当前位置:文档之家› 最全面高中数学三角恒等式变形解题常用方法2021(完整版)

最全面高中数学三角恒等式变形解题常用方法2021(完整版)

最全面高中数学三角恒等式变形解题常用方法2021(完整版)
最全面高中数学三角恒等式变形解题常用方法2021(完整版)

高中数学三角恒等式变形解题常用方法

一.知识分析

1. 三角函数恒等变形公式

(1)两角和与差公式

(2)二倍角公式

(3)三倍角公式

(4)半角公式

(5)万能公式

,,

(6)积化和差

(7)和差化积

,2.网络结构

3. 基础知识疑点辨析

(1)正弦、余弦的和差角公式能否统一成一个三角公式?

实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。另外,公式虽然形式不同,结构不同,但本质相同:

(2)怎样正确理解正切的和差角公式?

正确理解正切的和差角公式需要把握以下三点:

①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。

②公式都适用于为任意角,但运用公式时,必须限定,都不等于。

③用代替,可把转化为,其限制条件同②。

(3)正弦、余弦、正切的和差角公式有哪些应用?

①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。

②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。

③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函

数式,要注意公式可以正用,逆用和变用。运用这些公式可求得简单三角函数式的最大值或最

小值。

(4)利用单角的三角函数表示半角的三角函数时应注意什么?

先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,,

分别叫做正弦、余弦、正切的半角公式。公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。另外,容易

证明。

4. 三角函数变换的方法总结

三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三

角变换的解题方法与技巧,而三角变换主要为三角恒等变换。三角恒等变换在整个初等数学中

涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒

等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。下面通过例题的解题说明,对三角恒等变换的

解题技巧作初步的探讨研究。

(1)变换函数名

对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切

割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,

这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现

解题途径。

【例1】已知θ同时满足和,且a、b 均不为0,求

a、b 的关系。

解析:已知

显然有:

22

由①3cos θ+②3cosθ,得:2acos θ+2bcosθ=0

即有:acosθ+b=0

又a≠0

所以,cosθ=-b/a ③

将③代入①得:a(-a/b)2-b(-b/a)=2a

即 a +b =2a b

∴(a2-b2)2=0 即|a|=|b|

点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系

44 2 2

式。

(2)变换角的形式

对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原

角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)

+α;α/2 可看作α/4 的倍角;(45°+α)可看成(90°+2α)的半角等等。

【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。

解析:设θ+15°=α,

原式=sin(α+60°)+cos (α+30°)-cosα

=(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα

cosα+cosα-sinα-cosα

=sinα+

=0

点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”

的和差关系,这也是角的拆变技巧之一。

【例3】已知sinα=Asin(α+β)(其中co sβ≠A ),试证明:ta n(α+β)=

证明:已知条件可变为:sin[(α+β)-β] =Asin (α+β)

所以有:sin (α+β)cosβ-cos (α+β)sinβ=Asin (α+β)

∴ sin (α+β)(cosβ-A)=cos (α+β)sinβ

∴ tan(α+β)=

点评:在变换中通常用到视“复角”为“单角”的整体思想方法,它往往是寻找解题突破

的关键。

(3)以式代值

利用特殊角的三角函数值以及含有 1 的三角公式,将原式中的1 或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是

222222

sin x+cos x, sec x-tan x, csc x -cot x,t anxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。

【例4】化简:

解析:原式=

点评:1=“”的正用、逆用在三角变换中应用十分广泛。

(4)和积互化

积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。

222

【例5】解三角方程:

解析:原方程变形为:

sin x+sin 2x=sin 3x

(1-cos2x)+即:(1-cos4x)=(1-cos6x)

1+cos6x =cos2x+cos4x

2

2cos 3x =2cos3x cosx

得:cos3x sin2x sinx =0

解得:x=+或x=()

∴ 原方程的解集为{x| x=+或x=, }

点评:题中先降次后升幂,这种交错使用的方法在解三角方程中时有出现,其目的是为了提取公因式。

(5)添补法

与代数恒等变换一样,在三角变换中有时应用添补法对原式作一定的添项裂项会使某些问题很便利地得以解决。将原式“配”上一个因子,同时除以这个式子也是添补法的一种特殊情形。

【例6】求证:=

证明:左边=

==右边

∴原式成立。

点评:本例中采用“加一项再减去一项”,“乘一项再除以一项”的方法,其技巧性较强,目的都是为了便于分解因式进行约分化简。

(6)代数方法

三角问题有时稍作置换,用各种代数方法对三角函数式作因式分解、等量置换等的变形,

从而将三角问题转换成代数问题来解,而且更加简捷。这其中有设元转化、利用不等式等方法。

【例7】锐角α、β满足条

,则下列结论中正确的是()

A. α+β≠

B. α+β<

C. α+β>

D. α+β=

解析:令sin 整理得:

,则有

即a=b (a-b)2=0

22

即:sin α=cos β(α,β同为锐

角)

∴sinα=cosβ

∴α+β=,故应选D。

点评:本例用设元转化法将三角问题转化为代数问题。换元法这种数学思想应用十分广泛,往往能收到简捷解题的效果.

(7)数形结合

有的三角变换问题蕴含着丰富的几何直观,此时若能以数思形,数形渗透,两者交融,则

可开辟解题捷径。利用单位圆,构造三角形,利用直线、曲线的方程等方法都是数形结合的思

想。

【例9】已知:,,求的值。

解析:∵点A,B均在单位圆上。

由已知条件知:AB 的中点坐标为C(1/6,1/8),即直线AB过

定点C

如下图所示

∠xOC=∴

∴据万能公式得:

点评:本题用和差化积公式也不难求得,但在三角问题中利用单位圆是常见的研究方法。

数形结合方法在三角变换中应用类型颇多,篇幅所限,仅举一例,本文不赘。从六、七两种方

法可以看出,将代数、几何与三角有机联系起来,综合运用,在解三角变换题中,不仅构思精

巧,过程简易,趣味横生,而且还沟通数学知识的纵横关系,也有利于多向探求,广泛渗透,

提高和发展学生的创造性思维能力。

以上探讨了三角变换中的七种变换思想和解题方法,在实际解题中这些方法是交织在一起的,混合于同一问题中灵活使用。掌握这些变换方法的前提是熟悉公式,善于公式的变形运用,同时注意纵横联系数学知识用发散性的思维考虑问题。三角变换的技巧除了以上七个方面外,

还有平方消元,万能置换,利用正余弦定理进行边角转换,利用辅助角,借用复数表示等方法

我们以后有机会再介绍。

5. 非特殊角的化简、求值问题的解题方法探究

非特殊角的化简求值是给角求值中一类常见的三角求值类型,对于此类求值问题,由于涉

及到的三角公式及其变形灵活多样,因而如何利用三角公式迅速准确的求值应是解决这类问题

的重点,现在我们通过一个题目的解法探寻,体会非特殊角三角函数的求法。

【题目】求的值。

分析1:这是一道给角求值中非特殊角的化简求值问题,仔细观察可看出在所求式子中有

一项是正切函数、一项是正弦函数,因此通常运用切割化弦,然后通过通分化简,使其化为特

殊的三角函数值。

解法1:

点评:通分以后,要将和式转化为积式,需将拆项为,这是将和式转化为积式中常用的变形手段,在将和差化积后要尽可能的出现特殊角特殊值,这样才有可能使化简得以进行下去。

分析2:运用切割化弦,通过通分化简后,若不考虑将和式转化为积式,而是对角进行变

换,观察到运算的式子中出现的两角为20°,40°,与特殊角比较则会有60°-40°=20°,变角后再应用两角差的正弦公式展开进行化简。

解法2:

0分析3:我们在运用“切割化弦”时,若不利用商数关系,而是将tan20 利用

半角公式进行化弦,也能进行求值。

解法3:

分析4:从以上路径可以看出,而是一个特殊的三角函数值,考虑它等于什么呢?,因而考虑可否会有,这样问题就转化为等式的验证。

解法4:

∴有

点评:本路径采用了综合法,只进行等式的验证,问题就得以解决。

分析5:利用倍角公式可得到,能否再对角进行适当的变换,出现特殊角,我们发现40°=60°一20°,这样变角后利用两角差的正弦公式展开化简,也能求值。

解法5:

将等式可写成

两边同除以得

点评:本题利用综合法求得了的值,在这里首先进行角的变换,然后利用两角差的正弦公式展开,合并同类项后,再进行弦化切割,从而得到所要求的值。

以上我们探寻了不查表求非特珠角的三角函数的值的问题,对于这类问题,要从多方面考

虑解决的方法,在这里我们是从三角函数的“变名”“变角”“变式”“切割化弦”弦化切割”等方面而进行了三角恒等变形,这在以后的学习训练中要逐步体会掌握。

【典型例题】

例 1. 化简cos(π+α)+cos(π-α),其中k∈Z 。

解析:解法一:

原式= cos [ k π+( +α )]+ cos [ k π-( +α)]= cosk πcos ( +α)- sink

πsin ( ∈Z )

+ α)+cosk πcos ( +α)+ sink πsin ( +α)= 2cosk πcos ( +α),( k 当 k 为偶数时,原式= 2cos ( +α)=cos α- sin α

当 k 为奇数时,原式=- 2cos ( +α)= sin α- cos α

总之,原式=(- 1)k

(cos α-

sin α), k ∈ Z

解法二:由( k π + +α)+( k π - - α)= 2k π,知

cos (k π - -α)= cos [2k π -( +α+k π)]= cos [-( k π+ +α)]= cos (k π+ +α)

k

k

∴原式= 2cos ( k π + 其中 k ∈Z

+α)=23 (- 1) +α )=(- 1) (cos α- sin α),

cos ( 点评: 原式= cos (k π+ +α)+ cos (k π- -α)= cos [k π+( + α)]+ cos [k π

-( +α)]这就启发我们用余弦的和(差)角公式。

例 2. 已知 sin (α+β)= ,cos (α- β)= ,求 的值。

解析: 解法一:由已知条件及正弦的和(差)角公式,

解法二:(设未知数)令x=

解之得

例 3. 在中,求的值和的面积。

解析:解法一:解方程组得,故

解法二:由及得

,可得

因为,所以,故,即

解方程组得,故。

(以下同解法一)

解法三:因为,

所以。

又,

故,

(以下同解法一)

例4.

解析:解法一:此题可利用降幂、积化和差、和差化积等公式进行恒等变形化简。原式

解法二:利用“整体配对”思想,构造对偶式来解题

两式相加得

例 5. (第 5 届IMO 试题)证明

解析:设

∴或(舍去)

【模拟试题】

一、选择题:

1. 已知的值为()

A. B. C. D.

2. 的值为()

A. 0

B.

C.

D.

3. 的值为()

A. 1

B.

C. -

D.

4. 的两内角A,B 满足,则此三角形的形状为()

A. 锐角三角形

B. 直角三角形

C. 钝角三角形

D. 不能确定

5. 已知,则的值为()

A. B. C. D.

6. ,则的值为()

A. B. -1 C. D.

7. 若,则的值为()

A. B.

C. D.

8. 函数的值域是()

A. B. C. D.

9. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()

A. B. C. D.

10. 等于()

A. -1

B. 1

C. 2

D. -2

二、填空题

11. 在中,已知tanA ,tanB 是方程的两个实根,则

12. 已知,则的值为

13. 观察下列各等式:,

,,根据其共同特点,写出能反映一般规律的等式。

14. 已知直线,A 是之间的一定点,并且 A 点到的距离分别为,B 是直线上一动点,作AC AB,且使AC 与直线交于点C,则面积的最小值为。

三、解答题:

15. 化简

16. 已知,求的值

17. 证明:

18. 知函数,求

(1)函数的最小值及此时的

(2)函数的单调减区间

的集合

(3)此函数的图像可以由函数的图像经过怎样变换而得到

19. 已知向量,。

(1)当,且∥时,求的值

(2)当

【试题答案】

,且时,求的值

一、选择题:

1. C

6. C

二、填空题:2. B

7. B

3. D

8. D

4. C

9. C

5. A

10. A

11. -7 12. 13.

14.

三、解答题:

15. 解:原式

16. 解:

(2)+(1)得

(2)-(1)得(4)(3)得

17. 略

18. 解:由

(1)当时,,此时,由得(2)由得减区间为

(3)其图像可由的图像向左平移个单位,再向上平移 2 个单位而得到。

19.(1)由,得,

(2)由

所以

关于简单三角变换的问题

1、同角的三角函数有三种关系:

平方关系:sin 2α+cos2α=1;

商式关系:;

倒数关系:tan αcot α=1.

它们的主要应用有:

(1)已知某任意角的正弦、余弦、正切中的一个,求其他两个;

(2)化简三角函数式;

(3)证明简单三角恒等式等.

同角三角函数变换,要突出弦、切互化,同时要注意各种变换技巧,如“1”可以用“sin 2α+cos2α”代换等.

2、诱导公式有两组,可概括为对k2 90°±α( α∈Z) 的各三角函数值满足规律“奇变偶不变,

符号看象限”,即当k 为偶数时,得α的同名函数;

当k 为奇数时,得α的余名函数;然后

在前面加一个把α看成锐角时原函数的符号.在利用诱导公式求任意角的三角函数值时,不

必拘泥于课本上列出的几个步骤,可以结合三角函数的性质,灵活使用.

3、三角函数的恒等变换中最基本、最常见的变换有:

(1)公式变换:要注意正确理解公式中和、差、倍的相对性,抓住公式中角、函数、结构的特点,灵活地对公式进行正向、逆向及变形使用;

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

浅谈高中数学线性变换的解题技巧

浅谈高中数学线性变换的解题技巧 在新课改之后,要求高中生不仅要学会灵活运用学科基础知识解决问题,还要利用课余时间学习自身兴趣的知识点,使得每个人都能得到全面发展和锻炼。高中线性变换虽然作为选修章节,但是其所蕴含的内容是衔接高中与大学的关键点,掌握线性变换的基础知识也就是提前了解和学习了大学所要接触的高等数学知识模块,即矩阵问题。因此,笔者立足于高中选修的重要知识点——线性变换,先阐述其概念及性质,然后来探究如何巧妙解决高中数学中线性变换的难题,从而为初等数学过渡到高等数学做提前的准备。 标签:数学线性变换解题技巧 一、高中数学线性变换的概述 1.线性变换的概念 线性变换一般是指,在构建的xOy坐标系内,存在至少一个点或多个点的集合A与另一个相对应的至少一个或多个点的集合B两者之间按照一定规则可以相互变换,且不同的点与所转变后的点不相同,即在平面直角坐标系中,把形如进行几何变换,这就叫做线性变换。 2.线性变换的基本性质 线性变换具有三个基本性质,第一个性质是任何向量乘于零都为零,数学表达式为:T(0)=0;第二个性质是任何向量乘于任何一个负向量等于两个向量相乘的负数,数学表达式为:T(-a)=-T(a);第三个性质是线性变换满足乘法交换律、结合律,即,其中A是一般矩阵,是平面直角坐标系内任意的两个向量,是任意实数。 二、高中数学线性变换的解题技巧 1.数形结合 例1:在平面直角坐标系xOy中,已知平面区域A={(x,y)|x + y≤1,且x≥0,y≥0},求平面区域B={(x + y,x - y)|(x,y)∈A}的面積。 解析:本题考察的是线性变换结合不等式的应用难点,解决该问题首先要分析题干信息,根据题目给出的信息列出平面区域A的不等式条件。由于本题平面区域B存在与平面区域A相重合的未知数,因此要假设两个新的未知数替代B的条件,再将新的未知数条件代入A中就能很快确定B的向量表示,最后快速建立平面直角坐标系画出平面区域B的图形就能的出其面积的大小。 设:未知数u=x+y,v=x-y

高中数学解题基本方法 换元法

高中数学解题基本方法--换元法 高中数学解题基本方法--换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t 0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+

的值域时,易发现x∈[0,1],设x=sinα,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r 0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t 0和α∈[0,]。 Ⅰ、再现性题组: 1.y=sinx??cosx+sinx+cosx的最大值是_________。 2.设 f x+1 =log 4-x (a 1),则 f x 的值域是_______________。 3.已知数列 a 中,a=-1,a??a=a-a,则数列通项a=___________。 4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。 5.方程=3的解是_______________。 6.不等式log 2-1 ??log 2-2 〈2的解集是_______________。 【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+; 2小题:设x+1=t t≥1 ,则f t =log[- t-1 +4],所以值域为-∞,log4];

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

浅谈高中数学解题步骤及方法

浅谈高中数学解题步骤及方法 【摘要】在高中数学教学中,进行数学解题是十分重要的.本文结合实际论述了高中数学解题的一般步?E及方法. 【关键词】数学;解题步骤;解题方法 高中数学包括了很多的理论知识,这就要求我们高中生要掌握解题方法和技巧,并且要对学习有更高的总结和观察的能力.因此,对于数学的学习,我们一定要先把解题方法和步骤牢固掌握,这一点对我们来讲是非常重要的.基于此,本文将对高中数学的解题方法和步骤进行分析讨论. 一、解题基本步骤 (一)认真审题是关键 要探寻出良好的数学解题方法,首先,要弄清楚在解题时应该采取怎样的步骤.在解题的过程中,我们首先要做的就是“审题”,这一步是为了让我们深刻理解题意.当拿到一道数学题目时,我们应该充分掌握出题人的意图,然后,再对已知条件和问题进行仔细地思考和分析,从而在脑海里建立起解题的基本框架.只有通过这种步骤,明确地抓住题目的类型,才能充分理解题目的准确意思,才能在自己已有的知识中找出和题目相关的知识点,利用正确的理论和公式进行作答.我们在解答数学问题时,一定要充分重视“审题”的关键

作用,并且在这个基础上培养自己善于审题的良好习惯,在这个过程中把题目和已掌握的知识点进行联系和转化,把问题变得更加清晰、简单,从而实现正确地解答. (二)进行联想是重点 对问题进行联想就是要充分利用已经掌握的知识和内容,对知识进行正确地迁移,能够做到活学活用、举一反三.我们如果能把联想的方法运用到数学学习中,就能够促进我们对问题的深层次挖掘,而且我们对于题目线索的挖掘和提取,有利于他们唤醒自己已经掌握的定义、公式、定理和类似题目的解答方法等内容,然后连接起题目和自己熟悉的知识. (三)深入分析是保障 对问题进行细致的分析是高中数学解题中最重要的一个步骤,分析问题需要做的就是提出猜想,对解题的步骤等进行制订,如果题目比较开放的话,可能还需要去探索出多元化的解题思路.在数学问题的解答过程中,我们可以把问题的条件和结论进行互换,也可以在不同的条件间进行转换,从而把数学问题变得一般或特殊.这种分析的方法,可以帮助我们把相关的数学知识融会贯通,提高学习的质量.除了这种方法,也可以提出一些和题目相关的问题来辅助求解,从而运用自己熟悉的解题方法进行解答. (四)进行类化是方法

高中数学解题基本方法--参数法 大全

高中数学解题基本方法--参数法 参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。 辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。 参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。 Ⅰ、再现性题组: 1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。 2. (理)直线 x t y t =-- =+ ? ? ? ?? 22 32 上与点A(-2,3)的距离等于2的点的坐标是________。 (文)若k<-1,则圆锥曲线x2-ky2=1的离心率是_________。 3. 点Z的虚轴上移动,则复数C=z2+1+2i在复平面上对应的轨迹图像为 ____________________。 4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。 5. 设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R上是______函数。(填“增”或“减”) 6. 椭圆x2 16 + y2 4 =1上的点到直线x+2y-2=0的最大距离是_____。 A. 3 B. 11 C. 10 D. 22 【简解】1小题:设2x=3y=5z=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z; 2小题:(理)A(-2,3)为t=0时,所求点为t=±2时,即(-4,5)或(0,1);(文)已 知曲线为椭圆,a=1,c=1 1 + k ,所以e=- 1 k k k 2+; 3小题:设z=bi,则C=1-b2+2i,所以图像为:从(1,2)出发平行于x轴向右的射线; 4小题:设三条侧棱x、y、z,则1 2 xy=6、 1 2 yz=4、 1 2 xz=3,所以xyz=24,体积为4。 5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减;

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高中数学函数解题技巧方法总结(高考)

高中数学函数知识点总结 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()()(答:,,,)022334Y Y 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是 ,函数y =arccosx 的定义域是 [-1, 1] , 值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R , 值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? [] 的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [] (答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。 例 若函数)(x f y =的定义域为?? ? ???2,21,则)(log 2x f 的定义域为 。 分析:由函数)(x f y =的定义域为?? ? ???2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。 解:依题意知: 2log 2 1 2≤≤x 解之,得 42≤≤x ∴ )(log 2x f 的定义域为{} 42|≤≤x x

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

浅谈高中数学教学中的解题方法

浅谈高中数学教学中的解题方法 发表时间:2017-08-07T15:55:47.000Z 来源:《教育学》2017年6月总第121期作者:谭雪燕 [导读] 在高中数学教学过程中,学生普遍存在这些现象:在学习上“一听就懂,一做就错”、考试时“解题思路和老师分析的一样。广西钦州市灵山县第二中学535400 摘要:针对高中数学教学过程中学生能听懂老师讲课但不会解题的现象,从审题和基础知识这两个方面分析了导致这一个现象的原因,并对这两个方面给出了建议。 关键词:审题基础知识解题方法 在高中数学教学过程中,学生普遍存在这些现象:在学习上“一听就懂,一做就错”、考试时“解题思路和老师分析的一样,但没有做出来,或者考试时没有思路,老师在评讲时,一分析就知道如何解题”、“考试粗心”等。以上这些问题导致学生在考试中没有取得理想的成绩,对此问题,我不断思考,努力去寻找解决此问题的方法,最终得出结论:“这不是偶然,而是学生没有掌握高中数学的解题方法”。以下将从审题和基础知识这两个方面做深入的分析。 一、理解题目 著名数学教育家G·波利亚在《怎样解题》一书中,把数学解题分为四个步骤:(1)弄清问题;(2)拟定计划;(3)实施计划;(4)检验回顾。 而不少学生在这四个步骤中的“弄清问题”存在问题,对题目难以理解,导致解题困难。 1.审题时存在问题的原因主要有: (1)肤浅阅读。读题时,就以读题而读题,只限于字认识,不会去思考、去挖掘题目条件暗含怎样的数学基础知识。(2)心理障碍。当学生看到题目的文字多、关系式子较复杂,或者新题时,便会产生畏惧心理,变得紧张起来,在读题时就会出现读不懂,认为有一定难度,便选择放弃。 (3)节省时间。采用阅读的方式,加快读题的速度,争取更多解题时间,但往往适得其反,遇到不清楚的地方再重复读,导致没有思路,结果是更加浪费时间。 2.审题能力的培养: (1)理解题目。学生首先要把题目读懂,能够把题中每一个条件经过转换、化简等方法把其隐藏的基础知识点挖掘出来。再根据条件逐一联想所学知识、方法、类似的题目、注意点和关键点。这样才能发现题目中条件与结论的联系,从而逐步入题,找到解题的关键点、突破口。 (2)树立自信。帮助学生建立正确的人生观、世界观和价值观。遇到困难,相信自我,挑战困难,战胜困难,以提高他们勇于消除心理障碍、克服学习困难的心理素质。 (3)稳定沉着。读题时要慢、要细心,边读边想边理解,逐字逐句分析。若读一遍找不到解题思路,多读几遍,读清楚题目内容,会从题目中找到解题的思路。读懂题,理解题是解题的基础,然后在理解题意基础之上结合知识与技能联系题目相关的知识、方法,进而深入理解题目的本质,为下一步的解题做好基础准备。 二、理解概念,掌握基础 要想学好高中数学,必须先理解概念,就像设计师在设计房屋时,首先要知道什么是房子;同时数学基础知识是学好数学最基本的,就像建房子一样,房基就不可少,只有坚固的根基,你才能建设出更牢固、更有特色的房子,所以学好数学,理解概念,掌握数学基础知识是学好数学必不可少的要素,只有理解概念,掌握基础知识才能灵活运用。 理解概念,可以让学生感觉到学数学是轻松、容易的,学习数学离不开数学概念的学习,在数学中的概念是核心,把数学中各个知识点特有属性及之间的关系联系起来。在数学学习中,学生经常会遇到一些形似而质异的易混问题,如果概念不清,这样的题是非常容易错的。 例如,函数f(x)=x3-12x,求函数与x的交点,零点,极值点。 解答此题,首先要理解交点、零点和极值点的定义,方能解题。 (1)根据题意f(x)=x3-12x,x3-12x=0,x(x2-12x)=0,解得x1=0,x2=2和x3=-2所以函数f(x)=x3-12x的图象与x轴交点坐标(0,0),(2,0)和(-2,0)。 (2)函数f(x)=x3-12x的零点是0,2和-2。 (3)又因为f`(x)=3x2-12,3x2-12=0,解得x1=2或x2=-2;当f`(x)>0时,函数在区间(-∞,-2)、(2,+∞)上是单调递增函数;当f`(x)<0时,函数f(x)在区间(-2,2)上是单调递减函数,所以x=2是函数f(x)的极大值点,x=-2是函数f(x)的极小值点。只有把数学基础知识正确地掌握好,才有可能做到思路清晰,条理分明,容易找到解决问题的突破口,顺利解题。而每一个题目都是由多个知识点综合而得,于是要解决它就必须掌握数学基础知识。 总之,想学好高中数学,必须具备较强的解题能力,掌握解题方法。审题是解题的前提,基础知识是解题的基础,在此基础上解决问题。只有掌握基础,才谈得上创新。在以后的教学中,加强培养学生的审题能力、理解能力,同时注重基础知识掌握和应用,让学生掌握解题的方法,对学习数学达到事半功倍的效果,爱学、乐学数学。 参考文献 [1]朱华伟数学解题策略[J].科学出版社有限责任公司,2009。 [2][美]G.波利亚数学思维的新方法[M].上海科技教育出版社,2007。 [3]陈晓敏拓展思维,简洁直观——例谈向量法在高中数学解题中的妙用[J].中学数学,2014,(5):14-16。 [4]潘文德. 以退为进灵活解题——浅析高中数学解题技巧[J].新课程学习:中,2014,(1):71-71。

高中数学解题的21个典型方法和技巧

高中数学解题的21个典型方法与技巧 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ①零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ①两边平方法:适用于两边非负的方程或不等式。 ①几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2 222a ab b a b ±+=± ①()2 222222a b c ab bc ca a b c +++++=++ ①()()()22222212 a b c ab bc ca a b b c c a ??+++++=+++++?? ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设①列①解①写

6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ①配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路 ??????→不等式思想与方法欲求范围字母的不等式或不等式组 8的基本思路:把m 化成完全平方式。 即 2 m a a a =???=??????→按的情况分类讨论结果 9()2 a x y ±=±其中220xy x y a x y =+=>>且。 10、代数式求值的方法有:①直接代入法①化简代入法①适当变形法(和积代入法)。注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。 11、方程中除未知数以外,含有的其他字母叫做参数,这种方程叫做含参方程。解含参方程一般要用“分类讨论法”,其原则是:①按照类型求解①根据需要讨论①分类写出结论。 12、恒等成立的条件: ①0ax b +=对于任意x 都成立?关于x 的方程0ax b +=有无数个解?00a b ==且。 ①20ax bx c ++=对于任意x 都成立?关于x 的方程20ax bx c ++=有无数个解?

浅谈高中数学解题策略 张忠传

浅谈高中数学解题策略张忠传 发表时间:2018-11-07T10:05:53.660Z 来源:《教育学》2018年10月总第157期作者:张忠传 [导读] 只有将知识的学习与解题技巧相互结合,才能够在考试中更好地解决问题,学习的效率才会大大提高。安徽省金寨第一中学237322 摘要:在教学过程中,教师要注重对学生解题思维的教授与培养,引导学生在解题的过程中不断总结方法与规律,提高学生解题时的准确率与效率,从而减轻学生学习的压力,在解题方面能够更加自如。只有将知识的学习与解题技巧相互结合,才能够在考试中更好地解决问题,学习的效率才会大大提高。 关键词:高中数学解题策略有效性 一、多元方程的问题——逆向思维解题策略 在解决多元方程的问题中,最为常用的就是逆向思维的方法。在多元方程的解题中,如果仅仅是通过题目条件,正常地进行问题的分析与解决,就会遇到许多新的不必要的麻烦,导致问题不能及时地解决;并且多元方程的解决要求学生思维的转变,这对于很多同学来说存在一定的困难,因为惯性思维会阻碍其纵深发展。因此,在对多元方程的解决中就应该有意识地采取逆向思维的方法。新课改要求的过程和方法,需要让同学们打破常规,积极改变自己的思维模式,思维也要有所突破,老师在教学引导中应该鼓励同学们用逆向思维去解答。 例1:实数l,m,n,满足m-n=8,且mn+l2+16=0。求证:m+n+l=0。 分析:用顺推法直接求得l、m、n的值,运算量很大且容易出现运算错误。简单的方法是用韦达定理的逆定理,从题目中的两个条件来结合进行计算,求出m、n的关系,然后进行关系的转换,将其转变为x的关系,再带入到原式中进行求解。 证明:由m-n=8可以得到m+(-n)=8,由mn+l2+16=0得到m(-n)=l2+16,那么根据m和n的关系就能够将两者通过一个新的未知数x来代替,则m、-n即为一元二次方程x2-8x+l2+16=0的两个根。又因为m、-n为实数,所以,△=(-8)2-4(l2+16)≥0,解得4l2≥0,所以l=0,则m,-n即为一元二次方程x2-8x+16=0的两个根,解得m=-n=4,则有m+n+l=0成立。 以上就是通过逆向思维的方法,由此也能够看出在面对这种多元函数的证明问题时,通过逆向思维就能够有效地解决。 二、函数与方程问题——分类讨论解题策略 1.在解方程中的应用。 在高中初级阶段解方程中最为常见的就是所给的未知数或者条件有着两方面的情况,此时就需要借助分类讨论的方法对每一个未知的情况分几个方面进行讨论求解。 2.在函数题目中的应用。 例2:当m=____时,函数y=(m+5)x2m-1+7x-3(x≠0)是一个一次函数。 解:当(m+5)x2m-1是一次项时,2m-1=1,m=1,整理为y=13x-3。当(m+5)x2m-1是常数项时,2m-1=0,m=1/2,整理为y=7x+5/2。m+5=0,m=-5,整理为y=7x-3。 在讨论(m+5)x2m-1的情况时,就需要分为两种情况,第一种就是为一次项,第二种就是结果为常数。而通过不同的m值也就能够得到不同的解果,最终进行整理就能够得出正确的答案。 三、不等式证明问题——构造函数解题策略 在解决不等式问题时最为适合采用构造函数的解题策略。通过构造函数的方法,能够将不等式的问题转化为函数方程的问题,并根据题目中的信息,来求出相应方程的单调性、值域、定义域,从而结合多种条件来证明不等式的正确。 例3:如已知a、b、c∈R,|a|<1,|b|<1,|c|<1,证明ab+bc+ca+1>0。 对于该不等式的解题过程:构造函数f(x)=(b+c)x+bc+1,证明x(-1,1)时函数f(x)>0恒成立。当b+c=0时,f(x)=1-b2>0恒成立。当b+c≠0时,函数f(x)=(b+c)x+bc+1在区间(-1,1)上是单调的。由于f(1)=bc+b+c+1=(b+1)(c+1)>0,f(-1)=bc-(b+c)+1=(1-b)(1-c)>0,因此f(x)=(b+c)x+bc+1在区间(-1,1)上恒大于零。 综上可知,当|a|<1、|b|<1、|c|<1时,ab+bc+ca+1>0恒成立。 所以,通过以上的解题,就能将一些不等式的问题通过函数的方法来解决,更加有效。 总之,高中数学对于学生的逻辑思维方面有着更高的要求,高中数学的学习阶段也要更加重视对学生数学思维以及解题思维的培养,培养学生做题时的应变性以及灵活性,从而提高解题的效率。教师在教学过程中也要不时地将自己多年解题经验中得来的解题方法教授给学生,渗透学习思维。数学题目的形式千变万化,但是核心不会改变,只要学生能够熟练地掌握解题技巧,并且灵活地运用,相信不管遇到什么问题都能迎刃而解,更好地达到学习的目标。 参考文献 [1]梅松竹冷平王燕荣城乡数学教师对新课程的解题教学的研究——函数解题技巧[J].教育与教学研究,2010,(08)。 [2]马玉武探究数形结合思想在高中数学教学中的应用[J].中国校外教育(下旬刊),2012,(12)。 [3]李文婕解题思维在高中数学教学中的应用探析[J].中华少年教育论坛,2017,(03)。 [4]吴冬香探究高中数学解题教学方法的应用研究[J].中国考试教育周刊(上、下旬),2017,(12)。

高中数学解题基本方法之配方法

配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [5 4 ,+∞) C. (-1 2 ,5 4 ] D. [5 4 ,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则 实数a=_____。

相关主题
文本预览
相关文档 最新文档