当前位置:文档之家› 人教A版选修2-2 1.5.3 定积分的概念 学案 (1)

人教A版选修2-2 1.5.3 定积分的概念 学案 (1)

人教A版选修2-2 1.5.3 定积分的概念 学案 (1)
人教A版选修2-2 1.5.3 定积分的概念 学案 (1)

1.5.3 定积分的概念

预习课本P45~47,思考并完成下列问题 (1)定积分的概念是什么?几何意义又是什么?

(2)定积分的计算有哪些性质?

[新知初探]

1.定积分的概念与几何意义

(1)定积分的概念:一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

-1

=1,2,…,n ),作和式∑i =1

n

f (ξi )Δx =

i =1n

b -a

n

f (ξi ), 当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的

定积分,记作??a b

f (x )d x ,即??a

b

f (x )d x =lim n →∞i =1n b -a n

f (ξi ), 这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.

(2)定积分的几何意义:如果在区间[a ,b ]上函数连续且恒有f (x )≥0,那么定积分??a

b

f (x )d x 表示由直线x =a ,x =b (a

中的阴影部分的面积).

[点睛] 利用定积分的几何意义求定积分的关注点.

(1)当f (x )≥0时,??a b

f (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义.

(2)计算??a b

f (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值:

当f (x )≥0时,??a b

f (x )d x =S ;当f (x )<0时,

??a

b

f (x )d x =-S . 2.定积分的性质

(1)??a b

kf (x )d x =k ??a b

f (x )d x (k 为常数). (2)??a b

[f 1(x )±f 2(x )]d x =??a b

f 1(x )d x ±??a b

f 2(x )d x . (3)??a b

f (x )d x =??a c

f (x )d x +??c b

f (x )d x (其中a

[点睛]

性质(1)的等式左边是一个定积分,等式右边是常数与一个定积分的乘积. 性质(2)对于有限个函数(两个以上)也成立.

性质(3)对于把区间[a ,b ]分成有限个(两个以上)区间也成立.

[小试身手]

1.判断(正确的打“√”,错误的打“×”)

(1)??02

x

2d x =1.( )

(2)??a b

f (x )d x 的值一定是一个正数.( )

(3)??a b (x 2+2x )d x =??a b x 2d x +??a b

2x d x .( )

答案:(1)√ (2)× (3)√ 2.已知??02

f (x )d x =8,则( ) A.??01

f (x )d x =4 B.??02f (x )d x =4

C.??01f (x )d x +??12

f (x )d x =8

D .以上答案都不对 答案:C

3.直线x =1,x =2,y =0与曲线y

=1

x

围成曲边梯形的面积用定积分表示为( )

A.??01

2d x

B.??12

0d x C.??02

1x d x

D.??12

1

x d x

答案:D

4.已知??0t

x d x =2,则?

?0

-t x d x =________. 答案:-2

利用定义求定积分

[典例] 利用定义求定积分??03

x 2

d x .

[解] 令f (x )=x 2

(1)分割:在区间[0,3]上等间隔地插入n -1个点,把区间[0,3]分成n 等份,其分点为x i =3i n (i =1,2,…,n -1),这样每个小区间[x i -1,x i ]的长度Δx =3

n

(i =1,2,…,n ).

(2)近似代替、求和:令ξi =x i =3i n

(i =1,2,…,n ),于是有和式:∑i =1

n

f (ξi )Δx =i =1

n ? ??

?

?3i n 2

·3n =27n 3∑i =1n i 2=27n 3·16n (n +1)(2n +1)=92? ????1+1n ? ??

??

2+1n . (3)取极限:根据定积分的定义,有??03

x 2d x =lim n →∞

∑i =1

n

f (ξi )Δx =lim n →∞??????92?

????1+1n ? ????2+1n =9.

用定义求定积分的一般步骤

(1)分割:n 等分区间[a ,b ];

(2)近似代替:取点ξi ∈[x i -1,x i ],可取ξi =x i -1或ξi =x i ;

(3)求和:∑i =1

n

f (ξi )·

b -a

n

; (4)取极限:??a

b

f (x )=lim n →∞

∑i =1

n

f (ξi )·b -a

n . [活学活用]

利用定积分的定义,计算??12

(3x +2)d x 的值. 解:令f (x )=3x +2.

(1)分割:在区间[1,2]上等间隔地插入(n -1)个分点,将区间[1,2]等分成n 个小区间

????

??n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n .

(2)近似代替、作和: 取ξi =

n +i -1

n

(i =1,2,…,n ),则 S n =∑i =1

n

f ? ????n +i -1n Δx =i =1n ??????3n +i -1n +21n

=i =1

n ?

???

??3i -1n 2

+5

n =3

n

2[0+1+2+…+(n -1)]+5

=32×n 2

-n n 2+5=132-32n

. (3)取极限:??1

2

(3x +2)d x =lim n →∞S n =lim n →∞? ????132-32n =132

. 用定积分的性质求定积分

[典例] (1)f (x )=?

????

x +1,0≤x <1,

2x 2

,1≤x ≤2.则??02

f (x )d x =( )

A.??02

(x +1)d x

B.??02

2x 2

d x

C.??01(x +1)d x +??12

2x 2d x

D.??012x d x +??12

(x +1)d x

(2)已知??0e

x d x =e 2

2,??0e x 2d x =e 3

3

,求下列定积分的值:

①??0e

(2x +x 2

)d x ; ②??0e (2x 2-x +1)d x .

[解析] (1)由定积分的几何性质得:

??02f (x )d x =??01(x +1)d x +??1

2

2x 2d x . 答案:C

(2)解:①??0e

(2x +x 2)d x =2??0e

x d x +??0e

x 2d x

=2×e 22+e 33=e 2

+e 3

3

.

②??0e

(2x 2-x +1)d x =??0e

2x 2d x -??0e

x d x +??0e

1d x ,

因为已知??0e

x d x =e 22,??0e

x 2d x =e 3

3,

又由定积分的几何意义知:

??0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以??0

e

1d x =1×e =e , 故??0

e

(2x 2

-x +1)d x =2×e 3

3-e 2

2+e =23e 3-12

e 2+e.

(1)如果被积函数是几个简单函数的和的形式,利用定积分的线性性质进行计算,可以简化计算.

(2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连续可加性计算.

[活学活用]

若f (x )=?

????

2x -1,-1≤x <0,

e -x

,0≤x ≤1.且??0

-1(2x -1)d x =-2,??01

e -x d x =1-e -1,求?

?1-1f (x )d x .

解:对于分段函数的定积分,通常利用积分区间可加性来计算,即??1

-1f (x )d x =?

?0

-1f (x )d x +??01

f (x )d x

=?

?0

-1(2x -1)d x +??0

1

e -x d x =-2+1-e -1=-(e -1

+1).

用定积分的几何意义求定积分

[典例] 根据定积分的几何意义,求下列定积分的值.

(1)??-R R R 2-x 2d x ;(2)??-11

|x |d x .

[解] (1)被积函数的图象是一个以原点为圆心,以R 为半径的半圆,如图①所示, 所以?

?-R

R R 2

-x 2

d x =12·πR 2=πR 2

2

.

(2)被积函数的图象如图②所示,由定积分的几何意义知其值为两部分阴影面积之和, 所以??-1

1

|x |d x =2×1

2

×1×1=1.

当定积分表示的面积容易求时,则利用定积分的几何意义求积分. [活学活用]

利用定积分的几何意义说明下列等式成立. (1)∫π2-π2cos x d x =2∫π

20cos x d x ;

(2)??-ππ

sin x d x =0.

解:(1)函数y =cos x ,x ∈??????-π2,π2是偶函数,

故曲线y =cos x ,x ∈????

??-

π

2,0与坐标轴围成图形的面积S 1等于曲线y =cos x ,x ∈????

??0,π2与坐标轴围成图形的面积S 2

,于是由定积分的几何意义,

有∫π2-π2cos x d x =S 1+S 2=2S 2=2∫π

20cos x d x .

(2)函数y =sin x ,x ∈[-π,π]是奇函数,

设曲线y =sin x ,x ∈[-π,0]与x 轴围成图形的面积为S 1,设曲线y =sin x ,x ∈[0,π]与x 轴围成图形的面积为S 2,易知S 1=S 2,从而由定积分的几何意义,

有??-ππ

sin x d x =-S 1+S 2=0.

层级一 学业水平达标

1.定积分??-22

f (x )d x (f (x )>0)的积分区间是( ) A .[-2,2] B .[0,2] C .[-2,0]

D .不确定

解析:选A 由定积分的概念得定积分??2

-2f (x )d x 的积分区间是[-2,2]. 2.定积分??13

(-3)d x 等于( ) A .-6 B .6 C .-3

D .3

解析:选A 由定积分的几何意义知,??13

(-3)d x 表示由x =1,x =3,y =0及y =-3所围成的矩形面积的相反数,故??13

(-3)d x =-6.

3.下列命题不正确的是( )

A .若f (x )是连续的奇函数,则??-a a

f (x )d x =0

B .若f (x )是连续的偶函数,则??-a a f (x )d x =2??0a

f (x )d x

C .若f (x )在[a ,b ]上连续且恒正,则??a b

f (x )d x >0

D .若f (x )在[a ,b ]上连续且??a b

f (x )d x >0,则f (x )在[a ,b ]上恒正

解析:选D A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大.

4.设f (x )=?

????

x 2

,x ≥0,2x

,x <0,则??-11

f (x )d x 的值是( )

A.??-11

x 2d x B.??-112x

d x

C.??-11

x 2d x +??-11

2x d x D.??-10

2x d x +??01

x 2d x

解析:选D 由定积分性质(3)求f (x )在区间[-1,1]上的定积分,可以通过求f (x )在区间[-1,0]与[0,1]上的定积分来实现,显然D 正确,故应选D.

5.下列各阴影部分的面积S 不可以用S =??a b

[f (x )-g (x )]d x 求出的是( )

解析:选D 定积分S =??a b

[f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,D 项中f (x )的图象不全在g (x )的图象上方.故选D.

6.若??a b f (x )d x =3,??a b g (x )d x =2,则??a b

[f (x )+g (x )]d x =__________. 解析:??a b

[f (x )+g (x )]d x =??a b

f (x )d x +??a b

g (x )d x =3+2=5.

答案:5

7.若??a b

f (x )d x =1,??a b

g (x )d x =-3,则??a b

[2f (x )+g (x )]d x =_______. 解析:??a b [2f (x )+g (x )]d x =2??a b f (x )d x +??a b

g (x )d x =2×1-3=-1.

答案:-1

8.计算:??04

16-x 2d x =____________.

解析:??04

16-x 2d x 表示以原点为圆心,半径为4的14圆的面积,∴??04

16-x 2d x =14

π·42=4π.

答案:4π

9.化简下列各式,并画出各题所表示的图形的面积.

(1)??-3-2

x 2d x +?

?1-2x 2d x ; (2)??01(1-x )d x +??12

(x -1)d x .

解:(1)原式=?

?1

-3x 2

d x ,如图(1)所示. (2)??01(1-x )d x +??12(x -1)d x =??02

|1-x |d x ,如图(2)所示.

10.已知函数f (x )=????

?

x 5

,x ∈[-1,1],x ,x ∈[1,π,

sin x ,x ∈[π,3π],

求f (x )在区间[-1,3π]上的定积

分.

解:由定积分的几何意义知:

∵f (x )=x 5

是奇函数,故??-11

x 5

d x =0;

??π

sin x d x =0(如图(1)所示); ??1

π

x d x =12(1+π)(π-1)=12

(π2-1)(如图(2)所示).

∴??-13πf (x )d x =??-11x 5d x +??1πx d x +??π3π

sin x d x

=??1

π

x d x =12

(π2

-1).层级二 应试能力达标 1.设f (x )是[a ,b ]上的连续函数,则??a b f (x )d x -??a b

f (t )d t 的值( )

A .小于零

B .等于零

C .大于零

D .不能确定

解析:选B ??a b

f (x )d x 和??a b

f (t )d t 都表示曲线y =f (x )与x =a ,x =b 及y =0围成的

曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.

2.如图所示,图中曲线方程为y =x 2

-1,用定积分表示围成封闭图形(阴影部分)的面积是( )

A.??02

(x 2

-1)d x B.??01(x 2-1)d x C.??02|x 2-1|d x

D.??01

(x 2-1)d x +??12

(x 2

-1)d x

解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S

=??01

(1-x 2)d x +??12

(x 2-1)d x =??02

|x 2

-1|d x ,故选C.

3.设a =??01

x 13d x ,b =??01

x 2d x ,c =??01

x 3

d x ,则a ,b ,c 的大小关系是( )

A .c >a >b

B .a >b >c

C .a =b >c

D .a >c >b

解析:选B 根据定积分的几何意义,易知??01

x 3d x <??01

x 2d x <??01

x 13d x ,即a >b >c ,故

选B.

4.已知t >0,若??0t

(2x -2)d x =8,则t =( ) A .1 B .-2 C .-2或4

D .4

解析:选D 作出函数f (x )=2x -2的图象与x 轴交于点A (1,0),与y 轴交于点B (0,-2),易求得S △OAB =1,

∵??0t (2x -2)d x =8,且??01

(2x -2)d x =-1,∴t >1,

∴S △AEF =12|AE ||EF |=12

×(t -1)(2t -2)=(t -1)2

=9,∴t =4,故选D.

5.定积分??01

(2+1-x 2

)d x =________. 解析:原式=??01

2d x +??01

1-x 2d x .

因为??012d x =2,??01

1-x 2d x =π4, 所以??01

(2+1-x 2)d x =2+π4.

答案:2+π4

6.已知f (x )是一次函数,其图象过点(3,4)且??01

f (x )d x =1,则f (x )的解析式为______. 解析:设f (x )=ax +b (a ≠0),

∵f (x )图象过(3,4)点, ∴3a +b =4.

又??01

f (x )d x =??01

(ax +b )d x =a ??01

x d x +??01

b d x

=12a +b =1.

解方程组????

?

3a +b =4,1

2a +b =1,得?????

a =6

5,b =2

5.

∴f (x )=65x +2

5.

答案:f (x )=65x +2

5

7.一辆汽车的速度—时间曲线如图所示,用定积分法求汽车在这一分钟内行驶的路程.

解:依题意,汽车的速度v 与时间t 的函数关系式为 v (t )=?????

3

2t ,0≤t <20,

50-t ,20≤t <40,

10,40≤t ≤60.

所以该汽车在这一分钟内所行驶的路程为

s =∫600

v (t )d t =∫200

32

t d t +??2040(50-t )d t +??4060

10d t =300+400+200=900(米).

8.如图所示,抛物线y =12x 2将圆面x 2+y 2

≤8分成两部分,现在向

圆面上均匀投点,这些点落在图中阴影部分的概率为14+1

求??02

? ??

??8-x 2-12x 2d x 的值. 解:解方程组?????

x 2+y 2

=8,y =12

x 2

得x =±2.

∴阴影部分的面积为

??2-2? ????8-x 2-12x 2d x . ∵圆的面积为8π,

∴由几何概型可得阴影部分的面积是 8π·? ????14+16π=2π+43.

由定积分的几何意义得 ??02

? ??

??8-x 2-12x 2d x =12??2-2? ????8-x 2

-12x 2d x =π+23.

定积分的概念(教学内容)

授课题目定积分的概念 课时数1课时 教学目标理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。 重点与难点重点:定积分的基本思想方法,定积分的概念形成过程。难点:定积分概念的理解。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完导数和不定积分这两个概念后的学习,定积分概念的建立为微积分基本定理的引出做了铺 垫,起到了承上启下的作用。而且定积分概念的引入体 现着微积分“无限分割、无穷累加”“以直代曲、以不变 代变”的基本思想。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。

教学手段 传统教学与多媒体资源相结合。 课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、定积分问题举例 1、曲边梯形的面积 设)(x f y =在区间],[b a 上非负连续。由)(,0,,x f y y b x a x ====所围成的图形称为曲边梯形(见下图),求其面积A ,具体计算步骤如下: (1)分割:在区间],[b a 中任意插入1-n 个分点 b x x x x x a n n =<<<<<=-1210Λ 把],[b a 分成n 个小区间 ],[,],,[],,[12110n n x x x x x x -Λ 它们的长度依次为:n x x x ???,,,21Λ (2)近似代替:区间],[1i i x x -对应的第i 个小曲边梯形面积,)(i i i x f A ?≈?ξ ]).,[(1i i i x x -∈?ξ (3)求和:曲边梯形面积∑∑==?≈?=n i i i n i i x f A A 1 1 )(ξ (4)取极限:曲边梯形面积,)(lim 10∑=→?=n i i i x f A ξλ其中 }.,,m ax {1n x x ??=Λλ 2、变速直线运动路程 设物体做直线运动,已知速度)(t v v =是时间间隔],[21T T 上的非负连续函数,计算这段时间内物体经过的路程s ,具体计算步骤与上相似 x a b y o 1x i x 1-i x i ξ

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

人教新课标版数学高二-2-2导学案 1.5 定积分概念第一课时

1.5 定积分概念第一课时 (结合配套课件、作业使用,效果更佳) 周;使用时间17 年月日;使用班级;姓名 【学习目标】 1.了解“以直代曲”、“以不变代变”的思想方法. 2.会求曲边梯形的面积和汽车行驶的路程. 重点:会求曲边梯形的面积和汽车行驶的路程. 难点:了解“以直代曲”、“以不变代变”的思想方法. 【检查预习】预习课本,完成导学案“自主学习”部分,准备上课回答. 【自主学习】 知识点一曲边梯形的面积 思考1如何计算下列两图形的面积? 思考2如图,为求由抛物线y=x2与直线x=1,y=0所围成的平面图形的面积S,图形与我们熟悉的“直边图形”有什么区别? 思考3能否将求曲边梯形的面积问题转化为求“直边图形”的面积问题?(归纳主要步骤) (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).

(3)求曲边梯形面积的步骤:①分割,②近似代替,③求和,④取极限. 知识点二 求变速直线运动的(位移)路程 如果物体做变速直线运动,速度函数为v =v (t ),那么也可以用 、 、 、 的方法,求出它在a ≤t ≤b 内所作的位移s . 【合作探究】 类型一 求曲边梯形的面积 例1 求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积. 跟踪训练1 求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积. 类型二 求变速运动的路程 例2 有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h), 那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少? 跟踪训练2 一辆汽车在笔直的公路上变速行驶,设汽车在时刻t 的速度为v (t )=-t 2+5(t 的单位:h ,v 的单位:km/h),试计算这辆汽车在0≤t ≤2这段时间内汽车行驶的路程s (单 位:km). 【学生展示】探究点一 【教师点评】探究点二及【学生展示】出现的问题 【当堂检测】 1.把区间[1,3] n 等分,所得n 个小区间的长度均为( ) A.1n B.2n C.3n D.12n 2.函数f (x )=x 2在区间?? ??i -1n ,i n 上( ) A .f (x )的值变化很小 B .f (x )的值变化很大 C .f (x )的值不变化 D .当n 很大时,f (x )的值变化很小 3.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i )

(新)高中数学高考总复习定积分与微积分基本定理习题及详解

年 级 高二 学科 数学 内容标题 定积分的计算 编稿老师 马利军 一、教学目标: 1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:? b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分? b a dx x f )(的几何意义是:y=f (x ) 与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下. ? b a dx x f )(的几何意义是介于x 轴、 函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=? ,在图(2)中:0s dx )x (f b a <=? ,在图(3)中:dx )x (f b a ? 表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于? b a dx x f )(,仅 当在区间[a ,b]上f (x )恒正时,其面积才等于 ? b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)?? =b a b a dx x f k dx x kf )()(,(k 为常数) (3) ?? ?+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a ,b ]上,? ≥≥b a dx x f x f 0)(,0)(则

N0.14《定积分的概念》导学案

N0.14《定积分的概念》导学案 目标展示: 1、掌握求曲边梯形面积的步骤。 2、了解定积分的定义和几何意义。 课程导读(阅读教材P38—P49后完成下列问题) 化很大 C .f (x )的值不变化 D .当n 很大时,f (x )的值变化很小 2.在求由x =a ,x =b (a 当n →+∞时,无限趋近于一个常数A ,则A 可用定积分表示为 ( ) A .dx x ?101 B .dx x p ?10 C .dx x p ?1 0)1( D .dx n x p ?10)( 4.当n 很大时,函数f (x )=x 2在区间????i -1n ,i n 上的值能够用下列哪个值近似代替( ). A .f ????1n B .f ????2n C .f ??? ?i n D .f (0) 5.求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间[0,t ]等分成n 个小区间,则第i -1个区间为( ) A.????i -1n ,i n B.????i n ,i +1n C.????t (i -1)n ,ti n D.????t (i -2)n ,t (i -1)n 6.由直线x =1,y =0,x =0和曲线y =x 3所围成的曲边梯形,将区间4等分,则曲边梯形 面积的近似值(取每个区间的右端点)是( ) A.119 B.111256 C.110270 D.2564 7.在等分区间的情况下,f (x )= 11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式准确的是( ) A.lim n →∞∑i =1n [1 1+????i n 2·2n ] B.lim n →∞∑i =1n [11+????2i n 2·2n ] C.lim n →∞∑i =1n ????11+i 2·1n D.lim n →∞∑i =1n [11+????i n 2·n ] 8.已知??13f (x )d x =56,则( ) A.??12f (x )d x =28 B.??2 3f (x )d x =28 C.??122f (x )d x =56 D.??12f (x )d x +??2 3f (x )d x =56 9.下列等式成立的是( ) A a b xdx b a -=? B. 5.0=?xdx b a

高中数学高考总复习定积分与微积分基本定理习题及详解

一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:?b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分?b a dx x f )(的几何意义是:y=f (x )与x=a ,x= b 及x 轴围成的曲边梯形面积,在一般情形下.?b a dx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x= b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=?,在图(2)中:0s dx )x (f b a <=?,在图(3)中:dx )x (f b a ?表示 函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于?b a dx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于?b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)??=b a b a dx x f k dx x kf )()(,(k 为常数) (3)???+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a , b ]上,?≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,??≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)??≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则??=-a a a dx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=?-a a dx x f 4. 微积分基本定理: 一般地,若)()()(],[)(),()('a F b F dx x f b a x f x f x F b a -==?上可积,则在且 注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

2017年定积分导学案

1.5定积分的概念 (一) 一,学习任务 1.连续函数 2.曲边梯形的面积 (1)曲边梯形: (2)求曲边梯形面积的方法与步骤: ①分割: ②近似代替: ③求和: ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 【例题1】求由直线x =1,y =0及曲线y =x 2所围成的图形的面积S . 思考1在求曲边梯形面积中第一步“分割”的目的是什么? 思考2求曲边梯形面积时,能否直接对整个曲边梯形进行“以直代曲”呢?怎样才能减小误差? 3.变速直线运动的路程 一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内的位移s . 【例题2】一辆汽车做变速直线运动,设汽车在时刻t 的速度v (t )= - t 2+2 , 求汽车在t =0到t =1这段时间内运动的路程s . 二,巩固练习 1.和式)1(y 5 1i i ∑=+可表示为。。。。。。。。。。。。。。。。。。。。。。。。。。。( ) A .(y 1+1)+(y 5+1) B .y 1+y 2+y 3+y 4+y 5+1 C .y 1+y 2+y 3+y 4+y 5+5 D .(y 1+1)(y 2+1)…(y 5+1) 2.在求由x =a 、x =b (a

[a ,b ]上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是 ( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ; ④n 个小曲边梯形的面积和与S 之间的大小关系无法确定 A .1个 B .2个 C .3个 D .4个 3.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于。。。。。。。。。。。。( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1) C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1]) D .以上答案均不正确 4.在求由函数y =1 x 与直线x =1、x =2、y =0所围成的平面图形的面积时,把区间[1,2]等分 成n 个小区间,则第i 个小区间为。。。。。。。。。。。。。。。。。。。。。。。。。。( ) A .[i -1n ,i n ] B .[n +i -1n ,n +i n ] C .[i -1,i ] D .[i n ,i +1n ] 5.曲线y =cos x (0≤x ≤2π)与y =1围成的面积是。。。。。。。。。。。。。。。。。( ) A .4π B .5π 2 C .3π D .2π 6.当n 很大时,函数f (x )=x 2在区间],1[n i n i (i =1,2,…,n )上的值可以用______近似代替 ( ) A.n i B .)(n f 1 C .)(n i f D .n 1 7.求直线x =0、x =2、y =0与曲线y =x 2所围成曲边梯形的面积. 学习报告(学生): 教学反思(教师):

高中数学-定积分的概念测试

高中数学-定积分的概念测试 1.定积分??0 1 1d x 的值等于 ( ) A .0 B .1 C.1 2 D .2 答案 B 2.已知??1 3 f (x )d x =56,则 ( ) A.??1 2 f (x )d x =28 B.??2 3f (x )d x =28 C.??1 22f (x )d x =56 D.??12f (x )d x +??2 3 f (x )d x =56 答案 D 3.如图所示,??a b f 1(x )d x =M ,??a b f 2(x )d x =N ,则阴影部分的面积为 ( ) A .M +N B .M C .N D .M -N 答案 D

4.不用计算,根据图形,用不等号连接下列各式 ( ) (1)??01 x d x ________??0 1x 2d x (图1); (2)??01x d x ________??1 2 x d x (图2); (3)??024-x 2d x ________??0 2 2d x (图3). 答案 (1)> (2)< (3)<

1.定积分可以表示图形的面积 从几何上看,如果在区间[a ,b ]上,函数f (x )连续且恒有f (x )≥0,那么定积分??a b f (x )d x 就表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积,这就是定积分??a b f (x )d x 的几何意义. 2.定积分表示图形面积的代数和 被积函数是正的,定积分的值也为正,如果被积函数是负的,函数曲线在x 轴之下,定积分的值就是带负号的曲边梯形的面积.当被积函数在积分区间上有正有负时,定积分就是x 轴之上的正的面积与x 轴之下的负的面积的代数和. 3.此外,定积分还有更多的实际意义,比如在物理学中,可以用定积分表示功、路程、压力、体积等. 4.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即??a b f (x )d x =??a b f (u )d u =??a b f (t )d t =…(称为积分形式的不变性),另外定积分??a b f (x )d x 与积分区间[a ,b ]息息相关,不同的积分区间,所得的值也不同,例如??01(x 2+1)d x 与??0 3(x 2 +1)d x 的值就不同.

§1.5.3定积分的概念教案

1.5.3定积分的概念 教学目标 能用定积分的定义求简单的定积分; 理解掌握定积分的几何意义; 重点 定积分的概念、定积分法求简单的定积分、 定积分的几何意义 难点 定积分的概念、定积分的几何意义 复习: 1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤 2.对这四个步骤再以分析、理解、归纳,找出共同点. 新课讲授 1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?=), 在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ= ,作和式: 1 1 ()()n n n i i i i b a S f x f n ξξ==-= ?= ∑ ∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数 S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为: ()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S

(n →+∞时)称为()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()n i i b a f n ξ=-∑ ; ④取极限:() 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑ ? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1 ()t t S v t dt =?; 变力做功 ()b a W F r dr = ? 2.定积分的几何意义 如果在区间[,]a b 上函数连 续且恒有 ()0 f x ≥,那么定积分 ()b a f x dx ? 表示由直线,x a x b ==(a b ≠),0y =和曲线() y f x = 所围成的 曲边梯形的面积。 例1.计算定积分2 1 (1)x dx +? 分析:所求定积分即为如图阴影部分面积,面积为5 2 。 即:2 1 5(1)2 x dx += ? 思考:若改为计算定积分 22 (1)x dx -+? 呢? 改变了积分上、下限,被积函数在 [2,2]-上出现了负值如何解决呢? (后面解决的问题) 练习 计算下列定积分 1.50(24)x dx -? 解:5 0(24)945x dx -=-=? 2.1 1x dx -? 解:11 111111122 x dx -= ??+ ??=?

定积分的基本概念

定积分的基本概念 摘要:定积分的概念,原理,思想方法。 关键词:分割,求和,取极限。 通过了一个学期的学习,我们的专业课数学分分析从开始接触时的一窍不通到现在的马马虎虎。使我迷茫的学习慢慢的清晰起来,其中给我学以致用的就是定积分了。可以用来做很多方面的问题。下面来和大家分享一下我学习定积分的感悟。 定积分的概念 1)定积分概念的引入 2)“分割、近似求和、取极限”数学思想的建立 3)定积分的数学定义 重点:定积分的数学定义 难点:“分割、近似求和、取极限”变量数学思想的建立 定积分概念的引入 在熟悉定积分的概念的同时我们应该明确定积分的基础思想。 在灵活运动定积分可以求曲边梯形的面积和变力所做的功,下面来分别的求它们的面积。我们可以从中比较一下,以给我们带来启发。 1曲边梯形的面积 中学里我们已经学会了正方形,三角形,梯形等面积的计算,这些图形有一个共同的特征:每条边都是直线段。但我们生活与工程实际中经常接触的大都是曲边图形,他们的面积怎么计算呢?我们通常用一些小矩形面积的和来近似它。

近似看成多边形面积来计算。现在我们来计算一下溢流坝上部断面面积。 我们分别取n=10, 50, 100用计算机把它的图像画出来,并计算出面积的近似值: 1.当n=10时,用10个小矩形的面积之和作为曲边梯形的面积时,则S10 0.7510。(见下图)

2.当n=50时,用50个小矩形的面积之和作为曲边梯形的面积时,则S50≈0.6766。 3.当n=100时,用100个小矩形的面积之和作为曲边梯形的面积时,则S100≈0.6717。 由此可知,分割越细,越接近面积准确值,而这个和求极限也是同出一则。把它这样简化来理解也就不再那么的难了。 再看一个变力做功的问题。 设质点m受力F(x)的作用,沿直线由A点运动到B点,求力 F(x)的做的功。 F虽然是变力,但在很短一段时间内△x,F的变化不大,可近似看着是常

定积分的概念教案知识讲解

定积分的概念教案

人教A版必修一教材 教材内容分析微积分的出现和发展,极大的推动了数学的发展,同时也推动了天文学、力学、物理学、化学、生物学等自然科学、社会科学及应用科学各个分支中的发展。本节课是定积分概念的第一节课,教材借助求曲边梯形的面积和物理中变速直线运动的路程,通过直观具体的实例引入到定积分的学习中,为定积分概念构建认知基础,为理解定积分概念及几何意义起到了铺垫作用,同时也为今后进一步学习微积分打下基础。 学生情况分析 本节课的教学对象是本校实验班学生,学生思维比较活跃,理解能力、运算能力和学习交流能力较强。学生前面已经学习了导数,并利用导数研究函数的单调性、极值及生活中的优化问题等,渗透了微分思想。从学生的思维特点看,比较容易把刘徽的“割圆术”与本节课知识联系到一起,能够初步了解到“以直代曲”和“无限逼近”的重要数学思想,但是在具体的“以直代曲”过程中,如何选择适当的直边图形来代替曲边梯形会有一些困难。在对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值及在对定积分定义的归纳中符号的理解上也会有一些困难。 教学目标 1.从物理问题情境中了解定积分概念的实际背景,初步掌握求曲边梯形的面积的方法和步骤:分割、近似代替、求和、取极限; 2.经历求曲变梯形面积的过程,借助几何直观体会“以直代曲”和“逼近”的思想,学习归纳、类比的推理方式,体验从特殊到一般、从具体到抽象、化归与转化的数学思想; 3.认同“有限与无限的对立统一”的辩证观点,感受数学的简单、简洁之美. 教学重点直观体会定积分的基本思想方法:“以直代曲”、“无限逼近”的思想; 初步掌握求曲边梯形面积的方法步骤——“四步曲”(即:分割、近似代替、求和、取 极限) 教学难点对“以直代曲”、“逼近” 思想的形成过程的理解. 教学方式教师适时引导和学生自主探究发现相结合. 辅助工具投影展台,几何画板. 教学过程 引入新课问题:汽车以速度v做匀速直线运动时,经过时间t所行驶的路程为 S vt =.如果汽车作变速直线运动,在时刻t的速度为()2 v t t=(单 位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S (单位:km)是多少? 创设情境,引入 这节课所要研究的 问题. 类比探究,形成方法如图,阴影部分类似于一个梯形,但有一边是曲线() y f x =的一 段,我们把由直线,(),0 x a x b a b y ==≠=和曲线() y f x =所围 成的图形称为曲边梯形. 如何计算这个曲边梯形的面积? (1)温故知新,铺垫思想 问题1:我们在以前的学习经历中有没有用直边 图形的面积计算曲边图形面积这样的例子? 问题2:在割圆术中为什么用正多边形的面积计算圆的面积?为什么 要逐次加倍正多边形的边数? (2)类比迁移,分组探究 问题3:能不能类比割圆术的思想和操作方法把曲边梯形的面积问题 转化为直边图形的面积问题? 学生活动:学生进行分组讨论、探究。 (3)汇报比较,形成方法 学生需要用原有的 知识与经验去同化 或顺应当前要学习 的新知识,所以问 题1引导学生回忆 割圆术的作法,通 过问题2引导学生 思考割圆术中的思 想方法----“以直代 曲”,和“无限逼 近”。 通过问题3激 发学生探索的愿 望,明确解决问题 的方向。

高中数学定积分计算习题

定积分的计算 班级 姓名 一、利用几何意义求下列定积分 (1)dx x ? 1 1 -2-1 (2)dx x ? 2 2-4 (3) dx x ? 2 2-2x (4) ()dx x x ? -2 4 二、定积分计算 (1)()dx ?1 7-2x (2)( ) d x ?+2 1 x 2x 32 (3)dx ?3 1 x 3 (4)dx x ?π π - sin (5)dx x ?e 1 ln (6)dx ? +1 x 112 (7)() dx x x ?+-10 2 32 (8)()dx 2 31 1-x ? (9)dx ?+1 1 -2x x 2)( (10)( ) d x x ?+21 2x 1x (11)() dx x x ?-+1 1 -352x (12)() dx e e x x ?+ln2 x -e (13)dx x ?+π π --cosx sin ) ( (14)dx ? e 1 x 2 (15)dx x ?2 1 -x sin -2e )( (16)dx ?++2 1-3x 1 x x 2 (17)dx ? 2 1x 13 (18)()dx 2 2 -1x ?+

三、定积分求面积、体积 1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。 2.求曲线y =x ,y =2-x ,y =-1 3 x 所围成图形的面积. 3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积 4.如图求由两条曲线y =-x 2 ,y =-14 x 2 及直线y =-1所围成的图形的面积. 5、求函数f(x)=???? ? x +1 (-1≤x<0)cosx (0≤x ≤π 2)的图象与x 轴所围成的封闭图形的面积。 6.将由曲线y =x 2,y =x 3所 围成平面图形绕x 周旋转一周,求所得旋转体的体积。 7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。 8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积

定积分的概念导学案

sx-14-(2-2)-025 1.5.3《定积分的概念》导学案 编写:刘威 审核:陈纯洪 编写时间:2014.5.13 班级_____组名_______姓名_______等级_______ 【学习目标】 1.了解定积分的概念和性质,能用定积分定义求简单的定积分; 2.理解定积分的几何意义. 【学习重难点】 重点:定积分的概念、用定义求简单的定积分. 难点:定积分的概念、定积分的几何意义. 【知识链接】: 1. 回忆求曲边梯形面积、变速运动的路程的 “四步曲”为: 2. 求曲边梯形面积的公式 求变速直线运动路程的公式 【学习过程】:知识点一:定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(x ?=_________),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式: 11()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的_________。记为:S = ____________ ,其中()f x 称为_________,x 叫作_________,[,]a b 为积分区间,b 叫作_________,a 叫作积分下限。

说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1()t t S v t dt =?;变力做功 ()b a W F r dr =? 考考你:(1)() b a f x dx ? ()b a f t dt ?(大于,小于,等于),这说明定积分与积分变量的记法 (有关,无关) (2)特例:()a a f x dx ?= 知识点二:定积分的几何意义 问题1:你能说出定积分的几何意义吗? 问题2:根据定积分的几何意义,你能用定积分表示右图中阴影部分的面积S 吗? 问题3:定积分的性质: (1) ()b a kf x dx =? (k 为常

定积分的基本概念

教 学 内 容 方法与手段 定积分的概念 大家好,这节课我们开始学习定积分的概念,主要分 为三个内容: 定积分概念引入 定积分的定义 定积分的几何性质 首先我们来看第一部分 一、定积分概念引入 说起定积分的思想,其萌芽是特别早的,可以追溯至古代,最具有代表人物就是阿基米德(公元前287年—公元前212年),我们比较熟悉的就是他的浮力原理,其实阿基米德还和高斯、牛顿并列为世界三大数学家,是个非常牛的牛人,有兴趣的可以找找这个人的一些资料,当时他就开始思考定积分问题。那么到底定积分问题是什么样子的呢我们先看一个例子。 1曲边梯形的面积问题: 我们知道矩形面积:S ah = 梯形的面积:() 2 a b S h += 曲边梯形的面积:设()y f x =在区间[a,b]上非负连续,由直线x=a,x=b,y=0及曲线()y f x =所围成的面积。 导入 幻灯 幻灯 幻灯 幻灯 详讲 详讲 详讲 幻灯

那么这样的问题怎么求呢 首先,我们考虑用一个矩形去近似计算其面积。a,b 的区间长度代表其宽,b点的函数值代表其高。我们可以得到一个近似的面积值。 好,现在我们将[a,b] 区间分为两个,同样我们用这两个区间的长度代表其宽,两个区间的右端点代表其高,然后计算这两个矩形的面积求和,作为曲边梯形的面积,可以发现,通过切分,其面积更接近曲边梯形的面积。我们就有这样的思考,是不是切分的越多,其面积越近似我们再将其分为四份,我们发现好像面积越来越接近真实面积。下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。 事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。 好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。 解决步骤: 大化小:在区间中任意插入个分点 ,用直线将一个曲边梯形分成个小的曲边梯形;详讲总结

人教新课标版数学高二-2-2导学案 1.5 定积分概念第二课时

1.5.3定积分的概念 (结合配套课件、作业使用,效果更佳) 周;使用时间17 年 月 日 ;使用班级 ;姓名 【学习目标】 1.了解定积分的概念,会用定义求定积分. 2.理解定积分的几何意义. 3.掌握定积分的基本性质. 重点:掌握定积分的基本性质. 难点:理解定积分的几何意义. 【检查预习】预习课本,完成导学案“自主学习”部分,准备上课回答. 【自主学习】 知识点一 定积分的概念 思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点. 一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

高中数学定积分训练题

定积分训练题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.将和式的极限)0(.......321lim 1 >+++++∞→p n n P p p p p n 表示成定积分 ( ) A .dx x ?101 B .dx x p ?10 C .dx x p ?10)1( D .dx n x p ?10)( 2.下列等于1的积分是 ( ) A . dx x ? 1 B .dx x ?+10 )1( C .dx ? 1 01 D .dx ?1 021 3.dx x |4|1 02 ? -= ( ) A . 321 B .322 C .3 23 D .325 4.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为 ( ) A .320gt B .2 0gt C .2 2 0gt D .6 2 0gt 5.曲线]2 3 ,0[,cos π∈=x x y 与坐标周围成的面积 ( ) A .4 B .2 C .2 5 D .3 6.dx e e x x ? -+1 )(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 7.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( ) A .[0,2e ] B .[0,2] C .[1,2] D .[0,1] 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为 ( ) A .()[]dy y y ?--1 1 B . ()[]dx x x ?-+-210 1 C . ()[]dy y y ?--210 1 D .()[]dx x x ? +--10 1 9.如果1N 力能拉长弹簧1cm ,为将弹簧拉长6cm ,所耗费的功是 ( ) A .0.18 B .0.26 C .0.12 D .0.28 10.将边长为1米的正方形薄片垂直放于比彼一时为ρ的液体中,使其上距液面距离为2米, 则该正方形薄片所受液压力为 ( ) A .? 3 2 dx x ρ B . ()?+2 1 2dx x ρ C .? 1 dx x ρ D . ()?+3 2 1dx x ρ 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.将和式)21 .........2111( lim n n n n +++++∞ →表示为定积分 . 12.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为 . 13.由x y cos =及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应表达为 .

文本预览
相关文档 最新文档