当前位置:文档之家› 基于MSP430的极低功耗系统设计

基于MSP430的极低功耗系统设计

基于MSP430的极低功耗系统设计
基于MSP430的极低功耗系统设计

基于MSP430的极低功耗系统设计

摘要:MSP430是TI公司出品的一款强大的16位单片机,其显著特点是具有极低的功耗。本文对构造以MSP430为基础极低功耗系统作为有益的探讨,对于设计各种便携式设备都具有较高的参考价值。

对于一个数字系统而言,其功耗大致满足以下公式:P=CV2f,其中C为系统的负载电容,V为电源电压,f为系统工作频率。由此可见,功耗与电源电压的平方成正比,因此电源电压对系统的功耗影响最大,其次是工作频率,再就是负载电容。负载电容对设计人员而言,一般是不可控的,因此设计一个低功耗系统,应该考虑到不影响系统性能前提下,尽可能地降低电源的电压和使用低频率的时钟。下面对TI公司新出MSP430来具体探讨这个问题。

MSP430具有工业级16位RISC,其I/O和CPU可以运行在不的时钟下。CPU功耗可以通过开关状态寄存器的控制位来控制:正常运行时电流160μA,备用时为0.1μA,功耗低,为设计低功耗系统提供了有利的条件。

图1是我们设计的以MSP430为CPU的“精密温度测试仪”(下面简称测试仪)。该产品使用电池供电,体积小巧,携带方便。

在使用时应该尽可能地选择最低的电源电压。对于MSP430而言,可用的最低电压是很低的,最低可达1.8V。我们使用TI公司推荐使用的3V。通常的电源只提供5V电压,因此,需要将5V电压由一个3V的稳压管降压后给CPU供电,也可以直接锂电池供电。3V不是标准的TTL电平,因此,在使用时需要用接口电路使CPU的非TTL标准电平能与TTL标准电平的器件连接。这些接口电路应该也是低功耗的,否则会造成一方面使用低电压降低了功耗,另一个方面使用额外的接口电路又增加了系统的功耗。或者直接使用支持3V电压的外围芯片。图1 (2)时钟频率

从低功耗的角度看,需要较低的频率,但是在实时应用中为了快速响应外部事件

又需要有比较快的系统时钟。这就需要系统具有两个高低不同的频率,在需要的时候可以在两个频率之间进行切换。为了保证切换迅速/时间延迟少,又要求低Q值振荡器,同时切换时往往造成时钟频率的不稳定,这对于要求频率稳定的系统,如实时时钟RTC而言又是不适合的。设计一个完全达到以上要求的时钟系统是很困难的,MSP430采用了一种折衷办法,即在CPU外使用一个较低的频率为32 768Hz的钟表晶体振荡器生成辅助时钟ACLK,能够保证一些低频率应用场合的要求,对于一些低频工作的’外设而言可以直接作为信号源或时钟,而无需增加额外的分频电路;同时,在CPU内部使用结合数字控制振荡器DCO的FLL技术,将ACLK倍频升高,作为系统的主时钟MCLK。它使得指令能够在较低晶振下获得高时钟时的运行速度,能够满足高速实时的要求。低、高频之间的切换只需6μs。对于149型号的芯片而言,更具有第三个频率SMCLK可供外设使用,它可外接二个晶振,当设置DCOR=0时SMCLK使用DCOCLK,当DCOR=1时SMCLK使用第二个外晶振X2。X2的频率一般比X1要高,这样便又可以满足高速外设的要求。

MSP430的工作模式通过模块的智能化运行管理和CPU的状态组合以先进的方式支持超低功耗的各种要求。CPU内状态寄存器SR中的SCG1、SCG2、OscOff与功耗有关.可由软件组合成6种工作模式.

CPUOff置位,CPU停止活动,但外围模块继续工作,ACLK和MCLK信号保持活动,MCLK的锁频坏控制正常工作.有关控制位设置为:SCG1=0,SCG0=0,SCG0=0,OscOff=0,CPUOff=1。

CPUOff置位,CPU停止活动,但外围模块继续工作,MCLK的锁频环控制停止工作,ACLK与MCLK保持活动,有关控制位设置为:SCG1=0,SCG0=1,OscOff=0,CPUOff=1。

CPUOff置位,CPU停止活动,但外围模块继续工作,MCLK的锁频环控制停止,ACLK活动,MCLK停止,有关控制位设置为:SCG1=1,SCG0=0,OscOff=0,CPUOff=1。

,但外围模块继续工作,MCLK的锁频环控制和MCLK停止工作,DCO的DC发生器关闭,但ACLK信号仍保持活动,有关控制位设置为:SCG1=1,SCG0=1,OscOff=0,CPUOff=1。

CPUOff置位,CPU停止活动,但外围模块继续工作,MCLK的锁频环控制和MCLK停止工作,晶振停止,有关控制位设置为:SCG1=X,SCG0=X,OscOff=1,CPUOff=1。

这些模式可以完成对晶振的关闭,FLL关闭,还能实现对外设功耗的控制,从而进一步降低系统的功耗。

为了充分利用CPU的低功耗功能,可以让CPU工作于突发状态。在通常情况下,根据需要使用软件将CPU设定到某一种低功耗工作模式下,在需要时使用中断将CPU从休眠状态中唤醒,完成工作之后又进入休眠状态。

MSP430的可编程中断结构可以组成灵活的片上和外部中断体系,以适应实时中断驱动系统的需要。中断可由处理机的运行状态来启动,如看门狗溢出、外部模块发生的事件等。每个中断源泉可以用中断允许位单独关闭,而状态寄存器中的通用中断允许位GIE可以禁止全部中断。

当中断请求发生并且相应的中断允许位和通用中断允许位(GIE)置位时,中断服务程序按下顺序激活:

如果CPU处于活动状态则完成当前执行指令。如果处于省电状态,则终止低功耗模式→将指向下一条指令的PC值压堆栈→将SR压入堆栈→如果在执行上条指令时已有多个中断请求发生,则选择最高优先级者→在单一中断源标志中的中断请求标志位自动复位,多中断源标志仍保持置位以等待软件服务→通用中断允许位GIE复位,CPUOff位/OscOff位和SCG1位复位,SCG0不

改变,FLL环路控制保持原有工作状态,状态位VNZ和C复位→将相应的中断向量值装入PC,程序从该地址继续执行中断处理,中断响应从接受中断请求开始到执行相应的中断服务程序的首条指令,持续6个周期,中断处理结束的最后指令为RETI→将SR从堆栈中弹出,被中断的程序回到与中断前完全相同的状态→将PC机堆栈中弹出。因此它的中断系统也配合极低功耗的要求,一个中断事件可将系统从各种工作模式中唤醒,而RETI指令又使运行返回到事件发生前的工作模式,不需额外的指令。测试仪的主要工作就是测量并显示温度。系统启动后首先进入低功耗的休眠模式,因为温度的测试可以间隔一段时间测量一次,设定一个触发周期,当周期的触发脉冲到来时,CPU退出休眠,测量温度并显示,检测完之后又自动回到休眠状态。

MSP430系列微控制器的运行主要受控于存储在特殊寄存器(SFR)中的信息,不同SFR中的位可以根据需要允许中断或用来定义外围模块的工作模式,能够作到部分或全部禁止外围模块的功能,被禁止的外围模块将停止它的功能以减少电源消耗。

例如,Basic Timer1可以根据需要对输入时钟源选择MCLK、ACLK或ACLK/256之一,同时控制位包含HOLD,当HOLD=1时,可以禁止模块的所有功能,并把功耗降低到最低只有漏电流。

串口是系统与外围联系的重要手段,可以利用MSP430对帧的敏感作为启动条件。通常情况下都应该从低功耗模式中被启动,这就需要用到UART的中断接收方式,有关代码如下:

当有多台机进行通信时,还应该充分利用线路空闲多处理机模式。使用此模式可以使处于多机通信的CPU在接收数据之前首先判断地址,如果地址与自己软件中设定的一款,则CPU被激活接收下面的数据;如果不一致,则保持休眠状态。这样可以最大限度地降低UART所消耗的功率。

低功耗系统必须采用LCD,MSP430有些型号中已经为我们集成了LCD驱动器,在使用时只有需要显示时才打开LCD模块,休眠状态下控制LCD的控制方式与模式寄存器中的LCDM0=0,可以关闭LCD。LCDM1=1,高电压驱动;LCDM1=0,LCDM1=1,驱动低电压。尽可能选择低电压驱动。通过以上处理,LCD的功耗可以达到最少。

0的A/D也具有微功耗的模式。当转换结束时(EOC),中断标志会自动设置进入中断例程,通知处理机一次转换已经完成。这时CPU关闭A/D时钟,A/D通道停止工作,直到下一次SOC位置位才开启,因此,模/数的开启是可以由CPU通过控制ACTL寄存器主动进行的。“测试仪”需要测量传感器送来的电压,使用A/D进行模/数转换,可以通过键盘输入或周期性触发脉冲选择开启A/D转换,完成后又自动关闭,以节省电流消耗。

此外在设计外设时还有一些常规原则:将不用的FETI输入端连接到VSS;JTAG 端口TMS、TCK和TDI不要连接到VSS;CMOS输入端不能有浮空的节点,将所有输入端接适当的电平;不论对于内核还是对于各外围模块,选择尽可能低的运行频率,如果不影响功能应设计自动关机。

综上所述,MSP430以其卓越的性能和极低功耗的特点,使我们有很大的余地可以设计出高性能的微功耗系统。实践证明:使用MSP430为核心构成的便携式系统,其电池的使用寿命可以比基于一般CPU的系统延长3~5倍。可以预见,在不久的将来基于MSP430的微功耗便携式系统将越来越多,这也正是我们讨论的意义所在。

简易计算器设计-msp430-C语言

简易计算器

目录 摘要…………………………………………………………………………………P3 关键字………………………………………………………………………………P3 一、设计要求………………………………………………………………………P3 二、方案论证与选择………………………………………………………………P3 2.1 单片机选择………………………………………………………………P3 2.2 LCD显示屏选择…………………………………………………………P3 2.3 键盘选择…………………………………………………………………P4 2.4 CPU工作方式选择………………………………………………………P4 三、系统实现………………………………………………………………………P4 3.1 硬件设计…………………………………………………………………P4 3.1.1系统框图……………………………………………………………P4 3.1.2 盘的电平设计以及与单片机的连接 键……………………………P5 3.2.3单片机与显示器的连接…………………………………………… P5 3.2软件设计…………………………………………………………………… P6 四、作品性能测试与分析…………………………………………………………P10 4.1试性能概览………………………………………………………………P10 4.2误差分析…………………………………………………………………P12

五、参考文献………………………………………………………………………P12 六、附录……………………………………………………………………………P13 6.1计算器功能介绍…………………………………………………………P13 6.2仿真电路图………………………………………………………………P13 6.3元件清单…………………………………………………………………P13 6.4原程序代码………………………………………………………………P14 摘要:本设计以低功耗单片机MSP430V136T、1602字符型液晶屏和4*4简易键盘为主要器件,来实现加、减、乘、除、开根号、平方、求倒数等运算。设计中分别采用P1口低4位和P2口低4位与键盘的行列线相连,用于采集中断信号并分析键值;键盘规格为4*4,由于所需的功能键数大于16,因此需要进行按键复用;单片机的P3口连接显示器的D0~D7端,用于输出显示数据或控制命令;选用P4口中的3、4和5口用于实现显示屏的控制功能:使能、控制/数

北京邮电大学课设 基于MSP430的简单信号发生器的设计

基于MSP430的信号发生器 设计报告 学院:电子工程学院 班级:2013211212 组员:唐卓浩(2012211069) 王旭东(2013211134) 李务雨(2013211138) 指导老师:尹露

一、摘要 信号发生器是电子实验室的基本设备之一,目前各类学校广泛使用的是标准产品,虽然功能齐全、性能指标较高,但是价格较贵,且许多功能用不上。本设计介绍一款基于MSP430G2553 单片机的信号发生器。该信号发生器虽然功能及性能指标赶不上标准信号发生器,但能满足一般的实验要求,且结构简单,成本较低。本次需要完成的任务是以MSP430 LaunchPad 的单片机为控制核心、DAC 模块作为转换与按键电路作为输入构成的一种电子产品。MSP430 LaunchPad 单片机为控制核心,能实时的进行控制;按键输入调整输出状态,DAC0832将单片机输出的数字信号转化为模拟量,经运放放大后,在示波器上输出。在本次程序设计中充分利用了单片机内部资源,涉及到了中断系统、函数调用等。 关键字:信号发生器 MSP430单片机数模转换 二、设计要求 以msp430单片机为核心,通过一个DA (数字模拟)转换芯片,将单片机输出的方波、三角波、正弦波(数字信号)转换为模拟信号输出。提供芯片:msp430G2553、DAC0832、REF102、LM384、OP07。参考框图如下: Lauchpad MSP430 电位器 按键1 DA 转换DAC0832 放大输出LM384 按键N 按键2 AD …… 图1 硬件功能框图 1、基本要求 (1) 供电电压 VDD= 5V~12V ;(√) (2) 信号频率:5~500Hz(可调);(√) (3) 输出信号电压可调范围:≥0.5*VDD ,直流偏移可调:≥0.5*VDD ;(√) (4) 完成输出信号切换;(√) (5) 方波占空比:平滑可调20%~80%;(√) (6) 通带内正弦波峰峰值稳定度误差:≤±10%(负载1K )。(√)

基于MSP430的智能电子秤设计

摘要 目前,电子计价秤的使用非常普及,逐渐会取代传统的杆秤。由压力传感器制作的电子秤已广泛地应用到各行各业, 特别是微处理机的出现,工业生产过程自动化程度的不断提高,压力传感器已成为过程控制中的一种必需的装置。 本文介绍了一种以MSP430单片机微处理器最小系统,并配以几个主要的集成电路器件设计成的智能电子秤。本系统是利用压力传感器采集当前压力,根据输入单价,准确计算出物品的金额,同时把重量、金额显示到LED数码管上。 关键词:压力传感器放大器单片机

Abstract Nowadays,electronic scale is very popular and it will replace the traditional steelyard gradually. The electronics steelyard made by the pressure transducer has been applied to all professions, especially the emergence of the microprocessor. And with the increasing of the automation of industry production, the pressure transducer becomes a kind of essential device in the process control. This paper introduces a MSP430 smallest single-chip microprocessor system, and with several major integrated circuit devices designed as a smart electronic scales. The system is to use pressure sensors collect the current pressure, according to input price, and accurately calculate the amount of goods,At the same time, the weight of the amount of shows on the LED digital tube. Keywords:Pressure Transducer amplifier Single chip microcomputer

基于MSP430单片机的数字式水表设计

收稿日期:2004-07-31;修改日期:2004-09-28作者简介:张 宇(1979-),男,安徽宿州人,合肥工业大学硕士生; 张 辉(1963-),男,江苏海门人,合肥工业大学教授,硕士生导师.第27卷第10期 合肥工业大学学报(自然科学版)Vo l.27No.102004年10月JOURN AL OF HEFEI U NIVERSITY OF T ECH NOLOGY Oct.2004 基于M SP 430单片机的数字式水表设计 张 宇, 张 辉 (合肥工业大学仪器仪表学院,安徽合肥 230009) 摘 要:为了提高测量精度,利用T I 公司M SP430系列单片机的特点开发出利用维权磁敏传感器的数字式叶轮水表。给出了传感器的信号处理电路及软件处理程序流程。介绍了M S P430单片机的特点并详细讨论了其中断处理特点。并利用线性分段插值的方法对水表的非线性仪表系数进行误差修正。实验数据证明利用该方法设计的水表在全量程内都可保持较高的精度。 关键词:数字式水表;误差修正;磁敏传感器 中图分类号:TU 991.63 文献标识码:A 文章编号:1003-5060(2004)10-1375-04 Design of digital water meter based on MSP 430 ZHANG Yu, ZHANG Hui (School of Instrum ent,Hefei Un iversity of T echnology,Hefei 230009,China) Abstract :To improv e the precision of m easurement,an impeller w ater m eter is dig itized by using M SP 430and the Vegen mag netic sensor .The cir cuit for processing the sensor 's sig nal and the corre-sponding softw are flow are presented.The featur e of M SP430and its inter rupt processing are dis-cussed.T he error correction is made by using the linear fitting metho d.T he data o f experiment pr oves that the obtained precisio n can be rather hig h in the w hole measurement r ang e. Key words :digital w ater meter ;erro r correction ;magnetic senso r 叶轮式水表是一款比较成熟的流量传感器。家庭中使用的水表就多为旋翼式叶轮水表。叶轮式水 表的工作原理为:当水以一定流速流过水表时,水表的叶轮转动,其转速n 和水流速度u 成正比[1],即 n =Cu (1) 式中 n ——叶轮转速(r /s) u ——水流速度(m/s) C ——比例系数 当流量计口径一定时,理论上叶轮的转速与流量成线性关系。而实际上水表的比例系数并不是一个常数,所以要提高水表的测量精度必须实时修正水表的比例系数。普通水表只是将叶轮的转动通过齿轮组变换成表盘上指针的偏转量,完成对流量的积算,所以不能对水表进行实时误差修正。随着技术的进步和人们对水表要求的提高,无线式水表、IC 卡水表等智能化水表已经出现。 这些水表不仅能够将流量信号变换成为电脉冲信号从而进行数字化处理,而且能够进行误差修正以提高测量精度。

430 单片机 计算器

#include const unsigned char data[22] ={0xc0,0xf9,0xa4,0xb0, 0x99,0x92,0x82,0xf8,0x80,0x90, 0x88,0x83,0xc6,0xa1,0x86,0x8e, 0x8f,0xbf,0x89,0xb9, 0xff,0xaf};//0~9 a~f 符号 unsigned char segment[8] = {20,20,0,0,0,0,0,0};//初始数码管 unsigned char flag1=0; void delay(unsigned int j) { unsigned int i; for(i=0;i1;a--) segment[a]=0; } void zhuanhuan( unsigned long r) { segment[7]=r%10; segment[6]=r/10%10;

segment[5]=r/100%10; segment[4]=r/1000%10; segment[3]=r/10000%10; segment[2]=r/100000%10; } unsigned char getkey(void) { unsigned char m,n=16; P1OUT=0x00; if((!(P1IN&BIT4))||(!(P1IN&BIT5))||(!(P1IN&BIT6))||(!(P1IN&BIT7))) {delay(10000); if((!(P1IN&BIT4))||(!(P1IN&BIT5))||(!(P1IN&BIT6))||(!(P1IN&BIT7))) { flag1=1; for(m=0;m<=2;m++) { P1OUT=~BIT0; if(!(P1IN&BIT7)){n=3;break;} if(!(P1IN&BIT6)){n=7;break;} if(!(P1IN&BIT5)){n=11;break;} if(!(P1IN&BIT4)){n=15;break;} P1OUT=~BIT1; if(!(P1IN&BIT7)){n=2;break;} if(!(P1IN&BIT6)){n=6;break;} if(!(P1IN&BIT4)){n=14;break;} if(!(P1IN&BIT5)){n=10;break;} P1OUT=~BIT2; if(!(P1IN&BIT7)){n=1; break;} if(!(P1IN&BIT6)){n=5; break;} if(!(P1IN&BIT5)){n=9; break;} if(!(P1IN&BIT4)){n=13; break;} P1OUT=~BIT3; if(!(P1IN&BIT7)){n=0; break;} if(!(P1IN&BIT6)){n=4; break;} if(!(P1IN&BIT5)){n=8; break;}

基于MSP430开关电源设计

基于MSP430开关电源设计

————————————————————————————————作者:————————————————————————————————日期: 2

单片机实现开关电源的设计 2011-10-31 12:08:53 来源:互联网 关键字:单片机开关电源 1 引言MSP430系列单片机是美国TI公司生产的新一代16位单片。开关Boost稳压电源利用开关器件控制、无源磁性元件及电容元件的能量存储特性,从输入电压源获取分离的能量,暂时把能量以磁场的形式存储在电感器中,或以电场的形式存储在电容器中,然后将能量转换到负载。对DC—DC主回路采用Boost升压斩波电路。 2 系统结构和总设计方案本开关稳压电源是以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机,其低功耗的优点有利于系统效率高的要求,且其ADCl2是高精度的12位A/D转换模块,有高速、通用的特点。这里使用MSP430完成电压反馈的PI调节;PWM波产生,基准电压设定;电压电流显示;过电流保护等。系统框图如图1所示。

3 硬件电路设计 3.1 DC/DC转换电路设计 系统主硬件电路由电源部分、整流滤波电路、DC/DC转换电路、驱动电路、MSP430单片机等部分组成。交流输入电压经整流滤波电路后经过DC/DC变换器,采用Boost 升压斩波电路DC/DC变换,如图2所示: 根据升压斩波电路的工作原理一个周期内电感L积蓄的能量与释放的能量相等,即:式(1)中I1为输出电流,电感储能的大小通过的电流与电感值有关。在实际电路中电感的参数则与选取开关频率与输入/输出电压要求,根据实际电路的要求选用合适的电感值,且要注意其内阻不应过大,以免其损耗过大减小效率采样电路。对于电容的计算,在指定纹波电压限制下,它的大小的选取主要依据式(2): 式(2)中:C为电容的值;D1为占空比;TS为MOSFET的开关周期;I0为负载电流;V’为输出电压纹波。 3.2 采样电路 采样电路为电压采集与电流采集电路,采样电路如图3所示。其中P6.O,P6.1为MSP430芯片的采样通道,P6.O为电压采集,P6.1为电流采集。

基于msp430F149的多功能计数器

基于msp430F149的多功能计数器 摘要 本文设计了一种以超低功耗单片机MSP430F149为控制器,以高速的FPGA (现场可编 程门阵列)实现等精度测量正弦信号的频率、周期和相位差的多功能计数器。在设计中依据等精度计数原理,应用单片机的数学运算和控制功能,利用f=1/T 实现了频率和周期的统一处理;采用相位-时间转换方法,根据??0/360f f N =?? 完成了相位差测量。此外,利用外加模拟通道,实现了对正弦波小信号的预处理,使得该计数器能够在较宽的频率范围和幅度范围内进行测量。 关键词 计数器 MSP430F149单片机 FPGA 等精度

一、系统方案 方案1:采用中小规模数字电路构成系统,由计数器构成主要的测量模块。用定时器组成主要的控制电路。此方案软件设计简单,但外围芯片过多,且频带窄,实现起来较复杂,功能不强,而且不能程控和扩展。 方案2:采用单片机实现。被测信号经调理后送入单片机,利用其内部的计数器完成计数,然后再进行数据处理和显示,但单片机在处理高速信号时略显吃力。 方案3:利用FPGA 对调理后的被测信号实现高速计数,单片机软件执行高精度浮点数运算并显示。单片机完成系统的数据处理、逻辑控制和人机交互功能;大规模现场可编程器件 方案比较与选择:方案1 采用中小规模集成电路来实现,系统电路较复杂,扩展性能差;方案2用外围电路配合单片机实现测量功能,信号频率比较高时需外加分频电路,影响测量精度和系统稳定性,且单片机任务繁重,给软件设计和调试工作带来不便;方案3用一片高度集成的可编程逻辑器件可完成有关电路所有模块的设计,大大降低了电路复杂度,减少引线信号间的干扰,提高电路的可靠性和稳定性。加上单片机控制,应用单片机的数学运算和控制功能,辅以有效的软件滤波算法,能够进一步提高测量精度,且控制灵活、易于扩展和调试简单,能够达到题目要求。故本设计采用方案3,系统框图如图1所示。 二、理论分析与计算 1、频率和周期测量方法分析 由于频率和周期之间存在倒数关系(f=1/T),所以只要测得两者中的一个,另一个可通过计算求得。 1)直接测量法 对测频在低频端1Hz 时,若闸门时间为1s ,其 1量化误差大到100%。为了满足测试精度的要求,显然不能采用直接测量法; 2)直接与间接测量相结合的方法 需对被测频率和中界频率的关系进行判断,在中界频率附近仍不能达到较高的测量精度; 3)等精度测量法 图2为等精度测频、测周原理方框图。 图2 等精度测频原理图 设在一次预置门时间p T 中对被测信号计数值为x N ,对标准频率信号计数值为s N ,有

msp430设计

Y angtze University College of Arts and Science 学生实习手册 (大作业) 系部:机电系 专业:电子信息工程 班级:电信5111 姓名:程书戎 学号: 201140002 课程名称:电子系统设计与实践 指导教师:万正兵 实习时间:2014年5月6日至2012年5月28日

学生实习手册 (1) 一.前言 (3) 1.Msp430简介 (3) 2.Msp430与51的比较 (3) 二.设计目的 (4) 三.模块介绍 (4) 1.pL2303 (4) 2.msp430f149/249/449 (5) 3.LED-1602 (5) 4.其他模块 (6) 四.心得体会 (10) 五.附录 (11) 1.顶层 (11) 2.底层 (12) 3.顶层丝印层 (13) 4.原理图 (14) 六.参考文献 (14)

一.前言 1.Msp430简介 MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16位超低功耗、具有精简指令集(RISC)的混合信号处理器(Mixed Signal Processor)。称之为混合信号处理器,是由于其针对实际应用需求,将多个不同功能的模拟电路、数字电路模块和微处理器集成在一个芯片上,以提供“单片机”解决方案。该系列单片机多应用于需要电池供电的便携式仪器仪表中。 德州仪器1996年到2000年初,先后推出了31x、32x、33x等几个系列,这些系列具有LCD驱动模块,对提高系统的集成度较有利。每一系列有ROM型(C)、OTP型(P)和EPROM型(E)等芯片。2000年7月推出了F13x/F14x系列,在2001年7月到2002年又相继推出F41x、F43x、F44x。这些全部是Flash型单片机。MSP430系列的部分产品具有Flash存储器,在系统设计、开发调试及实际应用上都表现出较明显的优点。TI公司推出具有Flash 型存储器及JTAG边界扫描技术的廉价开发工具MSP-FET430X110,将国际上先进的JTAG技术和Flash 在线编程技术引入MSP430。这种以Flash 技术与FET开发工具组合的开发方式,具有方便、廉价、实用等优点,给用户提供了一个较为理想的样机开发方式。 其具有处理能力强、运算速度快、超低功耗、片内资源丰富、方便高效的开发环境等优点。 2.Msp430与51的比较 1、MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16 位超低功耗的混合信号处理器。称之为混合信号处理器,主要是由于其针对实际应用需求,把许多模拟电路、数字电路和微处理器集成在一个芯片上,以提供“单片”解决方案。 2、MSP430是16位单片机,51是8位单片机。 3、MSP430采用RISC精简指令集,单个时钟周期就可以执行一条指令,相同晶振,速度较51快12倍。 4、其它片上资源也是MSP较丰富。总体而言,MSP430功能强大,速度快,相比51而言,这些是明显的优势。但是,MSP430作为混合信号处理器,针对许多具体应用,许多功能未必有用,如果速度要求也不是很高,51同样可以胜任的话,就可以体现出51成本低,开发资源丰富,位寻址便捷等优点。 5、MSP430是16位的,MCS51及其扩展型号是八位的,MSP430主要是低功耗,集成度较高,标准的MCS51没有这些功能,但是51扩展型号很多,也有很多型号集成度很高(如c8051)。51的哈佛结构,内存ram和rom即程序存储器地址重叠,但是在内部是分开的,430是统一地址。指令结构不一样,430是精简指

简易计算器的设计报告

引言 当今时代,是一个新技术层出不穷的时代。在电子领域,尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统正以前所未见的速度被单片机智能控制系统所取代。单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。目前,一个学习与应用单片机的高潮正在工厂、学校及企事业单位大规模地兴起。过去习惯于传统电子领域的工程师、技术员正面临着全新的挑战,如不能在较短时间内学会单片机,势必会被时代所遗弃,只有勇敢地面对现实,挑战自我,加强学习,争取在较短的时间内将单片机技术融会贯通,才能跟上时代的步伐。 它所给人带来的方便也是不可否定的,它在一块芯片内集成了计算机的各种功能部件,构成一种单片式的微型计算机。20世纪80年代以来,国际上单片机的发展迅速,其产品之多令人目不暇接,单片机应用不断深入,新技术层出不穷。20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 本设计是由单片机实现的模拟计算器,它不仅能实现数据的加减乘除运算,而且还能使数据及其计算结果在数码管上显示出来,能够实现0-256的数字四则运算。本设计是用单片机A T89C51来控制,采用LCD显示,软件部分是由C语言来编写的。 设计任务:利用键盘和LCD设计一个简单的数学计算器,可以完成简单的如加,减,乘,除的四则运算,并将运算结果在LCD上显示出来。 1.方案论证 1.1 方案一 根据功能和指标要求,本系统选用MCS-51系列单片机AT89C51为主控机。通过扩展必要的外围接口电路,实现对计算器的设计。计算器电路包括三个部分:显示电路、4*4键扫描电路、单片机微控制电路。用七段数码管作为显示电路,矩阵键盘作为输入电路。模块图如图1.1所示。

MSP430单片机课程设计

文华学院学生课程考查报告 考查课程:MSP430单片机应用设计 设计题目:基于MSP430单片机的温度测量仪设计 专业班级:** 学号:**** 姓名: ** 指导教师:** 实验日期:2016年5月8日

基于MSP430单片机的温度测量仪设计 文华学院 摘要 MSP430单片机是德州公司最新开发的具有16位总线带FLASH的单片机,由于它的性价比和集成度高,受到广大技术开发人员的青睐。它的可靠性能比较好,加强电干扰运行不受影响,适应工业级的运行环境,在各种行业中都占有重要的位置,越来越多的领域应用到以单片机为控制核心,用液晶显示作为显示终端的数字化控制设备,通过单片机对被控制对象进行智能控制。 MSP430单片机将会在工程技术应用中得到广泛的应用。而且,它是通向DSP 系列的桥梁,随着自动控制的低功耗化和高速化,MSP430系列单片机将会得到越来越多人的喜爱。 通过这次毕业设计,我对MSP430单片机有了完整的了解,并且着重了解了MSP430F149芯片的原理图以及它的工作原理,对内部的硬件资源和自身的汇编语法进行了实验,把它和DS18B20温度传感器联系在一起实现了温度的测量以及报警。 关键词:MSP430;超低功耗;单片机;DS18B20 Abstract Texas MSP430 microcontroller is the latest development of a 16-bit bus with FLASH MCU, due to its cost-effective and highly integrated, by the majority of technology developers of all ages. Its reliability is better, enhancing electrical interference unaffected, adapt industrial-grade operating environment, in a variety of industry occupies an important position in both, applied to more and more areas to microcontroller core, with LCD as a digital control display terminal equipment, through the controlled object MCU intelligent control. MSP430 microcontroller applications engineering technology will be widely used. And, it is a bridge leading DSP family, with automatic control, low power consumption and high speed, MSP430 MCU will get more and more people's favorite.

MSP430单片机课程设计

MSP430单片机课程设计报告 姓名: 专业: 学号: 所在学院: 2 0 12 年6 月17 号

实验一:简单计算器设计 一、目的 利用单片机芯片MSP430x14x、四位八段共阴数码管,已制作好的电路板等器件设计制作一个计算器,用LED显示计算数值及结果。 二、功能 要求计算器能实现六位以内的数加减乘除四种运算,当所得结果超过六位数时则显示“EER”,当一次计算结束时要求计算器有复位功能。LED的最高位显示符号位,次高位空下来,其余六位显示要计算的数字。(自我发挥:求平方根。) 三、程序流程图

四、程序源代码 #include #include "stdio.h" #include #define uchar unsigned char #define uint unsigned int unsigned char segment[24] = {0xc0,0xf9,0xa4,0xb0, 0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83, 0xc6,0xa1,0x86,0x8e, 0x8f,0xbf,0x89,0xb9, 0xff,0x86,0xaf,0xde}; unsigned char disbuff[8] = {20,20,0,0,0,0,0,0};//初始数码管 unsigned char getkey(void); unsigned int qiushu(); void clear(void); void zhuanhuan(); void delay(unsigned int j) { for(uint i=0;i1;a--) disbuff[a]=0; } void zhuanhuan(long r) //提取十进制整数各位数值,并显示 { disbuff[7]=r%10; disbuff[6]=r/10%10; disbuff[5]=r/100%10; disbuff[4]=r/1000%10;

msp430计算器设计

#include "msp430x14x.h" #include double r; #include "duoxiangshi.h" #define RS_1 P3OUT|=BIT0 #define RS_0 P3OUT&=~BIT0 #define RW_1 P3OUT|=BIT1 #define RW_0 P3OUT&=~BIT1 #define E_1 P3OUT|=BIT2 #define E_0 P3OUT&=~BIT2 #define DATA P4OUT #define data_dir P4DIR #define KEYDIR P5DIR #define KEYOUT P5OUT #define KEYIN P5IN #define led P2OUT #define LED1 P2DIR=0XFF; #define uchar unsigned char #define uint unsigned int char table1[16]="1";char table2[16]={' '}; char flag; int flag1; /*延时*/ void delay(void) { unsigned int i,j; for(i=0;i<50;i++){ for(j=0;j<10;j++) { ; } } } /*消抖延时*/ void delay_key(void){ int i,j; for(i=0;i<500;i++){ for(j=0;j<100;j++) {

; } } } void delayms(uchar ms) { int i,j; for(i=0;i

'MSP430系列单片机接口技术及系统设计实例'

https://www.doczj.com/doc/1a10430466.html,www https://www.doczj.com/doc/1a10430466.html,www.plcw https://www.doczj.com/doc/1a10430466.html,www.plcworld. https://www.doczj.com/doc/1a10430466.html,w https://www.doczj.com/doc/1a10430466.html,www.p https://www.doczj.com/doc/1a10430466.html,www.plcwo https://www.doczj.com/doc/1a10430466.html,www.plcworld.c https://www.doczj.com/doc/1a10430466.html,ww https://www.doczj.com/doc/1a10430466.html,www.plc https://www.doczj.com/doc/1a10430466.html,www.plcworl https://www.doczj.com/doc/1a10430466.html, https://www.doczj.com/doc/1a10430466.html,www https://www.doczj.com/doc/1a10430466.html,www.plcw https://www.doczj.com/doc/1a10430466.html,www.plcworld. https://www.doczj.com/doc/1a10430466.html,w https://www.doczj.com/doc/1a10430466.html,www.p https://www.doczj.com/doc/1a10430466.html,www.plcwo https://www.doczj.com/doc/1a10430466.html,www.plcworld.c https://www.doczj.com/doc/1a10430466.html,ww https://www.doczj.com/doc/1a10430466.html,www.plc https://www.doczj.com/doc/1a10430466.html,www.plcworl https://www.doczj.com/doc/1a10430466.html, https://www.doczj.com/doc/1a10430466.html,www https://www.doczj.com/doc/1a10430466.html,www.plcw https://www.doczj.com/doc/1a10430466.html,www.plcworld. https://www.doczj.com/doc/1a10430466.html,w

基于51单片机简易计算器课程设计

电气与电子信息工程学院 单片机课程设计 设计题目:简易电子计算器 专业班级: 12级电信(1)班 学号: 201230240111 姓名:杨峥 指导教师:章磊艾青 设计时间:2014/06/03~2014/06/13 设计地点:K2—407

湖北理工学院本科课程设计报告 课程设计任务书 2013 ~2014 学年第2学期 学生姓名:杨峥专业班级:电子信息工程技术(专)2012(1)班 指导教师:艾青、章磊工作部门:电气学院电信教研室 一、课程设计题目:单片机课程设计 1. 出租车计价器系统设计 2. 医院住院病人呼叫器的设计 3. 作息时间控制器 4. 数字温度计的设计 5. 火灾报警器的设计 6. 电子密码锁 7. 电子计算器 8.学生自选 二、课程设计内容 1. 以单片机为核心器件,构造系统; 2. 熟悉、掌握各种外围接口电路芯片的工作原理和控制方法; 3. 熟悉、掌握单片机汇编语言的软件设计方法; 4. 熟悉、掌握印刷电路板的设计方法; 5. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计, 要求概念清楚、方案合理、方法正确、步骤完整; 6. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 7. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。 2

湖北理工学院本科课程设计报告 三、进度安排 2.执行要求 智能电子产品设计制作共8个选题,每组不超过7人,为避免雷同,在设计中每个同学所采用的方案不能一样。 四、基本要求 (1)进行方案论证并根据要求确定系统设计方案; (2)绘制系统框图和电气原理草图,程序流程图; (3)对相关电路进行电路参数计算和元器件选择; (4)进行软件汇编并调试; (5)利用Proteus和Keil uVision2对系统进行联调; (6)绘制系统原理总图,列出原器件明细表; (7)画出软件框图,列出程序清单; (8)写出使用说明书; (9)对设计进行全面总结,写出课程设计报告。 3

(完整版)基于MSP430单片机的环境参数监测仪的设计制作毕业设计

常州机电职业技术学院 毕业设计(论文) 系部:信息工程系 专业:应用电子技术 题目:基于MSP430单片机的环境 参数监测仪的设计制作 指导者: 评阅者:

2014 年 4 月

毕业设计(论文)中文摘要

温湿度和光照度等参数是标定环境不可缺少的参数,对其进行准确的测量具有重要意义。本文以室内外居住环境为背景,设计出一种以MSP430F5438A超低功耗单片机为控制核心的环境参数监测仪。 论文对环境参数监测系统硬件和软件模块包括子系统模块进行了详细设计:通过相应的传感器芯片对包括温度、湿度、光强、红外辐射度和可燃气体浓度等环境参数进行检测和采集;通过微处理器 MSP430F5438A将传感器芯片采集到的数据进行分析处理,并在液晶终端进行参数的实时显示和监控。 论文分别对温度传感器模块,单总线湿度传感器模块,光照度传感器模块,气敏传感器模块,红外热释电模块以及按键和液晶显示模块进行了单模块分别调试。在此基础上对这些子程序模块进行了整合调试及整机功能和功耗测试,最终完成整个监控系统及仪器的设计制作。 实验显示,本环境参数监测仪具有体积小、携带方便、功耗低、可靠性高、免维护、成本低等优点,在室内外环境参数监测领域,具有很好的应用前景。 关键词:MSP430单片机环境参数监测传感器液晶显示

毕业设计(论文)外文摘要

Title: The Design and Production of Environmental Parameter Monitor Based on MSP430 Abstract: Parameters such as temperature, humidity and illuminance are indispensable to the calibration environment, which has important significance for accurate measurement. The aim of this thesis is to design an environmental parameter monitor, which controlled by an ultra-low power MSP430F5438A for indoor and outdoor living environment. The detailed design of hardware and software module including subsystem module in the environmental parameter monitor is proposed in this thesis. The corresponding sensor chip is used to detect and collect the environmental parameter such as temperature, humidity, illuminance, the infrared radiation intensity and combustible gas concentration. The MSP430F5438A analyzes and processed the data which collected by sensor chips, and realized the real-time display and monitoring for parameters on LCD terminal. The thesis proceeds debugging on single module likes temperature sensor module, single bus humidity sensor module, illuminance sensor module, gas sensor module, pyroelectric

相关主题
文本预览
相关文档 最新文档