,AH=ABsin∠ABC=aSin30°=

2

a , 在Rt△PHA 中,tan∠PHA=PA/AH=

22

a

a =,则∠PHA=arctan2.

3解(垂面法)如图 PA⊥平面BD BD⊥AC

BD⊥BC 过BD 作平面BDH⊥PC 于

H PC⊥DH、BH

∠BHD 为二面角B-PC-D

的平面角,因

1

2

PB·BC=S△PBC=

12

PC·BH, 则

, 又

在△BHD 中由余弦定理,

得:

cos∠BHD=)

2

2

2

222122

BH DH BD BH BD ??

+-??+-=

=-

又0<∠BHD<π

∠BHD=

23

π ,二面角B-PC-D 的大小是

23

π。

4

解(面积法)如图AD PA AD AB AD PBA A PA AB A ⊥?

?

⊥?⊥??=?

于, 同时,BC⊥平面BPA

B ,故△PBA 是△PCD 在平

面PBA 上的射影, 设平面PBA 与平面

PDC 所成二面角大小为θ,则cosθ=

PBA PCD s S ??= θ=45°

5解(补形化为定义法)如图 将四棱锥P-ABCD 补形得正方体ABCD-PQMN ,

则PQ⊥PA、PD ,于是∠APD 是两面所成二面角的平面角。在Rt△PAD 中,PA=AD ,则∠APD=45°。即

平面BAP 与平面PDC 所成二面角的大小为45°

立体几何二面角问题

立体证明题(2) 1 ?如图,直二而角D-AB-E中,四边形ABCD是正方形,AE二EB, F为CE上的点,且BF丄 平面ACE. (1)求证:AE丄平面BCE: (2)求二面角B - AC - E的余弦值. 2?等腰△ABC中,AC=BC=V5t AB=2, E、F分别为AC、BC的中点,将AEFC沿EF折起,使得C到P,得到四棱锥P-ABFE,且AP=Bpd. (1)求证:平而EFP丄平而ABFE; (2)求二而角B-AP-E的大小?

3?如图,在四棱锥P-ABCD中,底而是正方形,侧面PAD丄底而ABCD,且V2 PA二PD二2 AD,若E、F分別为PC、BD的中点. (I )求证:EF〃平面PAD; (II)求证:EF丄平面PDC. 4?如图:正AABC与RtABCD所在平而互相垂直,且ZBCD二90° , ZCBD二30° . (1)求证:AB丄CD: (2)求二面角D-AB-C的正切值. 5?如图,在四棱锥P-ABCD中,平而PAD丄平而ABCD, APAD是等边三角形,四边形ABCD 是平行四边形,ZADC二120° , AB=2AD? (1)求证:平而PAD丄平而PBD: (2)求二而角A - PB - C的余弦值.

6?如图,在直三棱柱ABC - AxBxCx 中,ZACB=90° , AC二CB二CG二2, E 是AB 中点. (I )求证:AB:±平而AXE: (II)求直线AG与平而A’CE所成角的正弦值. 7?如图,在四棱锥P-ABCD 中,PA丄平而ABCD, ZDAB 为直角,AB〃CD, AD二CD二2AB二2, E, F分别为PC, CD的中点. (I )证明:AB丄平面BEF: 8?如图,在四棱锥P - ABCD中,PA丄平而ABCD. PA=AB=AD=2,四边形ABCD满足 AB丄AD, BC〃AD 且BC=4,点M 为PC 中点. (1)求证:DM丄平而PBC: RF (2)若点E为BC边上的动点,且— = 是否存在实数入,使得二而角P - DE - B的 余弦值为彳?若存在,求出实数入的值:若不存在,请说明理由.

立体几何证明方法汇总

① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证: //1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 A 1 C _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB 平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; 的交点.求证://1O C 面 ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线11 AB D . D 1C 1 B 1 A 1

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

文科立体几何面角二面角专题-带答案

文科立体几何线面角二面角专题 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且二面角为,求与平面所成角的正弦值. 2.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且,求点到平面的距离. 3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1; (Ⅱ)求直线AC1与平面ABB1所成的角的正弦值. 4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面 ABC,==3,==2. (I)求异面直线与AB所成角的余弦值; (II)求证:⊥平面; (III)求直线与平面所成角的正弦值. 5.如图,四棱锥,底面是正方形,,,,分别是,的中点.

(1)求证; (2)求二面角的余弦值. 6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点. (1)证明:平面; (2)证明:平面平面; (3)求直线与直线所成角的正弦值. 7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF. (Ⅰ)求证:平面ADE⊥平面BDEF; (Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值. 8.如图,在四棱锥中,平面,,,

,点是与的交点,点在线段上,且. (1)证明:平面; (2)求直线与平面所成角的正弦值. 9.在多面体中,底面是梯形,四边形是正方形,,,,, (1)求证:平面平面; (2)设为线段上一点,,求二面角的平面角的余弦值. 10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,. (1)证明:平面,平面平面;

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

立体几何_二面角问题方法归纳

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=?,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最 大角的正切值为 2 E —A F —C 的余弦值. 二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2(天津)如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600 的角,侧面BCC 1B 1⊥底面ABC 。 A B C E D P E A B C F E A B C D D

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。

(一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==?? ?? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角 3. 平行与垂直关系的转化: 面面∥面面平行判定2 面面平行性质3 a b a b //⊥?⊥??? α α a b a b ⊥⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论:

立体几何二面角问题

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使 得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

(完整)高中立体几何二面角的几种基本求法例题.doc

二面角的基本求法例题 一、平面与平面的垂直关系 1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 例 1.在空间四边形ABCD 中, AB=CB ,AD=CD ,E、F、G 分别是 AD 、 DC、CA 的中点。 求证:平面 BEF ^ 平面 BDG 。 A A F E E G D B F D B C C 例 2. AB ^ 平面 BCD,BC = CD ,? BCD 90°,E、F分别是AC、AD的中点。 求证:平面 BEF ^ 平面 ABC 。D1 C1 A1 B1 2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线 垂直于另一个平面。中,求和平面所成的角。 例 3.在正方体 ABCD—A1 1 1 1 1 1 1 B C D A B A B CD . D C A B 二、二面角的基本求法D1 C1 1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。A1 B1 例4.在正方体 ABCD—A1B1 C1D1中, 求( 1)二面角A- B1C - A1的大小; ( 2)平面A1DC1与平面 ADD1 A1所成角的正切值。 D C A B P 练习:过正方形ABCD 的顶点 A 作 PA ^ 平面 ABCD ,设 PA=AB= a,求 二面角 B - PC - D 的大小。 A D 2.三垂线法 B C 例 5 .平面ABCD ^平面ABEF,ABCD是正方形, ABEF 是矩形且 D C AF= 1 AD= a,G 是 EF 的中点, 2 ( 1)求证:平面AGC ^平面BGC; ( 2)求 GB 与平面 AGC 所成角的正弦值;A B 1 G E

立体几何证明方法总结

一、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线就与交线平行。 (线面平行的性质定理) 4、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两条直线平行。 7、夹在两个平行平面之间的平行线段相等。(需证明) 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线与这个平面内的一条直线平行,那么这条直线与这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、经过平面外一点,有且只有一个平面与已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。

4、圆所对的圆周角就是直角。 5、点在线上的射影。 6、如果一条直线与一个平面垂直,那么这条直线就与这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果与这个平面一条斜线的射影垂直,那么它也与这条斜线垂直。(三垂线定理,需证明) 8、在平面内的一条直线,如果与这个平面一条斜线垂直,那么它也与这条斜线的射影垂直。(三垂线逆定理,需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。 3、如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面。 6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。 7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。 8、过一点,有且只有一条直线与已知平面垂直。 9、过一点,有且只有一个平面与已知直线垂直。 六、面面垂直的证明方法: 1、定义法:两个平面的二面角就是直二面角。 2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理) 3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。 4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。

立体几何证明方法总结及经典3例(可编辑修改word版)

立体几何证明方法总结及典例 例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法: 三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱 柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。 线面平行的证明方法: 面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法: 面内相交线与另面平行则面面平行,三面间平行的传递性等等。 【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ. 求证:PQ∥面BCE. 证法一: 如图(1),作PM∥AB交BE于M, 作QN∥AB交BC于N,连接MN, 因为面ABCD∩面ABEF=AB, 则AE=DB. 又∵AP=DQ, ∴PE=QB. 又∵PM∥AB∥QN, ∴ PM =PE , QN =BQ . AB AE DC BD ∴ PM =QN . AB DC ∴PM∥QN.

四边形PMNQ为平行四边形. ∴PQ∥MN. 又∵MN ?面BCE,PQ ?面BCE, ∴PQ∥面BCE. 证法二: 如图(2),连结AQ并延长交BC或BC的延长线于点K,连结EK. ∵AD∥BC, ∴ DQ =AQ . QB QK 又∵正方形ABCD与正方形ABEF有公共边AB,且AP=DQ, ∴ AQ =AP .则PQ∥EK. QK PE ∴EK ?面BCE,PQ ?面BCE. ∴PQ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】 证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等 【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD,过A 且垂直于SC 的平面分别交SB,SC,SD于E,F,G . 求证:AE ⊥SB ,AG ⊥SD . 证明:∵ SA ⊥平面ABCD, ∴ SA ⊥BC . ∵ AB ⊥BC ,

立体几何二面角5种常见解法

立体几何二面角大小的求法 二面角的类型和求法可用框图展现如下: 一、定义法: 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。 A P H

二、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。 例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. p A B L H A B C D A 1 B 1 C 1 D 1 E O

例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小 例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小. 图4 B1 A α β A1 B L E F

立体几何证明方法总结(教师)

、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 线面平行的性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 6、平行于同一条直线的两条直线平行。 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 3、平行于同一平面的两个平面平行。 面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线 平行。(线面垂直的性质定理) 7、夹在两个平行平面之间的平行线段相等。 需证明) 线面平行的判定定理) 面面平行的判定定理)

4、经过平面外一点,有且只有一个平面和已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。 4、圆所对的圆周角是直角。 5、点在线上的射影。 6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。证明) 8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。三垂线定理,需三垂线逆定理,

立体几何——二面角问题方法归纳

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就就是二面角的平面角。 例1(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面 ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I)证明:M 在侧棱SC 的中点 (II)求二面角S AM B --的大小。 练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=?,E ,F 分别就是BC , PC 的中点、(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为 6 2 ,求二面角E —AF —C 的余弦值、 二、三垂线法 三垂线定理:在平面内的一条直线,如果与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别就是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2(天津)如图,在四棱锥ABCD P - 中,底面ABCD 就是矩形. 已知ο 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法就是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 就是边长为1的菱形,∠BCD =60°,E 就是CD 的中点,P A ⊥底面ABCD ,P A =2、 (Ⅰ)证明:平面PBE ⊥平面P AB ; (Ⅱ)求平面P AD 与平面PBE 所成二面角(锐角)的大小、 练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都就是a,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 四、射影面积法(cos s S q = 射影) 凡二面角的图形中含有可求原图形面积与该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜 射S S = θ )求出二面角的大小。 例4.(北京理)如图,在三棱锥P ABC -中, 2AC BC ==,90ACB ∠=o , AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 练习4: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 与底面A 1B 1C 1D 1所成锐角的余弦值、 五、向量法 向量法解立体几何中就是一种十分简捷的也就是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。 例4:(天津卷理)如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE,AB ⊥AD,M 为EC 的 A B C E D P A C B P E A B C F E A B C D D A D B C E D B C A 图

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

立体几何证明方法总结

一、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 (线面平行的性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两条直线平行。 7、夹在两个平行平面之间的平行线段相等。(需证明) 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平

行,那么这条直线和这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、经过平面外一点,有且只有一个平面和已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。

3、菱形对角线。 4、圆所对的圆周角是直角。 5、点在线上的射影。 6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。(三垂线定理,需证明) 8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。(三垂线逆定理,需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。

立体几何——二面角问题方法归纳

1文档来源为:从网络收集整理.word 版本可编辑. 二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面 ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=?,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为 6 2 ,求二面角E —AF —C 的余弦值. 二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2(天津)如图,在四棱锥ABCD P - 中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是 CD 的中点,P A ⊥底面ABCD ,P A =2. (Ⅰ)证明:平面PBE ⊥平面P AB ; (Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小. 练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 四、射影面积法(cos s S 射影) 凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜 射S S =θ )求出二面角的大小。 例4.(北京理)如图,在三棱锥P ABC -中,2AC BC ==,90 ACB ∠=, AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 练习4: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值. 五、向量法 向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。 例4:(天津卷理)如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD , A B C E D P A C B P E A B C F E A B C D D A D B C E D B C A 图

高中数学-立体几何证明方法总结及经典3例

高中数学-立体几何证明方法总结及典例 例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法: 三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。 线面平行的证明方法: 面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法: 面内相交线与另面平行则面面平行,三面间平行的传递性等等。 【例】正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE. 证法一: 如图(1),作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB, 则AE=DB. 又∵AP=DQ, ∴PE=QB. 又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQ DC QN = . ∴ DC QN AB PM = . ∴PM ∥QN.

四边形PMNQ 为平行四边形. ∴PQ ∥MN. 又∵MN ?面BCE ,PQ ?面BCE , ∴PQ ∥面BCE. 证法二: 如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴ QK AQ QB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴ PE AP QK AQ =.则PQ ∥EK. ∴EK ?面BCE ,PQ ?面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】 证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等 【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交 SB SC SD ,,于E F G ,,. 求证:AE SB ⊥,AG SD ⊥. 证明:∵SA ⊥平面ABCD , ∴SA BC ⊥. ∵AB BC ⊥,

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l AO ⊥,β--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. O A B O A B l P O B A

在四边形PAOB 中, ∠AOB=120°,. ∠PAO=∠POB=90°, 所以∠APB=60° 2、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P A B C D A 1 B 1 C 1 D 1 E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD ΘCO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC Θ又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

相关主题
文本预览
相关文档 最新文档