当前位置:文档之家› 碳纤维材料在土木工程中应用

碳纤维材料在土木工程中应用

碳纤维材料在土木工程中应用
碳纤维材料在土木工程中应用

浅谈碳纤维材料在土木工程中的应用

摘要:碳纤维复合材料(cfrp)作为一种新型材料,有着优良的物理特力学性能。近年来在土木工程中的应用越来越广泛。综述了cfrp的发展历程及主要研究成果。

关键词:碳纤维材料特性土木工程

1、碳纤维复合材料(cfrp)的发展历程

纤维增强聚合物复合材料frp(fiber reinforced polymer)问世于20世纪40年代。cfrp最开始由美国制造。1950年,美国空军基地在2 000℃高温下牵引人造丝得到cfrp。1959年美国联合碳化公司以粘胶纤维为原丝制成纤维素基cfrp;1962年,日本碳素公司实现低模量聚丙烯腈基cfrp的工业化生产;1963年英国航空材料研究所开发出高模量聚丙烯腈基cfrp;1965年日本群马大学试制造出沥青或木质素为原料的通用型cfrp; 1969年,日本大谷杉郎从特殊的共聚pan中生产出高强、高弹模的芳香族聚酰胺纤维;1970年,日本吴羽化学公司实现沥青基纤维的工业规模生产;1972年,美国杜邦公司生产出密度1.2~1.5 t/m3强度达3 000 mpa的aramid(阿拉米德) cfrp;1980年美国金刚砂公司研制出酚醛纤维为原丝的活性碳纤维并投放市场;1996年全世界碳纤维总生产量已达17 000 t,其中聚丙烯腈基纤维占85%,其余是沥青基纤维。2002年世界聚丙烯腈基碳纤维的生产能力约为3.1万t,其中75%是小丝束碳纤维,25%是大丝束碳纤维。碳纤维材料主要由日本生产,美国其次.其他国家产量很少。

全球碳纤维材料知名企业

全球碳纤维材料知名企业——全球碳纤维顶尖企业 东丽公司 东丽公司是一家综合型化工企业,以生产合成纤维为主,是世界最大的碳纤维生产公司,在塑料、复合材料、化工、水处理事业、电子材料、医药、医疗器械等领域在全世界各地展开着广泛的业务。创立日期 1926年1月总销售额 1兆5,460亿日元(2007年3月)员工人数约36,000人(日本国内约16,500人、海外20,100人)关连公司日本国内118家、海外在20个国家和地区有124家,合计238家经营内容(1)综合化学公司:合成纤维、树脂、薄膜、碳纤维、电子材料、医药医疗设备、水处理事业等(2)世界第一的纤维公司:从原料到聚合、纺丝、织布、印染、缝制的一条龙生产业务(3)积极开展的海外事业:为各国的经济发展(技术水平提高、扩大出口、增加就业机会)做贡献 1960年以来,在东南亚3国展开合成纤维一条龙事业、薄膜事业 1980 年以来,在欧美展开纤维、薄膜、碳纤维事业 1990年以来,在中国展开合成纤维的一条龙生产业务、塑料加工事业等 2000年以来,在经济增长地区设立控股管理公司,向地区本部制过渡(4)重视基础研究.基本技术(5)注重安全.防灾.环保及保护地球环境 西格里集团 西格里集团创建于 1992 年,由德国 SIGRI 集团与美国大湖碳素(Great Lakes Carbon)集团合并而成,总部位于德国威斯巴登。西格里集团(SGL Group - The Carbon Company)是全球领先的碳素石墨材料以及相关产品的制造商之一。拥有从碳石墨产品到碳纤维及复合材料在内的完整业务链。凭借对原材料透彻深入的了解、精湛的生产技术以及广泛的应用和工程技能,能够为客户提供量身定做的解决方案。通过遍布欧洲、北美和亚洲40 多个生产基地所形成的全球网络,我们与客户更加贴近。 三菱丽阳株式会社 三菱丽阳株式会社创立于1933年8月31日,是日本三菱集团旗下最著名的高分子材料制造商。所生产的聚乙烯中空纤维膜,被广泛应用在供水、排水、水处理设备及医院手术用的无菌水装置、发电厂的叶轮机液化水过滤等领域。 产品范围:MBR专用中空纤维微滤膜片、MBR专用膜组器、净水专用中空纤维微滤膜组件、水处理装置、商用/家庭用净水器、全屋净水装置。 三菱丽阳自1933年作为人造短纤维的生产公司创业以来,应用合成纤维和合成树脂领域所积累的高分子技术,不断拓展中空纤维膜、光纤、碳素纤维等新兴业务领域。现在,三菱丽阳集团已经建立了世界上独特且强有力的丙烯系列业务实体(MMA[甲基丙烯酸甲酯]系列及AN[丙烯腈]系列),发展成为以此为支柱业务的高分子化学制造企业。 Hexcel Composites

土木工程绿色建筑材料应用

土木工程绿色建筑材料应用 在传统建筑行业当中,一些普通建筑材料的大面积使用,不仅造成了高成本低收益的状况,而且还没有可管控的安全性,例如一些建筑材料当中存在高浓度致癌物质,直接影响到了客户的身体健康。长时间且大批量的在土木工程中使用这样的建筑材料,无疑对环境问题造成了极大影响。新型绿色建筑材料相比之而言,很明显存在一定优势,无论是选材构造还是对建筑生产后期来说,都是百利而无一害的。因此,提倡绿色建筑材料在土木国施工中广泛运用,是时代要求,亦是我们的责任。 1绿色建筑材料在土木施工中应用的必要性 1.1消费者观念转换,绿色建筑需求提升 随着人们收入的提升和价值观的转变,对于生活环境也提出了新的要求,尤其是在面对选择居住环境的时候,人们更偏向于选择贴上“绿色”标签的建筑物。因此,关注建筑行业的各项指标,注重建筑材料的选择,对于土木工程行业来说也是一种挑战。 1.2可持续发展观在建筑行业稳步推进 注重资源的可持续发展和循环利用,一直以来都是我国大力倡导的方针政策。同样,在土木工程施工中,如果要将“可持续发展”落实到位,就必须紧抓建筑材料的运用,优质建筑材料选用对于构建绿色建筑物起到了至关重要的作用。 1.3经济发展方式转型,带动建筑行业材质转换 建筑行业作为国民经济当中的一项支柱型产业,其发展的趋势走

向,直接决定了国家的经济利益。建筑行业材质的转换,不仅节约资源,还能够提升建筑材料的高效利用,大大促进了土木工程经济发展。 2土木工程施工中绿色建筑材料类别概况 我国绿色建筑材料在土木工程中的应用可以将土木工程施工中运用到的绿色建筑材料分为“安全型”,“环保型”,“节能型”以及“可持续利用型”四类。其中,安全型绿色建筑材料主要是材料本身具有一定的安全性能,在深入土木工程施工中的时候,能够避免安全危害,拥有极大的稳定性;环保型绿色建筑材料主要指材料不会对个人造成危害,对环境有一定的防护作用;节能型主要指绿色建筑材料对资源方面不会造成浪费;可持续利用型指一些材料在土木施工当中可以循环往复的利用,价值并没有受到折损。 3绿色建筑材料在土木工程施工中应周全的问题 3.1选材方面 对于土木工程施工方而言,选取符合自身建筑特点的材料,不仅可以节约成本,还能缩减一些不必要的问题。若是选用传统型的建筑材料,很大程度上会造成成本浪费,产生大量灰尘污染物,对环境造成直接影响。结构材料当中有一例“竹制结构材料”,就能够有效避免这类问题,但是,其制作材料的获取是非常困难的,这样就需要我们依据现场施工的情况来做定夺。 3.2施工方面 一些企业在进行土木工程施工的过程中,存在申领建筑材料不合格,与实际需求报备不符的现象,这样就造成了很大的局限性。因此,

新型土木工程材料

新型土木工程材料 摘要:土木工程材料是我国经济发展和社会进步的重要基础原材料之一。人类进入21世纪以来,对生存空间以及环境的要求达到了一个前所未有的高度。这对土木工程材料的生产研究使用和发展提出了更新的要求和挑战。特别是小康社会的建设和城镇化的全面推进,乃至整个现代化建设的实施,预示着我国未来几十年的经济发展和社会进步对土木工程材料有着更大的市场需求,也意味着我国土木工程材料领域有着巨大的发展空间。因此,了解土木工程材料的发展状况、把握土木工程材料的发展趋势显得尤为重要。 关键词:新型土木工程材料发展环保 引言:随着人类文明及科学技术的发展,土木工程材料的不断进步与改善。现代土木工程中,尽管传统的土、石等材料的主导地位已逐渐被新型材料所取代。目前,水泥混凝土、钢材、钢筋混凝土已是不可替代的结构材料;新型合金、陶瓷、玻璃、有机材料及其他人工合成材料各种复合材料等在土木工程折中占有愈来愈重要的位置。 材料在土木工程建设中的作用:土木工程建筑物形成的过程,主要是根据材料性能而设计成适当的结构形式,并按照设计要求将材料进行构筑或组合的过程。在此过程中,材料的选择是否正确,材料的使用是否科学,材料的构筑是否合理,不仅直接决定了建筑物的质量或使用性能,也直接决定着工程的成本。因此,材料的性能直接决定了工程的设计方法和准则,也决定着工程的建造技术于构筑方式,对土木工程建设各方面都具有重要的影响。

1.材料对土木工程质量的影响质量是土木工程建设中追求的第一目标,而工程质量的优劣与所采用材料的质量水平以及使用的合理与否具有直接的关系。通常,材料的品种、组成、构造、规格及使用方法等对土木工程的结构安全性、坚固耐久性及适用性等工程质量指标都有直接的影响。以往工程实践表明,从材料的选择、生产、使用、检验评定,到材料的贮运、保管等环节都必须做到科学合理;否则,任何环节的失误都可能造成工程的质量缺陷,甚至是重大质量事故。国内外土木工程的重大质量事故多与材料的质量不良或使用不当有关。 2.材料对土木工程造价及资源消耗地影响在一般土木工程的总造价中,与材料直接有关的费用占50%以上。在工程建设中,材料的选择、使用和管理是否合理。对其工程成本的影响很大。在有些工程或工程的某些不为,可选择的材料品种很多。虽然采用不同的材料或不同的使用方法,但在土木工程中最终的体现效果相近,但是所学要的成本以及所消耗的资源相差可能很大。为此,可以通过优化选择和正确与充分使用材料,在满足工程各项使用要求的条件下,见地材料的资源消耗或能源消耗,节约与材料有关的费用。因此,从工程技术经济及可持续发展的角度来看,正确选择和使用材料,在土木工程建设中有着十分重要的意义。 3.材料对土木工程技术的影响土木工程建设过程中,工程的设计方法、施工方法往往都与材料密切有关,材料的性能直接决定了土木工程所采用的结构形式、使用方法或操作技术工艺等。通常情况下,

土木工程材料知识点)

1、孔隙率及孔隙特征对材料的表观密度、强度、吸水性、抗渗性、抗冻性、导热性等性质有何影响? 对表观密度的影响:材料孔隙率大,在相同体积下,它的表观密度就小。而且材料的孔隙在自然状态下可能含水,随着含水量的不同,材料的质量和体积均会发生变化,则表观密度会发生变化。 对强度的影响:孔隙减小了材料承受荷载的有效面积,降低了材料的强度,且应力在孔隙处的分布会发生变化,如:孔隙处的应力集中。 对吸水性的影响:开口大孔,水容易进入但是难以充满;封闭分散的孔隙,水无法进入。当孔隙率大,且孔隙多为开口、细小、连通时,材料吸水多。 对抗渗性的影响:材料的孔隙率大且孔隙尺寸大,并连通开口时,材料具有较高的渗透性;如果孔隙率小,孔隙封闭不连通,则材料不易被水渗透。 对抗冻性的影响:连通的孔隙多,孔隙容易被水充满时,抗冻性差。 对导热性的影响:如果材料内微小、封闭、均匀分布的孔隙多,则导热系数就小,导热性差,保温隔热性能就好。如果材料内孔隙较大,其内空气会发生对流,则导热系数就大,导热性好。 2、建筑钢材的品种与选用 建筑钢材的主要钢种 1)碳素结构钢:牌号的表示方法: Q 屈服点数值—质量等级代号脱氧程度代号Q235—BZ Q235——强度适中,有良好的承载性,又具有较好的塑性和韧性,可焊性和可加工性也较好,是钢结构常用的牌号,大量制作成钢筋、型钢和钢板用于建造房屋和桥梁等。Q235良好的塑性可保证钢结构在超载、冲击、焊接、温度应力等不利因素作用下的安全性,因而Q235能满足一般钢结构用钢的要求 Q235-A一般用于只承受静荷载作用的钢结构。含C0.14~0.22% Q235-B适用于承受动荷载焊接的普通钢结构,含C0.12~0.20% Q235-C适用于承受动荷载焊接的重要钢结构,含C≤0.18% Q235-D适用于低温环境使用的承受动荷载焊接的重要钢结构。含C≤0.17% 2)低合金高强度结构钢:牌号的表示方法:Q 屈服点数值质量等级代号 由于合金元素的强化作用,使低合金结构钢不但具有较高的强度,且具有较好的塑性、韧性和可焊性。低合金高强度结构钢广泛应用于钢结构和钢筋混凝土结构中,特别是大型结构、重型结构、大跨度结构、高层建筑、桥梁工程、承受动力荷载和冲击荷载的结构。 3、常用建筑钢材 1)低碳钢热轧圆盘条:强度较低,但塑性好,便于弯折成形,容易焊接。主要用做箍筋,以及作为冷加工的原料,也可作为中、小型钢筋混凝土结构的受力钢筋。 2)钢筋混凝土用热轧钢筋:钢筋混凝土用热轧钢筋共分为四级钢筋,根据其表面状态分为光圆钢筋和带肋钢筋。I级钢筋为光圆钢筋,其余三级为带肋钢筋。I级钢筋不带肋,与混凝土的握裹力不好,其末端需做180?弯钩。 I级钢筋由碳素结构钢轧制,其余均由低合金钢轧制。I级钢筋的强度较低,但塑性及焊接性能很好,便于各种冷加工,因而广泛用作普通钢筋混凝土构件的受力筋及各种钢筋混凝土结构的构造筋。 HRB335级和HRB400级钢筋的强度较高,塑性和焊接性能也较好,故广泛用作大、中型钢筋混凝土结构的受力钢筋。 HRB500级钢筋强度高,但塑性和可焊性较差,可用作预应力钢筋。

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

常见建筑材料及特点介绍

常见建筑材料及特点介绍 引言 从广义上讲,建筑材料是建筑工程中所有材料的总称。不仅包括构成建筑物的材料,而且还包括在建筑施工中应用和消耗的材料。构成建筑物的材料如地面、墙体和屋面使用的混凝土、砂浆、水泥、钢筋、砖、砌块等。在建筑施工中应用和消耗的材料如脚手架、组合钢模板、安全防护网等。通常所指的建筑材料主要是构成建筑物的材料,即狭义的建筑材料。 一、建筑材料是如何分类的 1、建筑材料的分类方法很多,一般按功能分为三大类: 2、结构材料主要指构成建筑物受力构件和结构所用的材料,如梁、板、柱、基础、框架等构件或结构所使用的材料。其主要技术性能要求是具有强度和耐久性。常用的结构材料有混凝土、钢材、石材等。 3、围护材料是用于建筑物围护结构的材料,如墙体、门窗、屋面等部位使用的材料。常用的围护材料有砖、砌块、板材等。围护材料不仅要求具有一定的强度和耐久性,而且更重要的是应具有良好的绝热性,符合节能要求。 4、功能材料主要是指担负某些建筑功能的非承重用材料,如防水材料、装饰材料、绝热材料、吸声材料、密封材料等。 5、建筑工程中,建筑材料费用一般要占建筑总造价的60%左右,有的高达75%。 二、建筑材料的发展方向 1)传统建筑材料的性能向轻质、高强、多功能的方向发展。例如,大规模生产新型干法水泥,研制出轻质高强的混凝土,新型墙体材料等。 2)化学建材将大规模应用于建筑工程中。主要包括建筑塑料、建筑涂料、建筑防水材料、密封材料、绝热材料、隔热材料、隔热材料、特种陶瓷、建筑胶粘剂等。化学建材具有很多优点,可以部分代替钢材、木材,且具有较好的装饰性。3)从使用单体材料向使用复合材料发展。如研究和使用纤维混凝土、聚合物混凝土、轻质混凝土、高强度合金材料等一系列新型高性能复合材料。

《新型土木工程材料》

中国矿业大学 《新型土木工程材料》课程考试作业 学院:环测学院 专业:测绘工程 班级: 13- 04班 姓名:张磊 学号: 06132292 得分: 新型防水材料的发展与应用

张磊 摘要:人类建设的各种建筑物的围护结构都要有一定的防水、防湿气以及其他有害液体和气体的侵蚀的能力,而这种分隔结构的构成材料则被我们称为防水材料。传统的防水材料是三毡四油。随着社会的进步与发展,我们已经逐渐摒弃了传统的防水材料,开始使用一些新开的发出来的建筑防水材料主:SBS/APP改性沥青防水卷材、高分子防水卷材、防水涂料、玻纤沥青瓦、自黏防水卷材等新型防水材料,以及以石油沥青纸胎油毡、沥青复合胎柔性防水卷材为主的沥青油毡类防水卷材等。本文针对目前市面上几种比较热门的新型防水材料进行分析评价,来了解防水材料对我国设施建设所带来的各种影响。 关键字:防水材料高分子防水卷材沥青油毡类防水卷材 Development and application of new waterproof materials Zhanglei Abstract:Envelope of various buildings Construction of humanity must have a waterproof, anti-moisture and erosion ability of other hazardous liquids and gases, and the constituent material of this separation structure we were called waterproof material. The traditional waterproof material three felt four oil. With social progress and development, we have gradually abandoned the traditional waterproof material, begin to use some of the newly opened issued to the main building waterproof materials: SBS / APP modified bitumen membrane, waterproofing, waterproof coating , fiberglass asphalt shingles, self-adhesive waterproofing membrane waterproofing and other new materials, as well as oil fetal asphalt felt paper, asphalt composite fetal flexible waterproofing membrane consisting mainly of asphalt waterproofing membrane and the like. In this paper, several currently on the market more popular new waterproof materials analysis and evaluation, to understand the variety of waterproof material impact on our facilities brought.

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

土木工程材料习题-第五版201102-答案

一、土木工程材料的基本性质 一、填空题 (请把答案填在题目的横线上,共20空) 1.材料的密度是指在绝对密实状态下,单位体积的质 量。 2.一般情况下,若材料孔隙率越大,则其表观密度越 小, 强度越低。 3.材料的空隙率是指散粒材料在堆积体积中,固体颗粒之间 的空隙体积占堆积体积所占的比例。 4.随含水率的增加,材料的密度不变,导热系数增 加。 5.同一组成材料,其孔隙率大,则强度低、保温 好、表观密度小。 6.材料的孔隙水饱和系数是指材料的吸水饱和的孔隙体积 与材料的孔隙体积之比,其值越大,则抗冻性越 差。 7.材料的耐久性是指材料在物理、化学、生物等因素作用下, 能经久不变质不破坏,而尚能保持原有的性能。

8. 材料的耐水性是指材料在 长期水的(吸水饱和) 作用下不破坏, 强度 也不明显下降的性质。 9. 材料的耐水性以 软化 系数表示,其数值越大,则 材料的耐水性越 好 。 10. 材料的抗冻性是指材料在 吸水饱和状态 下 ,经受多次冻融循环作用而不破坏,强 度也不明显下降的性质。 11. 若提高材料的抗冻性,应增加 闭口 孔隙,减少 开口 孔 隙。 12. 材料的抗渗性是指材料在 压力水 作用下抵抗渗透的能 力。 13. 憎水材料与亲水材料相比,更适宜做 防水 材料。 二、单项选择题:(请把选择的答案填在题目题干的横线上,共 10空) 1. 材料密度ρ、表观密度0ρ、堆积密度0ρ'存在下列关系 A 。 A) ρ>0ρ>0ρ' B) 0ρ'>ρ>0ρ C) ρ>0ρ'>0ρ 2. 表观密度是指材料在 B 状态下,单位体积的质量。 A )绝对密实 B )自然 C )堆积 D )饱和面

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

土木工程材料建筑材料简答题(难)

182.冶炼方法与脱氧程度对钢材性能有何影响? 答:常用的冶炼方法有:氧气转炉法、平炉法和电炉法。氧气转炉法能有效地除去磷和硫,钢中所含气体很低,非金属夹杂物亦较少,故质量较好;平炉法冶炼时间长,有足够的时间调整、控制其成分,去除杂质和气体亦较净,故质量较好,也较稳定;电炉法能自由调节温度,成分能够精确控制,故炼出的钢杂质含量少,钢的质量最好,但成本最高。按脱氧程度可以分为沸腾钢、镇静钢、半镇静钢和特殊镇静钢。沸腾钢和镇静钢相比较,沸腾钢中碳和有害杂质磷、硫等的偏析较严重,钢的致密程度较差。故沸腾钢的冲击韧性和可焊性较差,特别是低温冲击韧性的降低更显著。 什么是沸腾钢?有何优缺点?哪些条件下不宜选用沸腾钢? 答:沸腾钢仅加入答:锰铁进行脱氧,脱氧不完全,这种钢铸锭时,有大量的一氧化碳气体逸出,钢液呈沸腾状,故称为沸腾钢。钢的致密程度较差。故沸腾钢的冲击韧性和可焊性较差,但从经济上比较,沸腾钢只消耗少量的脱氧剂,钢的收缩孔减少,成本率较高。 硫、磷、氮、氧元素对钢材性能各有何影响? 答:硫多数以FeS的形式存在于钢中,它是一种强度较低和性质较脆的夹杂物,受力时容易引起应力集中,降低钢的强度和疲劳强度,同时硫对热加工和焊接很不利,且偏析严重;磷多数溶于铁素体中形成固溶体,磷虽能提高钢的强度和耐腐蚀性能,但显著提高了脆性转变温度,增大了钢的冷脆性,并降低可焊性,且偏析严重;氮也溶入铁素体中形成固溶体,能提高钢的强度和硬度,但显著降低了钢的塑性和韧性,增大钢的时效敏感性和冷脆性;氧多数以FeO形式存在于非金属夹杂物中,它是一种硬脆的物质,会使钢的塑性、韧性和疲劳强。 热轧钢筋分为几个等级?各级钢筋有什么特性和用途? 答:热轧钢筋分为Ⅰ、Ⅱ、Ⅲ和Ⅳ级钢筋,Ⅰ级钢筋的强度不高,但塑性及可焊性良好,主要用作非预应力混凝土的受力钢筋或构造筋;Ⅱ、Ⅲ级钢筋由于强度较高,塑性和可焊性也好,可用于大中型钢筋混凝土结构的受力筋;Ⅳ级钢筋虽然强度高,但塑性及可焊性较差,可用作预应力钢筋。度显著降低,并增大时效敏感性。 解释石灰、建筑石膏不耐水的原因。 答:石灰的炭化硬化较慢,强度主要由干燥硬化产生,石灰受潮后,氢氧化钙吸水软化导致强度下降。石膏吸水后,石膏晶体间的粘合力降低,二水石膏在水中溶解而引起石膏溃散,由于石膏孔隙率较大,石膏中的水分冻结后引起石膏崩裂。 硅酸盐水泥石腐蚀的类型有哪几种?产生腐蚀的原因是什么?防止腐蚀的措施有哪些?答:腐蚀的类型有:软水侵蚀(溶出性侵蚀):软水能使水化产物中的Ca(OH)2溶解,并促使水泥石中其它水化产物发生分解;盐类腐蚀:硫酸盐先与水泥石结构中的Ca(OH)2起置换反应生产硫酸钙,硫酸钙再与水化铝酸钙反应生成钙钒石,发生体积膨胀;镁盐与水泥石中的Ca(OH)2反应生成松软无胶凝能力的Mg(OH)2;酸类腐蚀:CO2与水泥石中的Ca(OH)2反应生成CaCO3,再与含碳酸的水反应生成易溶于水的碳酸氢钙,硫酸或盐酸能与水泥石中的Ca(OH)2反应;强碱腐蚀:铝酸盐含量较高的硅酸盐水泥遇到强碱也会产生破坏。腐蚀的防止措施:①根据工程所处的环境,选择合适的水泥品种;②提高水泥石的密实程度;③表明防护处理。 生产硅酸盐水泥为什么要掺入适量石膏? 答:水泥熟料中的硅酸三钙与水反应十分迅速,使得水泥熟料加水后迅速凝结,导致来不及施工。所以为调节水泥的凝结时间,通常在水泥中加入适量石膏,这样,水泥加水后石膏迅速溶解与水化铝酸钙发生反应,生产针状的晶体(3CaO·Al2O3·3CaSO4·31H2O,又称为

新型土木工程材料

新型土木工程材料 2013-04-17 06:20:23| 分类:建筑工程| 标签:|举报|字号大中小订阅 土木工程材料是指在土木T程中所使用的各种材料及其制品的总称。它是一切建筑工程的物质基础,是组成建筑结构物的最基本构成元素。由于科学技术的发展,使得土木工程的新型材料如雨后春笋般出现,表现出节能、高效、环保等特点,并呈现种类繁多,性质各异,用途不同的特性。 1高性能混凝土fHPc)HPC要求 具有高耐久性和高强度、优良的工作性,首先体现在较高的早期强度、高验收强度、高弹性模量;其次是高耐久性。可保护钢筋不被锈蚀,在其他恶劣条件下使用,同样可保持混凝土坚固耐久;最后是高的和易性、可泵性、易修整性。可配制大坍落度的流态混凝土,而不发生离析;可降低泵送压力,修整容易。冬天浇筑时,混凝土凝结时间正常,强度增长快于普通混凝土,低温环境下不冰冻,高温环境下浇筑混凝土保持正常的坍落度,并可控制水化热。 1.1低强混凝土这种材料可用于基础、桩基的填、垫、隔离及作路基或填充孔洞之用,也可用于地下构造。在一些特定情况下,可用低强混凝土调整混凝土的相对密度、工作度、抗压强度、弹性模量等性能指标,而且不易产生收缩裂缝。 1.2轻质混凝土利用天然轻骨料(如浮石、凝灰岩等)、工业废料轻骨料(如炉渣、粉煤灰陶粒、自燃煤矸石等)、人造轻骨料(页岩陶粒、粘土陶粒、膨胀珍珠岩等)制成的轻质混凝土具有密度较小、相对强度高以及保温、抗冻性能好等优点。利用工业废渣,如废弃锅炉煤渣、煤矿的煤矸石、火力发电站的粉煤灰等制备轻质混凝土,可降低混凝土的生产成本,并变废为宝,减少城市或厂区的污染,减少堆积废料占用的土地,对环境保护也是有利的。 1. 3自密实混凝土自密实混凝土不需机械振捣,而是依靠自重使混凝土密实。该种混凝土的流动度虽然高,但仍可以防止离析。配制这种混凝土的方法有:f1)粗骨料的体积为固体混凝土体积的50%;(2)细骨料的体积为砂浆体积的40%;(3)水灰比为0.9—1.0;(4)进行流动性试验,确定超塑化剂用量及最终的水灰比,使材料获得最优的组成。 这种混凝土的优点有:现场施工l尢振动噪音,可进行夜间施工,不扰民;对工人健康无害;混凝土质量均匀、耐久;钢筋布置较密或构件体型复杂时也易于浇筑;施工速度快,现场劳动量小。 2高掺量粉煤灰混凝土 随着人们对粉煤灰的颗粒形态效应、火山灰活性效应和微集料效应等内在潜能的认识日渐深入,以及混凝土外加剂技术的迅速发展,粉煤灰成为继外加剂之后混凝土的又一必需组分的观点正在被越来越多的人接受.粉煤灰的掺量也有不断增大的趋势。在混凝土技术方面较先进的美、英、加等国,自20世纪80年代中期就开始了高掺量粉煤灰混凝土f粉煤灰掺量占总胶凝材料用量的55%以上)的研究与应用。 大量使用粉煤灰的重要意义并不仅在于节约有限的工程材料费,还在于它的环境效益与社会效益.水泥是一种高能耗与高环境污染产品,尽可能地少用水泥,尽可能地多用各种工业废渣,是使混凝土成为一种人类可持续发展材料的必然趋势。在环保要求特别严格的西方lT业国家,尤其重视各种工业废料的二次开发与充分利用。随着我国经济的快速发展与人民生活水平的迅速提高,环境与社会效益将日益受到重视,工业废渣的充分开发利用将成为必然的选择。 3新型节能墙体材料 3. 1新型砌体材料采用砌筑结构的墙体,通常依靠选用导热系数小、保温隔热性能好的砌体材料,以此来达到墙体传热量小的目的。这类材料主要有空心钻土砖、加气混凝土砌块、普通混凝土以及粉煤灰、煤研石、浮石等混凝土空心小砌块等砌体材料,采用保温砂浆作为砌体胶凝材料。 近年来发展应用由保温绝热材料与传统的墙体材料f例如实心黏土砖、混凝土等)或新型墙体材料[例如空心砖、空心砌块等)复合而成的节能墙体。常用的绝热材料有矿物棉、玻璃棉、泡沫塑料、膨胀珍珠岩、

碳纤维复合材料应用研究报告Word版

碳纤维复合材料应用研究报告 摘要:本文对碳纤维复合材料的应用进行了综述,介绍了目前碳纤维复合材料的优异性能、国内外发展现状及趋势及在其所应用领域中的发展前景。同时,也指出了碳纤维复合材料在应用和发展中所存在的问题,并给出了解决这些问题的对策及建议。 关键字:碳纤维,复合材料,应用前景 1 前言 碳纤维复合材料是以碳纤维为增强体与树脂、陶瓷及金属等基体复合而成的结构材料。碳纤维是纤维状的碳素材料,含碳量在90% 以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维除了具有十分优异的力学性能外,碳纤维还具有低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、穿透性高等优良性能[1]。基于此,到目前为止,用碳纤维与其他基体复合而成的先进基复合材料是目前用得最多,也是最重要的一种结构复合材料。 碳纤维复合材料与金属材料或其他工程材料相比有许多优良的性能,如表1-1所示[2]: 表1-1 各材料性能比较 通过比较可知,(1)碳纤维复合材料比强度是钢SAE1010(冷轧)的近20倍,是铝6061-T6 的近10倍;其比模量则超过这些钢和铝材的3倍。因此其具有高的比强度和比模量。(2)大多数碳纤维复合材料可通过设计增强纤维的取向及用量来对结构材料的性能实行剪裁,达到性能最佳。(3)碳纤维复合材料密度低,质量轻,能有效减轻构件重量。除此之外,碳纤维复合材料还有多选择性成型工艺、良好的耐疲劳性能及良好的抗腐蚀性等。

由于碳纤维复合材料具有优于其他材料的性能,世界各国都在大力发展碳纤维复合材料。2013年碳纤维复合材料总产值147亿美元,其中CFRP产值94亿美元,约占64%。碳纤维复合材料的需求7.2万t,2020年预计需求量将达14.6万t(图1-1),2010—2020年全球碳纤维复合材料年均增长率都将超过11%[3][4]。 2016、2020年的需求量为预测值。 图1-1 2011—2020年全球碳纤维和碳纤维复合材料的需求量 其中,欧洲的碳纤维复合材料需求占全球市场的40 %,美国占25 %,中国占20 %,其他国家与地区的碳纤维复合材料占市场份额在15 %上下。其中中国市场对碳纤维的需求每年也在逐步增加,中国碳纤维复合材料市场需求如图1-2所示: 图1-2 中国碳纤维复合材料市场需求 2015年,碳纤维制造商日本帝人公司扩大碳纤维复合材料合作领域,其目标是将他们

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

相关主题
文本预览
相关文档 最新文档