当前位置:文档之家› 推荐:吸声材料注意的问题

推荐:吸声材料注意的问题

推荐:吸声材料注意的问题
推荐:吸声材料注意的问题

吸声材料注意的问题

【学员问题】吸声材料注意的问题?

【解答】根据建筑材料的设计要求和吸声材料的特点,进行材质、造型等方面的选择和设计。建筑上常用的吸声材料有泡沫塑料、脲醛泡沫塑料、工业毛毡、泡沫玻璃、玻璃棉、矿渣棉、沥青矿渣棉、水泥膨胀珍珠岩板、石膏砂浆(掺水泥和玻璃纤维)、水泥砂浆、砖(清水墙面)、软木板等,每一种吸声材料对其厚度、容重、各频率下的吸声系数及安装情况都有要求,应执行相应的规范。建筑上应用的吸声材料一定要考虑安装效果。安装位置

在建筑物内安装吸声材料,应尽量装在最容易接触声波和反射次数多的表面上,也要考虑分布的均匀性,不必都集中在天棚和墙壁上。大多数吸声材料强度较低,除安装操作时要注意之外,还应考虑防水、防腐、防蛀等问题。尽可能使用吸声系数高的材料,以便使用较少的材料达到较好的效果。

材质的选择

用作吸声材料的材质应尽量选用不易燃、不易虫蛀发霉、耐污染、吸湿性低的材料。由于材料的多孔性容易吸湿、尺寸易发生变形,所以安装时要注意膨胀问题。

材料的装饰性

吸声材料都是装于建筑物的表面。因此,在设计造型与安装时均应考虑带它与建筑物的

协调性和装饰性。使用装饰涂料时注意不要将细孔堵塞,以免降低吸声效果。

材料结构的特征

多孔性材料有的是用作吸声材料,页面的名称相同多孔材料,但是在气孔特征上则完全不同。保温材料要求具有封闭的不相互连通的气孔,而吸声材料则要求具有相互开放连通的气孔,这种气孔越多吸声效果越好,与此相反,其保温隔热效果越差。另外,还要清楚吸声与隔声材料的区别。吸声材料由于质轻、多孔、疏松,而隔声性能不好,根据声学原理,材料的密度(kg/m3)越大,越不易振动,则隔声效果越好。所欲密实沉重的黏土砖、钢筋混凝土等材料的隔声效果比较好,但吸声效果不佳。

以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。

结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。事实表明,习惯左右了成败,习惯改变人的一生。在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一朝一夕的事,需要坚持。希望大家坚持到底,现在需要沉淀下来,相信将来会有更多更大的发展前景。

五大类吸声材料及吸声结构简介

五大类吸声材料及吸声结构简介 1、多孔吸声材料 (1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。 (2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和密闭间隙不起吸声作用。微孔向外敞开,使声波易于进入微孔内。 (3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙,结构因素、厚度、容重、背后条件的影响。 a.材料厚度的影响任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其低频的吸声效果,而对高频影响不大。但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。常用的多孔材料的厚度为: 玻璃棉,矿棉50—150mm 毛毡4---5mm 泡沫塑料25—50mm b.材料容重的影响 改变材料的容重可以间接控制材料内部微空尺寸。一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。 c.背后空气层的影响 多空材料背后有无空气层,对于吸声特性有重要影响。大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm距离安装。材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料

隔音材料对比

隔音材料对比标准 理论上说来,任何一种材料(物质)都不同程度的具有减震、隔音、吸音的能力,哪怕是一张纸、一块布。汽车隔音降噪网所要做的就是把这些常见隔音材料给大家做分析和对比,从而帮助汽车隔音爱好者正确选择合适的材料来进行隔音施工。从前面的论述我们可以清楚,阻隔噪音传播的有效途径主要是:密封、止震、隔音、吸音。在减震基础上再进行隔音、吸音以及密封处理,就可以达到安静舒适的效果。在全车进行隔音降噪的过程中,使用的隔音产品本身具有的吸音性能好坏也会直接影响到降噪的效果。 车用降噪产品分成四类:A、减震材料B、吸音材料C、隔音材料D、密封材料,目前市面上有很多隔音品牌,但多数品牌并没有生产和研发能力,只是将不同工业用料拿来变相使用,甚至冒充国外品牌牟取暴利。从轻量化的发展趋势来讲,理想的汽车隔音材料绝对不是减震、隔音、吸音产品的分别粘贴,而应该是一种产品对这几种隔音原理的综合运用。汽车隔音降噪网探寻的是在这多个方面综合性能最佳的材料,而不是多种材料。 汽车隔音降噪网认为,在汽车上使用的隔音降噪材料应该尽可能满足以下标准: ?材料要轻,轻量化是整个汽车制造领域发展的大趋势,轻量化材料施工后不会使车身自重增加太多,增加油耗。 ?在宽频带范围内隔音性能和吸音性能好,隔音吸音性能长期稳定可靠。 ?有一定强度,安装和使用过程中不易破损,不易老化,耐候性能好,使用寿命长。 ?外观整洁,没有污染。 ?防潮防水,耐腐防蛀,不易发霉。 ?不易燃烧,最好能防火阻燃。 ?环保材料,不含石棉、玻璃纤维、重金属铅等有害物质。 ?材料本身便于施工,如:便于裁剪,粘贴牢固等。 常见隔音吸音材料对比分析

水下吸声材料的研究进展[1]

水下吸声材料的研究进展/石云霞等?49? 水下吸声材料的研究进展。 石云霞1’2,奚正平2,汤慧萍2,朱纪磊2,王建永2,敖庆波2 (1西安建筑科技大学材料科学与工程学院,西安710055;2西北有色金属研究院金属多孔材料国家重点实验室,西安710016) 摘要概述了水下吸声机理,综述了常用的吸声材料和吸声结构以及国内外水下吸声材料的研究和应用现状。归纳出水下吸声材料的3个发展方向,即理论计算指导材料设计、提高材料低频吸声性能和增加频宽及提高材 料耐水压和耐蚀性。指出具有高强度、高耐热性、高耐蚀性和良好吸声效果的金属多孔材料,特别是夹心复合吸声结 构具有良好的发展前景。 关键词水声材料消声瓦吸声机理橡胶 ProgressofUnderwaterSound—absorbingMaterials SHIYunxial~,XIZhengpingz,TANGHuipingz,ZHUJilei2, WANGJianyon92,AOQingboz (1CollegeofMaterialScienceandEngineering,Xi’anUniversityofArchitectureandTechnology,Xi’all710055; 2StateKeyLaboratoryofPorousMetalsMaterials,NorthwestInstituteforNon-ferrousMetalResearch,Xi’an710016) AbstractTheacousticabsorbingprincipleisintroducedinthispaper.Researchandapplicationdevelopmentoftheunderwatersoundabsorbingmaterialsandstructuresathomeandabroadaresummarized.Thedevelopmentof1.in— derwatersoundabsorbingmaterialsaimsatthreedirections:theoreticalcalculationguidingmaterialsdesign,higher lowfrequencysoundabsorbingperformanceandwidefrequencyband,higherwater-pressureandcorrosionresistance. Porousmetalmaterials,especiallysandwichcompositestructurewithhighstrength,heatresistance,corrosionresis- tanceaswellasnicesoundabsorbingperformancewillhaveextensiveprospect, Keywonk underwatersoundabsorbingmaterials,silenttile,acousticprinciple,rubber 0引言1水下吸声材料的吸声机理 随着声纳探测技术的不断发展和探测能力的不断提高,作为海军常规战略武器装备的潜艇,其隐蔽性受到严重的挑战。降低潜艇自身噪声和艇身对雷达声纳波的反射是提高潜艇隐身性能的主要手段。研究发现,如果舰艇水下噪声降低10dB,则敌方探测发现本艇的距离可缩短32%;而如果声纳平台区自噪声降低5dB,本艇探测距离可增加60%,探测目标的海区面积为原面积的3倍[1]。提高潜艇声隐身技术通常采用的方法是在潜艇壳体表面覆盖吸声材料(即消声瓦)。消声瓦敷设在潜艇表面,既能大幅度地吸收对方主动雷达探测声波的能量,减少主动声纳的反射,又可降低艇体振动,减少潜艇内部产生的机械辐射噪声,同时还可以改善艇体表面的流体动力特性,减少航行阻力,提高航速[2]。因此,消声瓦是隐身技术的关键,现已得到各国的重视。目前已开发出多种吸声材料和吸声结构[3-5]。 影响水下吸声材料吸声性能的主要因素是材料体系和声学结构。本文介绍了水下吸声机理,简述了常用的吸声结构,综述了国内外水下吸声材料的研究和应用现状,并对未来的发展趋势进行了展望。 水下吸声材料的吸声机理有3种:(1)材料的粘性内摩擦吸声,也称为阻尼损耗,是指声波进入材料后引起相邻质点运动速度不同,由相对运动而产生内摩擦,这可以使相当一部分声能转化为热能而引起声波衰减。(2)材料的弹性弛豫过程吸声[6j,声波进入材料后使材料中的分子由球形变为椭圆形。而分子链本身并无变化,这种变形有明显的弹性滞后现象,使得材料在变形和恢复过程中,变形落后于应力的变化,使声能转变为热能。(3)波形转换,即入射纵波在粘弹性材料中引起的体积形变产生波形变换,使纵波变换成具有高损耗因子的剪切波而达到吸声作用。 材料的声阻抗(材料密度与材料声速的乘积)和材料衰减常数是决定吸声性能的2个重要参数。在阻尼材料中,纵波的传播速度c。和衰减常数口,分别为: ,.一,厂!!!±t璺业]÷ ” ”L1+(1+ta耐)÷。 。;土』!塑璺堕£ ~ Co{(1+tano蟹,)[1+(1十tan辞)+])+ Co=E(a+2“)/p3, *国家973计划资助项目(2006CB601201B) 石云霞:女,1982年生,硕士研究生Tel:029—86231095E-mail:shiyunrda999666@163.tom万方数据

材料的吸声系数

材料的吸声系数 吸声系数隔振vibration isolation 材料吸收和透过的声能与入射到材料上的总声能之比,叫吸声系数(α)。 α=Eα/Ei =(Ei-Er)/Ei=1-r 式中:Ei——入射声能;Eα——被材料或结构吸收的声能; Er——被材料或结构发射的声能; r——反射系数。 名词解释 吸音系数是按照吸音材料进行分类的。说明不同材料有不同吸音质量 分贝(db),是声压级大小的单位(声音的大小)。声音压力每增加一倍,声压量级增加6分贝。1分贝是人类耳朵刚刚能听到的声音。20分贝以下,我们认为它是安静。20-40分贝相当于情人耳边的轻轻细语。40-60分贝是我们正常谈话的声音。60分贝以上属于吵闹范围。70分贝很吵,并开始损害听力神经。90分贝会使听力受损。在100-120分贝的房间内呆1分钟,如无意外,人就会失聪(聋)。 吸声原理 当入射声能被完全反射时,α=0,表示无吸声作用;当入射声波完全没有被反射时,α=1,表示完全被吸收。一般材料或结构的吸声系数α=0~1,α值越大,表示吸声能越好,它是目前表征吸声性能最常用的参数。 吸声是声波撞击到材料表面后能量损失的现象,吸声可以降低室内声压级。描述吸声的指标是吸声系数a,代表被材料吸收的声能与入射声能的比值。理论上,如果某种材料完全反射声音,那么它的a=0;如果某种材料将入射声能全部吸收,那么它的a=1。事实上,所有材料的a介于0和1之间,也就是不可能全部反射,也不可能全部吸收。 不同频率上会有不同的吸声系数。人们使用吸声系数频率特性曲线描述材料在不同频率上的吸声性能。按照ISO标准和国家标准,吸声测试报告中吸声系数的频率范围是100-5KHz。将 100-5KHz的吸声系数取平均得到的数值是平均吸声系数,平均吸声系数反映了材料总体的吸声性能。在工程中常使用降噪系数NRC粗略地评价在语言频率范围内的吸声性能,这一数值是材料在250、500、1K、2K四个频率的吸声系数的算术平均值,四舍五入取整到0.05。一般认为NRC小于0.2的材料是反射材料,NRC大于等0.2的材料才被认为是吸声材料。当需要吸收大量声能降低室内混响及噪声时,常常需要使用高吸声系数的材料。如离心玻璃棉、岩棉等属于高NRC吸声材料,5cm厚的24kg/m3的离心玻璃棉的NRC可达到0.95。 分贝、声功率、声强和声压 分贝 人们日常生活中遇到的声音,若以声压值表示,由于变化范围非常大,可以达六个数量级以上,同时声音功率由于人体听觉对声信号强弱刺激反应不是线形的,而是成对数比例关系。所以采用分贝来表达声学量值。所谓分贝是指两个相同的物理量(例A1和A0)之比取以10为底的对数并乘以10(或20)。N = 10lg(A1/A0) 分贝符号为"dB",它是无量纲的。式中A0是基准量(或参考量),A是被量度量。被量度量和基准量之比取对数,这对数值称为被量度量的"级"。亦即用对数标度时,所得到的是比值,它代表被量度量比基准量高出多少"级"。 声功率(W) 声功率是指单位时间内,声波通过垂直于传播方向某指定面积的声能量。在噪声监测中,声功率是指声源总声功率。单位为W。 声功率级: Lw =10lg(W/W0) 式中:Lw——声功率级(dB); W——声功率(W);

多孔吸声材料的吸声原理及其分类

多孔吸声材料的吸声原理及其分类 一、多孔材料的吸声原理 惠更斯原理:声源的振动引起波动,波动的传播是由于介质中质点间的相互作用。在连续介质中,任何一点的振动,都将直接引起邻近质点的振动。声波在空气中的传播满足其原理。 多孔吸声材料具有许多微小的间隙和连续的气泡,因而具有一定的通气性。当声波入射到多孔材料表面时,主要是两种机理引起声波的衰减:首先是由于声波产生的振动引起小孔或间隙内的空气运动,造成和孔壁的摩擦,紧靠孔壁和纤维表面的空气受孔壁的影响不易动起来,由于摩擦和粘滞力的作用,使相当一部分声能转化为热能,从而使声波衰减,反射声减弱达到吸声的目的;其次,小孔中的空气和孔壁与纤维之间的热交换引起的热损失,也使声能衰减。另外,高频声波可使空隙间空气质点的振动速度加快,空气与孔壁的热交换也加快。这就使多孔材料具有良好的高频吸声性能。 二、多孔吸声材料的分类多孔吸声材料按其选材的柔顺程度分为柔顺性和非柔顺性材料,其中柔顺性吸声材料主要是通过骨架内部摩擦、空气摩擦和热交换来达到吸声的效果;非柔顺性材料主要靠空气的粘滞性来达到吸声的功能。多孔吸声材料按其选材的物理特性和外观主要分为有机纤维材料,无机纤维材料,吸声金属材料和泡沫材料四大类。 1 有机纤维材料 早期使用的吸声材料主要为植物纤维制品,如棉麻纤维、毛毡、甘蔗纤维板、木质纤维板、水泥木丝板以及稻草板等有机天然纤维材料。有机合成纤维材料主要是化学纤维,如晴纶棉、涤纶棉等。这些材料在中、高频范围内具有良好的吸声性能,但防火、防腐、防潮等性能较差。除此之外,文献还对纺织类纤维超高频声波的吸声性能进行了研究,证实在超高频声波场中,这种纤维材料基本上没有任何吸声作用。 2 无机纤维材料 无机纤维材料不断问世,如玻璃棉、矿渣棉和岩棉等。这类材料不仅具有良好的吸声性能,而且具有质轻、不燃、不腐、不易老化、价格低廉等特性,从而替代了天然纤维的吸声材料,在声学工程中获得广泛的应用。但无机纤维吸声材料存在性脆易断、受潮后吸声性能急剧下降、质地松软需外加复杂的保护材料等缺点。 3 金属吸声材料 金属吸声材料是一种新型实用工程材料,于七十年代后期出现于发达工业国家。如今比较典型的金属材料是铝纤维吸声板和变截面金属纤维材料。其中铝纤维吸声板具有如下特点: (1) 超薄轻质,吸声性能优异。

推荐:吸声材料注意的问题

吸声材料注意的问题 【学员问题】吸声材料注意的问题? 【解答】根据建筑材料的设计要求和吸声材料的特点,进行材质、造型等方面的选择和设计。建筑上常用的吸声材料有泡沫塑料、脲醛泡沫塑料、工业毛毡、泡沫玻璃、玻璃棉、矿渣棉、沥青矿渣棉、水泥膨胀珍珠岩板、石膏砂浆(掺水泥和玻璃纤维)、水泥砂浆、砖(清水墙面)、软木板等,每一种吸声材料对其厚度、容重、各频率下的吸声系数及安装情况都有要求,应执行相应的规范。建筑上应用的吸声材料一定要考虑安装效果。安装位置 在建筑物内安装吸声材料,应尽量装在最容易接触声波和反射次数多的表面上,也要考虑分布的均匀性,不必都集中在天棚和墙壁上。大多数吸声材料强度较低,除安装操作时要注意之外,还应考虑防水、防腐、防蛀等问题。尽可能使用吸声系数高的材料,以便使用较少的材料达到较好的效果。 材质的选择 用作吸声材料的材质应尽量选用不易燃、不易虫蛀发霉、耐污染、吸湿性低的材料。由于材料的多孔性容易吸湿、尺寸易发生变形,所以安装时要注意膨胀问题。 材料的装饰性 吸声材料都是装于建筑物的表面。因此,在设计造型与安装时均应考虑带它与建筑物的

协调性和装饰性。使用装饰涂料时注意不要将细孔堵塞,以免降低吸声效果。 材料结构的特征 多孔性材料有的是用作吸声材料,页面的名称相同多孔材料,但是在气孔特征上则完全不同。保温材料要求具有封闭的不相互连通的气孔,而吸声材料则要求具有相互开放连通的气孔,这种气孔越多吸声效果越好,与此相反,其保温隔热效果越差。另外,还要清楚吸声与隔声材料的区别。吸声材料由于质轻、多孔、疏松,而隔声性能不好,根据声学原理,材料的密度(kg/m3)越大,越不易振动,则隔声效果越好。所欲密实沉重的黏土砖、钢筋混凝土等材料的隔声效果比较好,但吸声效果不佳。 以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。 结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。事实表明,习惯左右了成败,习惯改变人的一生。在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一朝一夕的事,需要坚持。希望大家坚持到底,现在需要沉淀下来,相信将来会有更多更大的发展前景。

吸声材料的结构及其发展

吸声材料的结构及其发展 江苏省苏州质量技术监督局张春野 摘要:随着社会的发展和生活水平的提高,人们在工作、学习和生活中,对声环境的要求已经愈来愈高。噪声对人们的听力、睡眠、生理、心理及周围环境等方面造成很大影响和危害,社会对吸声材料的需求量呈迅猛增长之势,同时也对吸声材料的性能提出了更高更多的要求。吸声材料必须实现从过去单一吸声功能向高吸声性、装饰性、经济性和环保性等多功能转变。本文简要介绍了有关吸声材料的一些内容。 关键词:多孔吸声、纤维、微穿孔、泡沫 1吸声材料的结构种类 吸声材料及结构的种类很多,根据其材料结构不同,可以分为下列几类: (1)多孔吸声材料:纤维状吸声材料、颗粒状吸声材料、泡沫状吸声材料; (2)共振吸声结构:单个共振器、穿孔板共振吸声结构、薄板共振吸声结构; (3)特殊吸声结构:薄膜共振吸声结构; 1.1阻性衰减型 阻性衰减型的软质多孔材料广为人知的是玻璃棉与岩棉;硬质多孔材料有金属类、陶瓷类、合成树脂类多孔材料,其中特别是铝质吸声材料得到了人们的重视。其原因在于金属多孔材料是刚性体,不必像软质多孔材料那样需要穿孔面层材料保护,长时间使用不会老化或飞散污染环境,吸湿或湿润后吸声系数基本不会影响其吸声性能。 2.2共振吸声结构 共振吸声结构以各类穿孔板最为常见,常与多孔吸声材料一起使用。作为无纤维吸声体还有微穿孔板,它是为适应恶劣环境而开发的吸声材料,已在国内外引起普遍重视并得到了广泛的应用。 吸声性能: 穿孔板共振吸声结构具有良好的中高频吸声性能;薄板共振吸声结构具有良好的低频吸声特性。 2.3薄膜震动型 薄膜震动型吸声材料通常与其它材料附着在一起,如铝纤维吸声材料中的铝箔。还有微穿孔聚乙烯薄膜,它可以贴附在普通窗户的玻璃上。 吸声性能:具有优良的中频吸声特性。 2.4其它类型 (1)空间吸声体 空间吸声体与一般吸声结构的区别在于它不是与顶棚、墙面等刚性壁组合成吸声结构,而是自成系统的。室内的吸声处理,一般都在建筑施工和装饰中把吸声材料安装在室内各界面上。但可预制成吸声构件———空间吸声体,进行现场吊装。从本质上讲,吸声体不是什么新的吸声结构,但由于使用条件不同,吸声特性也有所不同。挂在声能流密度大的位置(例如靠近声源处、反射有聚焦的地方)可以获得较好的效果。 (2)强吸声体 吸声尖劈是消声室中常用的强吸声结构,还有界面平铺多孔材料。 (3)帘幕 如帘幕离墙面、窗玻璃有一定距离,就好像在多孔材料背后设置了空气层,尽管没有完全封闭,对中高频仍具有一定的吸声作用。 (4)洞口 向室外自由声场敞开的洞口,从室内的角度看,它是完全吸声的,对所有频率的吸音系数均为1。它对室内声学问题有较大的影响。若洞口不是朝向自由声场时,其吸音系数就小于1。

多孔泡沫吸声材料的研究

多孔泡沫吸声材料的研究 多孔泡沫吸声材料除了按泡沫孔的形式分为开孔型和闭孔型两种之外,还可以依据材料的物理和化学性质的不同分为:泡沫金属、泡沫塑料、泡沫玻璃、聚合物基复合泡沫等吸声材料[17~19 ] 。 3. 1 泡沫金属吸声材料 泡沫金属是一种新型多孔材料,经过发泡处理在其内部形成大量的气泡,这些气泡分布在连续的金属相中构成孔隙结构,使泡沫 金属把连续相金属的特性如强度大、导热性好、耐高温等与分散相气孔的特性如阻尼性、隔离性、绝缘性、消声减震性等有机结合在一起;同时,泡沫金属还具有良好的电磁屏蔽性和抗腐蚀性能。泡沫金属的研究最早始于上个世纪40 年代末期,起初由于制作工艺的限制,制约了它的发展。我国对泡沫金属的研制始于80 年代。目前泡沫金属研究得到很大发展,已经涉及到的金属包括Al 、Ni 、Cu、Mg 等,其中研究最多的是泡沫铝及其合金。 3. 1. 1 泡沫金属的制备工艺 泡沫金属的制备方法有多种,大体上可分为直接法(发泡法) 和间接法两种。所谓直接法,就是利用发泡剂直接在熔融金属中发泡,或者利用化学反应产生大量气体在制品凝固时减压发泡。间接法是以高分子发泡材料为基材,采用沉积法或喷溅法使之金属化,然后加热脱出基材并烧结。除以上方法外,制备泡沫金属的方法还有渗流铸造法、粉末冶金法、电沉积法等。下面以泡沫铝为例,介绍三种典型的制备工艺:加拿大Cymat 铝业公司用Alcan 工艺制备泡沫铝,如图2 所示。 把空气通入熔融金属中,搅拌使气泡均匀化,气泡的大小可以通过改变气流速度、喷嘴的数量和尺寸、叶轮的旋转速度来控制。金属发泡后被输送到传送带上冷却固化,经切割得到所需要的产品。熔融金属中需要加入细小的陶瓷颗粒增加其粘度,以保证空气在金属内部发泡而不逃逸。Alcan 泡沫铝的气孔直径为3~25mm ,孔隙率为80 %~98 %。(a) 空气, (b) 回转炉, (c) 叶轮, (d) 气泡,(e) 熔融铝, (f) 隔板, (g) 固化的泡沫铝, (h) 传送带 图2 制备泡沫铝的Alcan 工艺示意图 日本ShinkoWire 公司生产Alporas 泡沫铝的过程大体为:首先把Ca( ω= 1. 5 %) 加入680 ℃下的熔融铝中,在此温度下Ca 被氧化成颗粒状的CaO 和CaAl2O4 ,它们分散到熔融金属中,可以增加金属的粘度和气泡的稳定性。然后把TiH2 (ω= 1. 6 %) 粉末加入熔融金属中,TiH2 分解后产生氢气使金属发泡,经过冷却、固化、脱模,得到尺寸为2050mm×50mm ×650mm的泡沫体,最后切成所需要的形状。该方法采用固体粉末发泡剂,它在放出气体前就与金属充分混合可以更有效地控制气孔的位置和大小,所以Alporas 泡沫铝比Alcan 泡沫铝孔径小,结构更均匀。通过改变TiH2 的含量和发泡冷却条件,所得到的Alporas 泡沫铝孔径为0. 5~5mm ,孔隙率为84 %~93 %。 图3 真空渗流铸造法工艺原理 图4 铸型结构

吸声材料的研究现状与展望

吸声材料的研究现状与展望 【摘要】:文章阐述了吸声材料的吸声机理、吸声材料的分类、性能特点及影响其吸声性能的因素,介绍了吸声材料的研究及应用现状,并根据吸声材料的吸声机理,分析和讨论了提高吸声材料吸声性能应采取的措施,最后对吸声材料的发展做了展望。 【关键词】:吸声材料;多孔吸声;共振吸声;吸声机理 引言 噪声污染同水污染、大气污染被列为世界三大污染,严重影响着人类生活环境的质量。由工业生产、交通运输所产生的城市噪声,不仅危害人类的听觉系统,而且还会加速建筑物,机械结构的老化,影响机器设备的精度和使用寿命等。高速公路、轻轨、机场周围以及电影院、演播厅、体育场馆等都需要进行噪声控制。在某些军事领域,例如水面作战,包括潜艇、鱼雷、水面舰艇都会发出巨大的噪声,如不对其进行有效的控制,就会轻易的暴露在敌方攻击范围之内,从而蒙受巨大的军事损失甚至战争的失败。因此,世界各国都非常重视噪声控制的问题,尤其我国正处在经济高速发展时期,城市化进程非常快,随之产生的噪声问题尤其突出,亟待解决。控制噪声最有效的方法之一就是使用吸声材料。 1.吸声材料的吸声机理 1.1 多孔吸声材料的吸声机理 多孔吸声材料内部具有无数细微孔隙,孔隙间彼此贯通,且通过表面与外界相通,当声波入射到材料表面时,一部分在材料表面反射掉,另一部分则透入到材料内部向前传播。在传播过程中,由声波产生的振动引起孔隙内的空气运动,与孔壁发生摩擦,而紧靠孔壁和纤维表面的空气受孔壁的影响不易动起来,由于粘滞性和热传导效应,将声能转变为热能而耗散掉。其次,小孔中的空气和孔壁与纤维之间的热交换引起的热损失也使声能衰减。声波在刚性壁面反射后,经过材料回到其表面时,一部分声波透射到空气中,一部分又反射回材料内部,声波通过这种反复传播,使能量不断转换耗散,如此反复,直到平衡,由此使材料” 吸收”了部分声能。多孔吸声材料的吸声性能主要取决于材料本身的流阻、孔隙率、厚度、容重等。另外,高频声波可使空隙间空气质点的振动速度加快,空气与孔壁的热交换也加快[1]。因此,多孔材料具有良好的高频吸声性能。 1.2 共振型吸声材料的吸声机理 共振吸声材料的吸声机理属结构吸声,按形式不同可分为腔体共振和薄板共振两种,声学装修工程中穿孔板是典型的共振吸声结构,其机理是单个亥姆霍兹共振器的并联组合,根据亥姆霍兹共振器原理,穿孔板的吸声性能取决于板厚、

介质对声波的吸收和吸声材料及吸声结构1 - 副本 - 副本

第7章 介质对声波的吸收和吸声材料及吸声结构 声音在介质中传播时会有衰减现象,传播过程中由于波阵面的扩张,引起能量空间扩散,以致声波振幅随距离增加而衰减,称这种衰减为几何衰减,又如由于介质中粒子的散射作用,使得沿原来传播方向的声波能量减少,致使声波振幅随传播距离的增加也有明显衰减。这里无论是几何衰减还是散射引起的衰减,对传播的声能都没有消耗作用。显然,这是由于所研究的声波传播规律是建立在理想介质运动规律基础上的缘故。理想介质只作完全的弹性形变,形变过程为绝热,介质内没有阻尼作用,所以声波在传播过程中没有使声能变为其他能量形式的消耗作用。 实际上,声音即使是在均匀的自由介质中传播,由于介质本身对声能的吸收作用,也产生声波沿传播方向衰减的现象。如平面波传播时,也表现出振幅衰减的现象。此外,声波在含有散射体的介质中传播时,由于散射体相对介质的运动及散射体的形变,也使部分声能变为热能形式而损耗,结果表现出更为明显的衰减现象。这些衰减是由于声能转换为其他形式能量引起的,统称为物理衰减。 本章主要讨论均匀介质对声波能量吸收的现象和产生吸收的原因。此外,还介绍一些有关吸声材料和吸声结构的知识,因为吸声技术在声学和水声学的技术应用方面以及声学测量方面具有越来越明显的重要性。 7.1 介质的声吸收 7.1.1 描述介质声吸收的方法 声吸收是指声波在媒质中传播或在界面反射过程中,能量减少的现象。造成声吸收的原因主要是媒质的粘滞性、热传导性和分子弛豫过程,使有规的声运动能量不可逆的转变为无规的热运动能量。 谐和平面声波在介质中传播,12,x x 是沿传播方向的两点,12(),()x x ξξ分别是声波在 12,x x 处的幅值;则1212()1 ln()() x x x x ξαξ= -称作介质的声吸收系数(单位:奈培/米) 。 介质的声吸收系数反映了介质对声波的吸收程度,是平面声波在介质中传播单位距离,幅度相对变化的自然对数值。有时也用…波长声吸收系数?表示介质的声吸收程度,公式如式(7-1)所示。 /) ) () (ln(11波长)(单位:奈培λξξλα+=x x (7-1) 而在水声学中,则用式(7-2)定义介质的声吸收系数。

建筑材料——绝热材料和吸声材料

第十一章 绝热材料和吸声材料 一、授课提纲及讲解内容 1、绝热材料定义、性能指标、分类; 2、导热方式及影响因素; 3、吸声材料定义; 4、吸声效果影响因素及吸声结构; 5、吸声材料选择; 6、隔音材料及隔音处理。 重点是第1项、第4项、第5项。 二、讲解时间 50min 。 三、讲稿与板书(*加黑部分为黑板板书内容) §11-1 绝热材料 定义:对热流具有显著阻抗性的材料或者材料复合体。 1、性能指标:mk w 29.0<λ 3 01000m kg <ρ MPa R 3.0> 2、分类:按结构型式???????层状多孔状 粒状纤维状 按成分???、成本低有机:密度小、原料广耐高温、防虫无机:耐腐蚀、阻燃、 3、传热方式有:导热、对流、辐射三种方式,对建筑材料来讲,主要是导热。影响导热的因素有: 1、表观密度内部构造 2、环境温湿度 3、热流方向 4、分子结构 其中以表观密度和湿度对材料导热系数影响最大。热阻R 是材料层抵抗热流通过的能力,或者说是热流通过材料层所遇到的阻力。其大小等于导热系数λ的倒数乘以材料层的厚度a 即 R=a/λ [单位(m2k )/w ] §11-2 吸声材料

建筑声学主要研究两个问题:一是室内音质,二是建筑物的隔音。不论是改善室内混响条件,提供良好音质,还是控制噪音对室内污染,都需要使用吸声材料。 1、吸声材料的定义 能在较大程度上吸收由空气传递的声波能量的建筑材料。用吸声系数表示。为全面反映材料的吸声频率特性,工程上通常认为对125、250 、500、1000 、2000和4000HZ六个频率的平均吸声系数大于0.2的材料,才可称之为吸声材料。 2、吸声系数影响因素 1、内部的孔隙特征 2、材料的厚度 3、材料背后的空气层 4、材料的表面特征 3、吸声结构 1、多孔吸声材料 2、厚板震动吸声结构 3、共振吸声结构 4、穿孔板组合共振吸声结构 5、悬挂空间吸声体 6、帘幕吸声体 4、吸声材料的选择与应用 1、选择吸声系数大的材料,多数情况下中、低频吸声系数为控制指标。 2、吸声材料安装在易接触声波,且波反射次数最多部位,并考虑室内表面布置均匀性。 3、吸声材料应置护壁台度以上,以防碰撞损坏。 4、吸声性与装饰性相结合。 5、安装时留足缝隙。 6、防火、阻燃,不易霉变、虫驻。 7、注意区别绝然材料和吸声材料。 8、注意安装使用方法,以便最大限度地发挥其吸声作用。 5、隔音材料与隔音处理 隔音处理包括两种:一是空气声、二是固体声。 对空气声,加大墙体厚度即可, 对固体声,目前尚无行之有效的隔音方法。 现在解决的办法是材料表面加设弹性面层或弹性垫层。

如何区别吸声、隔声、吸声材料、隔声材料

如何区别吸声、隔声、吸声材料、隔声材料 当前,噪声已成为一种主要的环境污染,建筑物的声环境问题越来越受到人们的关注和重视。选用适当的材料对建筑物进行吸声和隔声处理是建筑物噪声控制工程中最常用最基本的技术措施之一。 但是,由于对噪声控制的手段缺乏了解,“吸声”和“隔声”作为完全不同的概念,常常被混淆了。玻璃棉、岩矿棉一类具有良好吸声性能但隔声性能很差的材料被误称为“隔音材料”,早年一些以植物纤维为原料制成的吸声板被命名为“隔音板”并用以解决建筑物的隔声问题……。为了合理使用材料、提高建筑物噪声控制效果,对“吸声”和“隔声”这两个概念有进一步了解和明确的必要。 材料吸声和材料隔声的区别在于,材料的吸声着眼于声源一侧反射声能的大小,目标是反射声能要小。材料隔声着眼于入射声源另一侧的透射声能的大小,目标是透射声能要小。吸声材料对入射声能的衰减吸收,一般只有十分之几,因此,其吸声能力即吸声系数可以用小数表示;而隔声材料可使透射声能衰减到入射声能的10-3~10-4或更小,为方便表达,其隔声量用分贝的计量方法表示。 这两种材料在材质上的差异是吸声材料对入射声能的反射很小,这意味着声能容易进入和透过这种材料;可以想像,这种材料的材质应该是多孔、疏松和透气的,这就是典型的多孔性吸声材料,它在工艺上通常是

用纤维状、颗粒状或发泡材料以形成多孔性结构;它的结构特征是:材料中具有大量的、互相贯通的、从表到里的微孔,也即具有一定的透气性。当声波入射到多孔材料表面时,引起微孔中的空气振动,由于摩擦阻力和空气的黏滞阻力以及热传导作用,将相当一部分声能转化为热能,从而起吸声作用。 对于隔声材料,要减弱透射声能,阻挡声音的传播,就不能如同吸声材料那样多孔、疏松、透气,相反它的材质应该是重而密实的,如钢板、铅板、砖墙等一类材料。隔声材料材质的要求是密实无孔隙或缝隙;有较大的重量。由于这类隔声材料密实,难于吸收和透过声能而反射能强,所以它的吸声性能差。 在工程上,吸声处理和隔声处理所解决的目标和侧重点不同,吸声处理所解决的目标是减弱声音在室内的反复反射,也即减弱室内的混响声,缩短混响声的延续时间即混响时间;在连续噪声的情况下,这种减弱表现为室内噪声级的降低,此点是对声源与吸声材料同处一个建筑空间而言。而对相邻房间传过来的声音,吸声材料也起吸收作用,从而相当于提高围护结构的隔声量。 隔声处理则着眼于隔绝噪声自声源房间向相邻房间的传播,以使相邻房间免受噪声的干扰。 由此可以看出,利用隔声材料或隔声构造隔绝噪声的效果比采用吸声材料的降噪效果要高得多。这说明,当一个房间内的噪声源可以被分隔时,应首先采用隔声措施;当声源无法隔开又需要降低室内噪声时才采用吸声措施。

五大类吸声材料及吸声结构介绍及做法

五大类五大类吸声材料及吸声结构吸声材料及吸声结构吸声材料及吸声结构介绍及做法介绍及做法介绍及做法 1、多孔吸声材料 (1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。 (2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和 密闭间隙不起吸声作用。微孔向外敞开,使声波易于进入微孔内。 (3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙 ,结构因素、厚度、容重、背后条件的影响。 a.材料厚度的影响 任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其 低频的吸声效果,而对高 频影响不大。但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。常用的多孔材料的厚度为: 玻璃棉,矿棉 50—150mm 毛毡 4---5mm 泡沫塑料 25—50mm b.材料容重的影响 改变材料的容重可以间接控制材料内部微空尺寸。一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。 c.背后空气层的影响 多空材料背后有无空气层,对于吸声特性有重要影响。大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm 距离安装。材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料离墙面安装的距离(既空气层的厚度)等于1/4波长的奇数倍时,可获得最大的吸声系数;当空气层的厚度等于1/2波长的整数倍时,吸声系数最小。 d.材料表面装饰处理的影响 大多数吸声材料在使用时常常需要进行表面装饰处理.常见的方法有:表面钻孔 开槽,粉刷油漆,利用织布,穿孔板和塑料薄膜等。这些方法都将影响材料的吸声特性。 半穿孔的矿棉吸声板增加了材料暴露在声波中的面积,既增加了有效吸声面积,因此提高了材料的吸声特性。 粉刷油漆等于在材料表面上加了一层高流阻的材料,将会影响材料的吸声特性,特别是在高频段影响更显著。 采用金属网,玻璃布和低流阻的材料或选择穿孔率大于20%的穿孔板做护面层时,对材料的吸声性能影响不大。若穿孔率小于20%时,对高频段的吸声会有影响,低频影响不大。 2、穿孔板共振吸声结构

吸声材料的相关知识

吸声材料的相关知识: 常用的吸声材料有多孔吸声材料、穿孔板吸声材料、薄膜、薄板吸声材料、挂帘吸声材料、空间吸声体等。 吸声机理: 纤维多孔吸声材料,如离心玻璃棉、岩棉、矿棉、植物纤维喷涂等,吸声机理是材料内部有大量微小的连通的孔隙,声波沿着这些孔隙可以深入材料内部,与材料发生摩擦作用将声能转化为热能。多孔吸声材料的吸声特性是随着频率的增高吸声系数逐渐增大,这意味着低频吸收没有高频吸收好。多孔材料吸声的必要条件是:材料有大量空隙,空隙之间互相连通,孔隙深入材料内部。错误认识之一是认为表面粗糙的材料具有吸声性能,其实不然,例如拉毛水泥、表面凸凹的石才基本不具有吸声能力。错误认识之二是认为材料内部具有大量孔洞的材料,如聚苯、聚乙烯、闭孔聚氨脂等,具有良好的吸声性能,事实上,这些材料由于内部孔洞没有连通性,声波不能深入材料内部振动摩擦,因此吸声系数很小。 与墙面或天花存在空气层的穿孔板,即使材料本身吸声性能很差,这种结构也具有吸声性能,如穿孔的石膏板、木板、金属板、甚至是狭缝吸声砖等。这类吸声被称为亥姆霍兹共振吸声,吸声原理类似于暖水瓶的声共振,材料外部空间与内部腔体通过窄的瓶颈连接,声波入射时,在共振频率上,颈部的空气和内部空间之间产生剧烈的共振作用损耗了声能。亥姆霍兹共振吸收的特点是只有在共振频率上具有较大的吸声系数。 薄膜或薄板与墙体或顶棚存在空腔时也能吸声,如木板、金属板做成的天花板或墙板等,这种结构的吸声机理是薄板共振吸声。在共振频率上,由于薄板剧烈振动而大量吸收声能。薄板共振吸收大多在低频具有较好的吸声性能。 吸声材料及吸声结构: 离心玻璃棉 离心玻璃棉内部纤维蓬松交错,存在大量微小的孔隙,是典型的多孔性吸声材料,具有良好的吸声特性。离心玻璃棉可以制成墙板、天花板、空间吸声体等,可以大量吸收房间内的声能,降低混响时间,减少室内噪声。 离心玻璃棉的吸声特性不但与厚度和容重有关,也与罩面材料、结构构造等因素有关。在建筑应用中还需同时兼顾造价、美观、防火、防潮、粉尘、耐老化等多方面问题。 离心玻璃棉属于多孔吸声材料,具有良好的吸声性能。离心玻璃棉能够吸声的原因不是由于表面粗糙,而是因为具有大量的内外连通的微小孔隙和孔洞。当声波入射到离心玻璃棉上时,声波能顺着孔隙进入材料内部,引起空隙中空气分子的振动。由于空气的粘滞阻力和空气分子与孔隙壁的摩擦,声能转化为热能而损耗。 离心玻璃棉对声音中高频有较好的吸声性能。影响离心玻璃棉吸声性能的主要因素是厚度、密度和空气流阻等。密度是每立方米材料的重量。空气流阻是单位厚度时材料两侧空气气压和空气流速之比。空气流阻是影响离心玻璃棉吸声性能最重要的因素。流阻太小,说明材料稀疏,空气振动容易穿过,吸声性能下降;流阻太大,说明材料密实,空气振动难于传入,吸声性能亦下降。对于离心玻璃棉来讲,吸声性能存在最佳流阻。在实际工程中,测定空气流阻比较困难,但可以通过厚度和容重粗略估计和控制。1、随着厚度增加,中低频吸声系数显著地增加,但高频变化不大(高频吸收总是较大的)。2、厚度不变,容重增加,中低频吸声系数亦增加;但当容重增加到一定程度时,材料变得密实,流阻大于最佳流阻,吸声系数反而下降。对于厚度超过5cm的容重为16Kg/m3的离心玻璃棉,低频125Hz约为0.2,中高频(>500Hz)的吸声系数已经接近于1了。当厚度由5cm继续增大时,低频的吸声系

吸声材料与吸收结构

吸声材料与吸收结构(一) 教学目的:了解使用吸收材料的目的、多孔吸收材料的特点 教学内容:使用吸声材料的目的、多孔吸声材料吸声的原理和特点、多孔吸声材料的类型与施工 教学重难点:多孔吸声材料吸声的原理和特点、影响多孔吸声材料性能的因素 教学时数:2课时 教学步骤: 一、新课导入 作为音响师虽然不需要参与建筑本身的设计,但了解有关建声的设计和施工有助于我们 更了解该建筑的声学特点,帮助我们更好的设计、布置扩声系统。 二、新课讲授 (一)使用吸声材料的目的: 在进行厅堂音质设计时,假定厅堂的容积V和总表面积S已经确定,其混响时间的控制,只剩下吸声系数的确定,使用吸声材料的主要目的是为了控制反射声,以在整个音频范围内获得均匀的混响时间,同时,还可以利用吸声材料去调节声场分布,消除回声, 并降低噪声干扰,从而改善厅堂音质。 (二)吸声材料和吸声结构 吸声材料一般指可供直接使用、具有良好吸声能力的声学材料,而吸声结构主要是指按照一定要求,经过特殊设计的声场构件。事实上,在安装吸声材料时,如果不将吸声材料直接紧贴在边界面上,那么他就能构成吸声结构。因此吸声材料与吸声结构并没有非常严 格的界限。从后面的介绍可以看到,构成吸声结构的,不仅可以是吸声材料,而且也可以是 吸声性能很差的非吸声材料。从这个意义上讲,它们之间的差别又是十分明显的。 (三)多孔吸声材料 多孔吸声材料是应用最普遍的一种吸声材料,这类材料包括玻璃棉,岩棉、矿棉等无机纤维材料及采用上述材料制成的板材和毡材,例如聚氨酯、聚苯烯和尿醛泡沫塑料、膨胀珍珠岩等,此外,具有一定透气性能的纺织品帘幕也可归为这类吸声材料。 多孔吸声材料必须具备以下几个条件: (1)材料内部应有大量的微孔或间隙,而且孔隙应尽量细小且分布均匀; (2)材料内部的微孔必须是向外敞开的,也就是说必须通到材料的表面,使得声波能够从 材料表面容易地进入到材料的内部; (3)材料内部的微孔必须是相互连通的,而不能是封闭的。 错误认识一: 表面粗糙的材料,如拉毛水泥等,具有良好的吸声性能。 错误认识二: 内部存在大量孔洞的材料,如聚苯、聚乙烯、闭孔聚氨脂等,具有良好的吸声性能。 1、多孔吸声材料的吸声原理: 多孔吸声材料的结构特点是从里至外均有相当数量内外连通的极小间隙,因而透气性好,当声波入射到多孔材料表面时,声波沿微孔进入材料内部,并激发起微孔内部的空气振动,由于空气的黏滞性和微孔内相对摩擦产生的黏滞阻力是空气振动,声能不断转化为热能而引起声能衰减,因此,多孔吸声材料在表面和内部均应该有大量的连续的微孔或间隙, 以保证材料的吸声性能。 2、影响多孔吸声材料性能好坏的主要因素有哪些?

隔声材料和结构浅说

室内装修已成为一项独立的产业,大大小小的装饰装璜公司像雨后春笋,遍地林立。不少装璜公司,以新风格、新材料、新工艺给室内建筑装修带来新面貌,达到了新水平。 在很多情况下,室内装修有一定的声学要求。不仅是各类剧院、体育场馆和歌舞厅以及与声学有关的录音室、演播室等专业用房本身有一定的声学技术指标,而且凡是公共场所,一般都需要传播语言或音乐,即使是家庭用房现在也需要有良好的音乐欣赏环境。所以室内装修工程必须重视声学要求。如果忽视这一点,极有可能造成不良后果。例如有一水上健身娱乐场所,地面基本上都是水面,上空是一大玻璃圆穹项,由于没有声学设计,致使厅内混响时间特别长,当有文娱表演时连报幕的话也听不清。再如有的走廓或门厅,做得富丽堂皇、金碧辉煌,但即使是普通的谈话声或背景音乐,也在空间内久传不衰,形成令人烦恼的干扰噪声。 造成音质差的主要原因是没有科学的声学设计。不少装饰工程公司本身没有合格的声学设计人员;有的一开始邀请声学专家做设计,以后自以为有了“经验”,便大胆地把设计也承包了;有的是东抄西袭,以为找到了人家的奥秘,你做软包,我也搞软包,你用穿孔板,我也做穿孔板,实际上没有掌握真正的声学要求;也不排除有的工程技术人员懂得一些声学知识,但并不精于室内声学的原理和实践,做出了并不合格的声学装修设计。 室内声学设计是一门系统学科,涉及面较广,本文只就与室内装饰有关的吸声和隔声的材料和结构方面的知识作简单介绍,希望装饰工程人员和业主对声学材料和结构有所了解,能够理解声学设计为什么作这样那样的处理,从而使装饰工程在美观和声学要求上达到完美的统一。 1.吸声与隔声的基本概念 首先要明确吸声与隔声是完全不同的两个声学概念。吸声是指声波传播到某一边界面时,一部分声能被边界面反射(或散射),一部分声能被边界面吸收(这里不考虑在媒质中传播时被媒质的吸收),这包括声波在边界材料内转化为热能被消耗掉或是转化为振动能沿边界构造传递转移,或是直接透射到边界另一面空间。对于入射声波来说,除了反射到原来空间的反射(散射)声能外,其余能量都被看作被边界面吸收。在一定面积上被吸收的声能与入射声能之比称为该边界面的吸声系数。例如室内声波从开着的窗户传到室外,则开窗面积可近似地认为百分之百地“吸收”了室内传来的声波,吸声系数为1。当然,我们所要考虑的吸声材料,主要不是靠开口面积的吸声,而要靠材料本身的声学特性来吸收声波。 对于两个空间中间的界面隔层来说,当声波从一室入射到界面上时,声波激发隔层的振动,以振动向另一面空间辐射声波,此为透射声波。通过一定面积的透射声波能量与入射声波能量之比称透射系数。对于开启的窗户,透射系数可近似为1(吸声系数也为1),其隔声效果为0,即隔声量为0db。对于又重又厚的砖墙或厚钢板,单位面积质量大,声波入射时只能激发起此隔层的微小振动,使对另一空间辐射的声波能量(透射声能)很小,所以隔声量大,隔声效果好。但对于原来空间而言,绝大部分能量被反射,所以吸声系数很小。 对于单一材料(不是专门设计的复合材料)来说,吸声能力与隔声效果往往是不能兼顾的。如上述砖墙或钢板可以作为好的隔声材料,但吸声效果极差;反过来,如果拿吸声性能好的材料(如玻璃棉)做隔声材料,即使声波透过该材料时声能被吸收99(这是很难达到的),只有1的声能传播到另一空间,则此材料的隔声量也只有20db,并非好的隔声材料。有人把吸声材料误称为“隔音材料”是不对的。如果有人介绍某种单一材料吸声好隔声也好,那他不是不懂就是在骗人了。 2.吸声材料 吸声材料是指吸声系数比较大的建筑装修材料。如果材料内部有很多互相连通的细微空隙,由空隙形成的空气通道,可模拟为由固体框架间形成许多细管或毛细管组成的管道构造。当声波传入时,因细管中靠近管壁与管中间的声波振动速度不同,由媒质间速度差引起的内摩擦,使声波振动能量转化为热能而被吸收。好的吸声材料多为纤维性材料,称多孔性吸声材料,

相关主题
文本预览
相关文档 最新文档