当前位置:文档之家› EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS
EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS

Earthquake Engng Struct.Dyn.2003;32:1729–1748(DOI:10.1002/eqe.299)

E ect of causal and acausal?lters on elastic and inelastic

response spectra

David M.Boore1;?;?and Sinan Akkar2;?

1MS977;345Middle?eld Road;U.S.Geological Survey;Menlo Park;CA94025;U.S.A.

2Department of Civil and Environmental Engineering;Stanford University;Stanford;CA94305;U.S.A.

SUMMARY

With increasing interest in displacement spectra and long-period motions,it is important to check the sensitivity of both elastic and inelastic response spectra to the?ltering that is often necessary to remove long period artifacts,even from many modern digital https://www.doczj.com/doc/1011913528.html,ing two records of very di erent character from the M=7:1,1999Hector Mine,California,earthquake,we?nd that the response spectra can be sensitive to the corner periods used in causal?ltering,even for oscillator periods much less than the?lter corner periods.The e ect is most pronounced for inelastic response spectra,where the ratio of response spectra computed from accelerations?ltered at25and200sec can be close to a factor of 2for oscillator periods less than5sec.Published in2003by John Wiley&Sons,Ltd.

KEY WORDS:inelastic displacement response;elastic displacement response;baseline correction;causal= acausal digital?lters;non-linear response history;Hector Mine earthquake

1.INTRODUCTION

Design of long-period structures such as bridges,storage tanks,base-isolated structures,and very tall buildings requires knowledge of ground motions beyond the range often obtainable from analog recordings of strong ground motion.In addition,the development of displacement-based design has focused attention on both elastic and inelastic displacement response spectra. The studies reported in References[1–5]are among the few that employ elastic and inelastic spectra for design and seismic performance assessment of structures.The new generation of digital instruments now makes it possible to obtain much longer-period motions than avail-able before,but unfortunately,the recordings are often contaminated by very small o sets ?Correspondence to:David M.Boore,MS977,345Middle?eld Road,U.S.Geological Survey,Menlo Park, CA94025,U.S.A.

?E-mail:boore@https://www.doczj.com/doc/1011913528.html,

?Current address:Middle East Technical University,06531Ankara,Turkey.

This article is a https://www.doczj.com/doc/1011913528.html,ernment work and is in the public domain in the U.S.A.

Contract=grant sponsor:Scienti?c Research and Technical Council of Turkey.

Received27August2002

Revised21October2002 Copyright?2003John Wiley&Sons,Ltd.Accepted3January2003

1730 D.M.BOORE AND S.AKKAR

and transients in the acceleration time series that translate to unacceptable drifts in displace-ment time series derived from the recorded accelerations.These are addressed in various studies such as in References[6–8].These drifts often cannot be removed with con?dence by baseline correction alone,and?ltering to remove long periods usually is required,as it almost always has been for digitized analog recordings.Some well-known?ltering and base-line correction procedures are described in References[9–12].(A note on terminology:by ‘?ltering’we mean a?lter that removes motions at periods longer than the?lter corner pe-riod;because the corner periods of concern to us in this paper are greater than or equal to25sec,we prefer to speak in terms of the period,rather than the frequency,of the?l-ters,and because of this we cannot use the more usual adjectives‘low-cut’or‘high-pass’to describe the?lters,because these have meaning only if frequency is the independent vari-able.)The new instruments,however,allow?ltering at periods much longer than periods of engineering interest,especially for recordings of moderate to large earthquakes[13].Often acausal(phaseless)?lters are used,but these require pre-event pads to allow for full devel-opment of the?lter response and can produce peculiar pre-event transients,particularly in records for which a true pre-event portion is not available(without pads,long-period content may not be completely removed and subsequent?ltering of the velocity and displacement records may be needed).Starting with the1999,Hector Mine,California,earthquake,the U.S.Geological Survey(USGS)has been using causal?lters in routine processing of digi-tal records(http:==https://www.doczj.com/doc/1011913528.html,=processing.html).In addition,the records in the strong-motion database of the Paci?c Earthquake Engineering Research Center(PEER)have been processed using causal?lters(http:==https://www.doczj.com/doc/1011913528.html,=smcat=process.html).Causal?lters do not require pre-event pads to maintain compatibility between the acceleration,velocity,and displacement time series,but they can produce signi?cant phase distortions for periods in the signal within several multiplicative factors of the corner periods of the?https://www.doczj.com/doc/1011913528.html,rge phase distortions can produce considerable di erences in the waveforms of displacement time series obtained from acceleration records processed with a series of causal?lters.Because inelastic response spectra can be more sensitive to phase information than elastic response spectra,we investigate in this paper the in uence of the type of?ltering on both inelastic and elastic response spectra.Our conclusion is that inelastic response spectra are sensitive to the corner periods of causal?lters at periods much less than the corner periods of the?lters.Elastic re-sponse spectra are much less sensitive to the?lter corner periods.To illustrate the conclusions, we show results from two recordings of the M=7:1,1999Hector Mine,California,earth-quake.Similar results were obtained from analysis of a limited number of other recordings (we have yet to?nd a counterexample).The additional records and earthquakes producing the motions are:the228?component at Rinaldi Receiving Station(M=6:7,1994Northridge, California,earthquake),the EW component at stations TCU084and TCU089(M=7:6,1999 Chi-Chi,Taiwan,earthquake;),and the51?component at Pump Station10from the M=7:9, 2002Denali National Park,Alaska,earthquake.

We judge that the sensitivity of the inelastic response spectra to?lter corner periods out-weighs the advantage of less?le storage space for compatible acceleration,velocity,and displacement times series,as well as the lack of precursory transient motions,and therefore we recommend that acausal?lters be used in processing.This is hardly a new recommenda-tion,as most strong-motion processing is done using phaseless?lters.Lee and Trifunac[14] explicitly state that phaseless?lters‘are required and essential’in earthquake engineering data processing,presumably so that the resulting records have minimal distortion and can be used Copyright?2003John Wiley&Sons,Ltd.Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA

1731

for a wide variety of applications (as pointed out to us by one of the anonymous reviewers).We are not aware of any publications comparing the elastic and inelastic responses of ground acceleration processed with causal and acausal ?lters.

2.DATA USED

The M =7:1,1999Hector Mine,California,earthquake was the ?rst earthquake in the United States to be well recorded by digital strong-motion instruments.Figure 1shows some of the stations at which digital recordings were obtained,as well as an indication of the areas rup-tured in the earthquake.From these data we have chosen to study in detail the EW component from station HEC and the NS component from station 530.The acceleration and displace-ment time series,as well as the 5%-damped elastic displacement response spectra are shown in Figure 2.

588

584

1436

HEC

530

521

513

514

14172051434

5441405

587699

1099596

Figure 1.Map showing some of the stations that recorded the 1999Hector Mine earthquake.Records from stations labeled 530and HEC were used in this paper.The three rectangles near the epicenter are the surface projections of the fault planes used in Ji et al.’s [16]fault model;the epicenter is shown by the star.The numerical labels are the serial numbers of the recorders at the stations;these numbers are used in naming the data ?les provided by the USGS.The o cial NSMP station numbers are di erent,but they have not been used (to avoid confusion in relating a station shown on the map with the data ?le for the time series recorded at that station).Records from all stations shown here were digitally recorded.The records from station 530were digitized using about 4280counts =cm =s 2;those from station HEC were digitized at 2140counts =cm =s 2.The sensors at all stations are force-balance ac-celerometers with natural frequency greater than 50Hz.The data from TriNet station HEC were obtained through the Southern California Earthquake Data Center (SCEDC);the data from station 530are from the National Strong-Motion Program (NSMP)of the U.S.Geological Survey (http:==https://www.doczj.com/doc/1011913528.html,).(This ?gure is from Boore DM,Stephens CD,Joyner https://www.doczj.com/doc/1011913528.html,ments on baseline correction of dig-ital strong-motion data:Examples from the 1999Hector Mine,California,earthquake.Bulletin of the

Seismological Society of America 2002;92:1543–1560?Seismological Society of America.)

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

1732

D.M.BOORE AND S.AKKAR

1

10

100

Period (sec)

S D (c m )

0.1

110100

1

5

10

Period (sec)

-200

0200A c c (c m /s 2)

-50

050

-300

Time (sec)

D i s p l a c e m e n t (c m )

-10

Time (sec)

Figure 2.Acceleration and displacement time series and elastic 5%-damped displacement response spectra (SD ).For consistency in presentation,the time series from both stations have been ?ltered using a causal ?lter with corner period of 50sec.The pre-?ltering baseline correction for the station 530record corresponded to the removal of a quadratic ?tted to velocity;that for the HEC record corresponded to several straight line segments in velocity between t 1=15s,t 2=50s,and the end of the record.See Boore et al.[13]for details regarding the baseline removal.We have shown just one component of acceleration so as to avoid clutter (this paper concentrates on longer period information,so little is lost by not showing both components of the acceleration).The time series used in this paper are shown by black lines.Note that the NS component for the recording at station 530is within 4?of the purely transverse component.Also note the di erent scaling of the

ordinates for the plots of data from 530and HEC.

The displacements from station 530show a substantial pulse in the transverse direction (this direction is within 4?of north–south,and therefore we analyze the north–south component).This pulse produces a peak in the displacement response spectrum at a period exceeding 10sec.Although not shown here,this pulse was also on the other stations to the west and

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA1733 southwest of the fault rupture[13].Such a pulse is often associated with near-fault,fault normal motions due to directivity.We emphasize that this station is not near the fault,nor is the north–south direction normal to the fault(in fact,it is more nearly parallel to the rupture planes).In addition,the azimuth to the station relative to the direction of fault rupture is such that directivity should have little e ect on the motion.Because this large pulse is on the transverse component and in view of the very small motion in the radial direction,we are con?dent that this motion represents essentially pure SH waves radiated from the earthquake. The path to the station traverses the Mojave Desert,with a thin veneer of sediments,and therefore e ects of near-surface structure are unlikely to have a ected the motion at periods controlling the displacement waveform.No pre-event samples were obtained for the data recorded at station530,but the similarity of the waveforms with other nearby stations for which pre-event samples were available suggests that nothing essential was lost in the record. In contrast,more than10sec of pre-event samples were obtained for the recording at station HEC.More importantly,station HEC is close enough to the faults that the ground motion should include signi?cant residual displacement due to the dislocation across the fault sur-faces(these displacements are estimated from InSAR satellite data analyzed by Y.Fialko, personal communication,2001,to be about29cm to the southwest).The north–south com-ponent(which,if anything,is a fault-parallel component)has a large pulse in displacement, but we chose instead to study the east–west component because it di ers substantially in character from the north–south component at station530,thus providing a wider range of waveforms for our study of the e ect of?lter types and corner periods on the elastic and inelastic response spectra.

EFFECT OF BASELINE CORRECTIONS ON ELASTIC AND INELASTIC

DISPLACEMENT RESPONSE SPECTRA

Before presenting results for various?lters,we take the opportunity to study the e ect of various baseline corrections,without?ltering,on the near-fault motion obtained at station HEC.As shown in Boore et al.[13],a number of baseline correction schemes result in displacement waveforms that appear realistic in that the dynamic shaking is followed by a more-or-less constant residual displacement.Unfortunately,the level of the residual displace-ment can be a sensitive function of the baseline correction parameters,particularly for the east–west component.This is shown in Figure3,which displays the displacements from the three acceleration time series that we have analyzed.We have chosen the processing to span a range of residual displacements,from essentially no residual to residual displacements in opposite directions.Note that none of the residual displacements are close to the indepen-dently derived estimate from InSAR satellite observations—for this reason we do not endorse a particular correction,but only use them to illustrate the sensitivity of the response spectra to the various corrections.The displacements on the north–south component are less sensitive to the baseline correction scheme and are in better agreement with the estimate from InSAR measurements.

In both this and a following section,we compute inelastic response using the program Utility Software for Earthquake Engineering(USEE,developed by M.Aschheim,D.Abrams, and E.Bretz for the Mid-America Earthquake Center,and available at no cost from http:== https://www.doczj.com/doc/1011913528.html,=usee=;we checked some of the results using the program NSPECTRA from Copyright?2003John Wiley&Sons,Ltd.Earthquake Engng Struct.Dyn.2003;32:1729–1748

1734

D.M.BOORE AND S.AKKAR

-20

20

Time (sec)

D i s p l a c e m e n t (c m )

Figure 3.HEC for various types of baseline processing (see Boore et al.[13]for details).No ?ltering was used in the processing.Analysis of InSAR satellite data provided the estimate of co-seismic ground

displacement (Y.Fialko,personal communication,2001).

http:==civil.eng.bu https://www.doczj.com/doc/1011913528.html, =nspectra =).We show results for an elastoplastic force-deformation curve (we also used bilinear models with positive post-yielding sti ness,with similar results).The elastoplastic oscillator is used because it is well accepted and is used as a benchmark in almost all studies related to non-linear deformation demand on simple structures.Elastoplastic behavior is generally used to represent the non-degrading hysteretic behavior for both multi-and single-degree-of-freedom systems.For example,it can represent the inelastic behavior of steel moment frames with compact members and no joint fracture.It is also used in many simpli?ed non-linear methods that estimate the maximum inelastic deformation demand on non-degrading SDOF systems;these methods are important tools for the simpli?ed non-linear seismic analysis procedures in performance-based seismic engineering.We show results for a strength reduction factor R (ratio of the elastic to the yield strength of the oscillator)equal to 3.0;results were also computed for R =1:5and R =5:0,with similar conclusions.We com-puted constant displacement ductility spectra as well,but found that they had discontinuities (due to multiple values of the strength reduction factor for the target value of ductility;Inel et al .[15]studied this in some detail).For this reason we have chosen to show spectra for constant strength reduction.Another possible advantage of using the constant R spectra is that it does not limit the inelastic displacement and thus may better reveal drawbacks of the method of ?ltering.The essential conclusions are not a ected by the type of inelastic spectra used.

The elastic and inelastic spectra are shown in Figure 4.This ?gure also shows the ratio of the spectra,using as a reference the baseline scheme that resulted in the least residual

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA

1735

05

10

15

20

5%-d a m p e d D i s p l a c e m e n t R e s p o n s e (c m )

Elastic Response

05

10

15

20

Inelastic Response (R=3)

5

1015

20

Period (sec)

R a t i o o f S D

5

1015

20

Period (sec)

Figure 4.Spectra and spectral ratios for HEC (using quad ?t as reference).The legend for the ratios is somewhat cryptic,but it should be clear that ‘t 2=15=quad’means that the response spectrum ob-tained from the acceleration processed using t 2=15was divided by the response spectrum from the acceleration processed using the ‘quad’baseline correction (see Boore et al.[13]for an explanation of the baseline corrections).Results for elastic and inelastic oscillators are shown in the left and right

columns,respectively.The accelerations used to drive the oscillators were not ?ltered.

displacement (what we term the ‘quad’scheme,because it is based on ?tting a quadratic polynomial to the velocity time series—see Boore et al .[13]).The ?gure shows that the processing scheme can in uence the motions at periods less than about 10sec,and that the sensitivity is greater for the inelastic than for the elastic spectra.Chopra and Lopez [1]also conclude that the type of baseline correction can have a large in uence on the long-period motions.

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

1736 D.M.BOORE AND S.AKKAR

EFFECT OF FILTERING ON DISPLACEMENT TIME SERIES

A major concern of this paper is the sensitivity of elastic and inelastic displacement response to the type of?lter and to the corner periods of the?lters,particularly for oscillator periods much less than the corner periods of the?lters.Before showing the response spectra,however,we ?rst describe the characteristics of the?lters and discuss the dependence of the displacement time series on the type of?lter and the values of the corner periods.We consider two types of?lter:causal and acausal Butterworth?lters.Acausal?ltering is done by running a time-domain causal?lter forwards and backwards through the time series,with the number of poles of the causal?lter chosen so that the?lter responses of both the causally and acausally?ltered data are the same at long periods(in our examples the long-period responses go as T?4).The time-domain impulse responses and the amplitude and phase spectra are shown in Figure5 for the?lters considered in this paper.The essential di erence in the?lters is that the causal ?lter will produce no precursory motion when applied to a time series,but at the expense of a signi?cant distortion in the phase of the time series.Furthermore,the phase distortion is highly dependent on the corner period of the?lter,and the distortion is relatively broadband. If the ground motion has much spectral content within several multiplicative factors of the corner period,then there should be signi?cant di erences when processed using causal?lters with di erent corner periods.On the other hand,if the spectral content is limited to periods much less than the corner period,then the di erence between causal and acausal?lters should decrease with increasing corner periods of the?lters.These predictions based on the character of the phase responses shown in Figure5will be borne out in subsequent?gures.

The displacements resulting from the?ltered accelerations are shown in Figure6.The left column shows results for the causal?lter,and the right for acausal?lters.In applying the?lters we followed the guidance of Converse and Brady[12]in adding pre-and post-event pads of su cient length to allow for the?lter response,starting at the?rst and last zero crossings of the recorded motions to avoid steps.The transient earthquake motion has subsided enough for padding with zeros after the event to be a reasonable procedure,and because pre-event motion is available,no assumptions are needed in adding pre-event zeros. Because on physical and observational grounds the earthquake motion is a transient with a ?nite duration,the acceleration time series is e ectively known for as long a time as necessary to perform?ltering,and there is no inconsistency in?ltering at periods long compared to the ?nite duration of the recording(if in doubt about this,consider an accelerogram composed of a single cycle of a sine wave;that motion will have a step in displacement,but the accelerogram can be?ltered at arbitrarily long periods by adding zeros as indicated).Only the large-amplitude portions of the waveforms are shown in Figure6to allow better comparison of the waveforms resulting from the?ltering.As expected,the causal?lters produce no precursory ?lter transients,but the waveforms are quite dependent on the?lter corner periods,particularly for the motion recorded at station530.The waveforms from the acausal?lters have just the opposite characteristics,with large precursory transients,but rather similar waveforms.(As a side note,we were accurate in describing the displacements shown in Figure6as being derived from?ltered accelerations,but the process of?ltering and integration is independent of the order in which the operations are performed if adequate pads have been used,and we could equally well have described the displacement time series as resulting from?ltering of a doubly integrated,un?ltered acceleration time series.More brie y,we could refer to this as a‘?ltered displacement time series’.)

Copyright?2003John Wiley&Sons,Ltd.Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA

1737

-0.1-0.05

0.05

Time (sec)

A m p l i t u d e (n o u n i t s )

-0.1

-0.05

0.05

Time (sec)

10-4

0.0010.01

0.11

Period (sec)

A m p l i t u d e

-2

-1.5

-1

-0.50

Period (sec)

P h a s e Figure 5.Results of ?ltering an impulse with amplitude of 256with both causal and acausal ?lters,with corner periods of 200,100,50,and 25sec.Time-domain responses as well as the Fourier amplitude and phase spectra are shown.The time series for the causal ?lters have been shifted to the left,compared to the location of the responses for the acausal ?lters,in order to capture most of the tails of the responses.Note that the time-domain impulse responses shown in the top row are plotted at a greatly expanded scale to show details;the responses are actually dominated by impulses of amplitude 256.The legend for corner periods (T c )shown in the upper left plot is the same for all plots.The plots of the amplitude and phase responses combine both the causal and acausal ?lter responses;the acausal responses are plotted using gray lines.The phase spectra have been corrected for the linear phase due to placing the impulse at a time not equal to 0.0,and the corrected phase spectra have been normalized by dividing by .Note the large phase shifts for the causal ?lters,even for periods away from the corner periods,and the di erence in the phase shifts for the di erent ?lters.In contrast,the

phase shifts for the acausal ?lters are zero.

Copyright ?2003John Wiley &Sons,Ltd.Earthquake Engng Struct.Dyn.2003;32:1729–1748

1738

D.M.BOORE AND S.AKKAR

-505Time (sec)

D i s p l a c e m e n t (c m )

-5

5

Time (sec)

-15

-10-50510D i s p l a c e m e n t (c m )

Causal Filter

-15

-10-50510Acausal Filter

Figure 6.Displacements obtained by integrating accelerograms processed with a series of causal and acausal ?lters for both stations HEC and 530.The left-hand and right-hand columns contain results from records processed using causal and acausal ?lters,respectively.The legend relating the line type to the corner period of the ?lter is the same for all plots.The causal ?lters are 4th order Butterworth ?lters,and the acausal ?lters are produced by passing the time series in opposite directions through two 2nd order Butterworth ?lters (so that the roll-o at long periods is the same for both ?lters).Pre-event zero pads have been added to the accelerations at both stations,although this was necessary only for the acausally ?ltered data.Because of the added pads,the time axis for the causally ?ltered waveforms

have been shifted relative to that shown in Figure 2.

Some insight into the sensitivity of the displacement waveforms to the ?lters can be obtained by considering the apparent period content of the dominant part of the waveforms.From Figure 6,the dominant period for the HEC displacements appears to be less than 10sec,whereas the more pulse-like motion on the 530record has a peak–peak period near 20sec.The Fourier displacement spectra for the un?ltered motions are shown in Figure 7.To emphasize the relative shape,the spectra have been normalized so as to be similar near periods of 1sec.It is

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA

1739

10Period (sec)

N o r m a l i z e d F o u r i e r D i s p l a c e m e n t S p e c t r u m

Figure 7.Fourier displacement for the un?ltered records from stations 530and HEC,normalized to be

similar near a period of 1sec to emphasize the relative shape of the spectra.

clear that the 530record has a relatively large amount of motion near the 25sec corner period used for the ?lter,and therefore the record processed using a 25sec causal ?lter should be quite di erent in shape than when processed using causal ?lters with longer period corners.This is apparent from Figure 6but,to make the case in a di erent way,in Figure 8we compare directly the causal and acausal results for a single corner period in each panel.The acausal displacements are similar in shape for the various ?lter corner periods,but the causally ?ltered displacements show a pronounced change in waveform as the ?lter corner period is decreased.For a very long corner period,the displacement waveform is similar in shape to that obtained from an acausal ?lter (as expected from the nature of the phase response shown earlier),but this similarity degrades rapidly as the ?lter corner period is decreased.The change in shape for the HEC record (easily assessed from Figure 6and not replotted here)is much smaller,because the dominant period of the main part of the motion is less than 10sec;the waveform of the HEC displacement time series changes signi?cantly if smaller corner periods are used (we do not show this here,but applying a 5sec ?lter con?rmed this statement).

EFFECT OF FILTERING ON ELASTIC AND INELASTIC DISPLACEMENT

RESPONSE SPECTRA The elastic and inelastic response spectra corresponding to the ?ltered acceleration time series are shown in Figure 9for station HEC.The left and right columns correspond to causal and acausal ?lters,respectively.The elastic response spectra are given in the ?rst row,and the inelastic response spectra are given in the second row.For both the elastic and the inelastic spectra,there is much less sensitivity to the ?lter corner period for the acausally ?ltered

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

1740

D.M.BOORE AND S.AKKAR

-5

05D i s p l a c e m e n t (c m )

-5

5

-5

05Time (sec)

D i s p l a c e m e n t (c m )

-5

5

Time (sec)

Figure 8.Direct comparison of records from station 530?ltered using acausal and causal ?lters (the same traces are shown in Figure 6,but comparing the results of di erent types of ?ltering rather than

di erent corner periods for the same type of ?lter).

accelerations than for the causally ?ltered motions.For both types of ?lters,the inelastic spectra are more sensitive to the corner periods than are the elastic spectra.These comparisons are better shown by the ratios of spectra (Figure 10).We have used the accelerograms obtained using a ?lter corner of 200sec as the reference.The widths of the lines in Figure 10are proportional to the corner periods of the ?lters.It is important to note that the di erences between the inelastic spectra from causally ?ltered data can exceed a factor of 1.3for periods much smaller than the corner periods used in the ?ltering (the smallest corner period was 25sec)(these excursions are for narrow ranges of periods,however).

The results for station 530are shown in Figures 11and 12,using an identical presentation to that used in Figures 9and 10for station HEC.Here the inelastic responses corresponding

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA

1741

5

10

15

20

0510

1520

25

5%-d a m p e d D i s p l a c e m e n t R e s p o n s e (c m )

HEC:Causal Filters

05

10

15

20

HEC:Acausal Filters

5

10

15

20

0510152025

Period (sec)

5%-d a m p e d D i s p l a

c e m e n t R e s p o n s e (c m )

5

10

15

20

Period (sec)

Figure 9.Elastic and inelastic 5%-damped displacement response spectra for the recordings at station HEC,?ltered using causal and acausal ?lters.The dashed line (for a corner period of 200sec)was the

reference spectra for the ratios shown in the next ?gure.

to the causally ?ltered acceleration time series show much more sensitivity to the ?lter corner periods than they did for station HEC.This is similar to the pattern seen in the shapes of the displacement waveforms,and probably for the same reason:phase distortions produced by the causal ?ltering.To try to gain some understanding of the substantial di erences in inelastic response spectra for causally ?ltered records,even for oscillator periods much less than the ?lter corner periods,we show in Figure 13the relative displacement of a 3sec inelas-tic elastic–perfectly plastic oscillator,with R =3,as a function of time,driven by accelerations ?ltered using causal ?lters with corner periods of 200sec and 25sec.The oscillator response for the 200sec ?lter shows a distinct local shift in the quasi-equilibrium position of the oscil-lator at around 28to 29sec.The oscillator driven by acceleration ?ltered with the 25sec causal

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

1742

D.M.BOORE AND S.AKKAR

05

10

15

20

R a t i o o f S D

HEC:Causal Filters

5

10

15

20

0.7

0.80.911.11.21.3

HEC:Acausal Filters

5

1015

20

Period (sec)

R a t i o o f S D

5

1015

20

0.7

0.80.911.11.21.3

Period (sec)

Figure 10.Ratios of response spectra for station HEC.The legend for the ratios is somewhat cryptic,but it should be clear that ‘R025=200’means that the response spectrum obtained from the acceleration time series ?ltered with a corner period of 25sec was divided by the response spectrum from the

acceleration time series ?ltered with a corner period of 200sec.

?lter also shows a shift in equilibrium position,but the shift is not as large,and the time of the shift is later (around 31to 32sec).It is di cult to predict these di erences in response from the acceleration time series,which are very similar in shape (but su ciently di erent that the velocities and displacements derived from these accelerations are substantially di erent,as also shown in the ?gure).The velocity time series,however,seem to show a correlation with the change in quasi-equilibrium position,with the change occurring at a time near that of the peak pulse in velocity.These peaks,of course,correspond to rapid transitions in the displacement time series from peaks to troughs,and vice versa,and as discussed in the previous section,the nature of the displacement time series is strongly controlled by the phase shifts of the causal ?lters if these shifts are in a period range for which there is energy in the un?ltered motions.

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA

1743

5

10

15

20

5%-d a m p e d D i s p l a c e m e n t R e s p o n s e (c m )

530:Causal Filters

05

10

15

20

530:Acausal Filters

5

10

15

20

Period (sec)

5%-d a m p e d D i s p l a c

e m e n t R e s p o n s e (c m )

5

10

15

20

Period (sec)

Figure 11.Elastic and inelastic 5%-damped displacement response spectra for the recordings at sta-tion 530,?ltered using causal and acausal ?lters.The dashed line (for a corner period of 200sec)

was the reference spectra for the ratios shown in the next ?gure.

So,as for the displacement time series,it perhaps is not unexpected that the inelastic spectra are sensitive to the ?lter corner periods (although we are still surprised that motions of rela-tively short-period oscillators are as sensitive as they are to much longer ?lter corner periods).

RELATIVE ADVANTAGES AND DISADVANTAGES OF CAUSAL AND

ACAUSAL FILTERS

The results from the previous section suggest that ?ltering should always be done using acausal ?lters.These conclusions should be given careful consideration,however,for acausal ?lters do have some disadvantages,primarily related to the pre-event and post-event zero pads

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

1744

D.M.BOORE AND S.AKKAR

05

10

15

20

R a t i o o f S D

530:Causal Filters

05

10

15

20

0.5

1

1.5

2

530:Acausal Filters

5

10

15

20

Period (sec)

R a t i o o f S D

5

10

15

20

0.5

1

1.5

2

Period (sec)

Figure 12.Ratios of response spectra for station 530.The legend for the ratios is somewhat cryptic,but it should be clear that ‘R025=200’means that the response spectrum obtained from the acceleration time series ?ltered with a corner period of 25sec was divided by the response spectrum from the acceleration

time series ?ltered with a corner period of 200sec.

that need to be added to the records before ?ltering [12],and the consequent ?lter transients.This is especially true for records that triggered after the P -wave arrival (as was the case for all of the analog recordings providing most of the pre-1999strong-motion data).In spite of various attempts to taper the end portions of the records before padding,the ?lters can pro-duce large ?lter transients (some processing schemes even use completely arti?cial methods to improve the ‘look’of these waveforms).Often the zero-padded portions of the ?ltered acceler-ations and the velocities and displacements derived from these ?ltered accelerations have been removed from the data provided to the public (this is true of pre-1999data provided by the

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA

1745

-6-4-20246V e l o c i t y (c m /s )

-6-4-20246V e l o c i t y (c m /s )

-10123Time (sec)

D e f o r m a t i o n (c m )

-10123Time (sec)

D e f o r m a t i o n (c m )

-60-40-2002040

60

A c c e l e r a t i o n (c m /s 2)

-60-40-200204060

A c c e l e r a t i o n (c m /s 2)

-505D i s p l a c e m e n t (c m

)

-50

5

D i s p l a c e m e n t (c m )

Figure 13.The time series response of inelastic 3sec elastoplastic oscillator,with R =3,(bottom row)and various representations of the motion from station 530driving the oscillator.The left column and right columns are for records ?ltered with 200sec and 25sec ?lters,respectively.The ?rst,second,and

third rows show acceleration,velocity,and displacement time series.

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

1746

D.M.BOORE AND S.AKKAR

Time (sec)

D i s p l a c e m e n t (c m )

Time (sec)

Figure 14.Displacements obtained by integrating accelerograms from stations 530and HEC processed with an acausal,25sec ter.The black line was obtained from the accelerogram with the leading and trailing pads;the gray line was obtained from the accelerogram obtained by truncating the portion that was padded with leading zeros before ?ltering.The joins of the pads and the original data

are indicated by the short vertical lines.

U.S.Geological Survey,at least since 1984).This procedure saves storage space,and was an important consideration before the advent of inexpensive disk storage.The acceleration,velocity,and displacement time series,however,are then no longer compatible,in the sense that straightforward integration of the acceleration time series will not reproduce the velocity and displacement time series that are provided to the public [17;18].The di erence in dis-placement waveforms is shown in Figure 14.Shown are the waveforms obtained from the padded data,and those obtained by simply stripping o the portion that was padded from the ?ltered accelerations,before double integration (to make the point,a bit more was stripped o of the HEC record because it already had some pre-event samples).It is clear that fur-ther baseline correction or ?ltering would be needed to eliminate the long-term trends in the displacements obtained from the shortened records.This is not to say that the velocity and displacement data provided to the public are erroneous;if the processing was done properly,those velocity and displacement time series were obtained with proper consideration of the zero pads.The only way to provide truly compatible data,however,would be to provide the complete time series used in the processing,including the padded portions (which can be a signi?cant fraction of the overall length of the time series,particularly if ?lters with relatively long corner periods are used).

SUMMARY AND CONCLUSIONS

Using two digital records,of very di erent character,from the 1999Hector Mine,California,earthquake,we found that both the elastic and inelastic response spectra are sensitive to

Copyright ?2003John Wiley &Sons,Ltd.

Earthquake Engng Struct.Dyn.2003;32:1729–1748

EFFECT OF FILTERS ON ELASTIC AND INELASTIC RESPONSE SPECTRA1747 the corner periods used in causal?ltering at periods much shorter than those corner periods. Although not shown here,the same results were found from the analysis of several recordings from other large earthquakes.The e ect is more important for inelastic than for elastic response spectra and seems most important for causally-?ltered records for which the period content of the major part of the un?ltered motion is within several multiplicative factors of the corner periods of the causal?lters.The sensitivity of the results to the?lter corner periods is due to the strong phase distortions associated with causal?https://www.doczj.com/doc/1011913528.html,ers of data obtained using causal?lters should be wary of these e ects.(Recent data from both the USGS and from PEER have been processed using causal?lters,although as a result of our study,the USGS is now using acausal?lters in its processing.)The question of whether to use causal or acausal?lters depends on the intended use of the data,desirability for compatible processed acceleration,velocity,and displacement time series,and considerations of computer storage space.On balance,we think that the advantages of acausal?lters outweigh the disadvantages, especially for digital data with pre-event samples.

ACKNOWLEDGEMENTS

We thank Mark Aschheim for discussions regarding discontinuities in constant ductility spectra.The inelastic spectral calculations were made using program USEE.Reviews by Kent Fogleman and Chris Stephens and two anonymous reviewers signi?cantly improved the paper.The Scienti?c Research and Technical Council of Turkey is acknowledged for providing?nancial support to the second author for his postdoctoral stay at Stanford.

REFERENCES

1.Chopra AK,Lopez OA.Evaluation of simulated ground motions for predicting elastic response of long period

structures and inelastic response of structures.Earthquake Engineering and Structural Dynamics1979;7:383–402.

2.Bommer JJ,Elnashai AS.Displacement spectra for seismic design.Journal of Earthquake Engineering1999;

3:1–32.

3.Tolis SV,Faccioli E.Displacement design spectra.Journal of Earthquake Engineering1999;3:107–125.

4.Chopra AK,Chintanapakdee https://www.doczj.com/doc/1011913528.html,paring response of SDF systems to near-fault and far-fault earthquake

motions in the context of spectral regions.Earthquake Engineering and Structural Dynamics2001;

30:1769–1789.

5.MacRae GA,Morrow DV,Roeder CW.Near-fault ground motion e ects on simple structures.Journal of

Structural Engineering(ASCE)2001;127:996–1004.

6.Chiu H-C.Stable baseline correction of digital strong-motion data.Bulletin of the Seismological Society of

America1997;87:932–944.

7.Boore DM.E ect of baseline corrections on displacements and response spectra for several recordings of the

1999Chi-Chi,Taiwan,earthquake.Bulletin of the Seismological Society of America2001;91:1199–1211. 8.Wang G-Q,Boore DM,Igel H,Zhou X-Y.Some observations on colocated and closely-spaced strong ground

motion records of the1999,Chi-Chi,Taiwan earthquake.Bulletin of the Seismological Society of America 2003;93:674–693.

9.Trifunac MD.Zero baseline correction of strong-motion accelerograms.Bulletin of the Seismological Society

of America1971;61:1201–1211.

10.Trifunac MD,Lee VW.Routine computer processing of strong motion accelerograms.Report No.EERL73-03,

Earthquake Engineering Research Laboratory,California Institute of Technology,Pasadena,1973.

11.Converse AM,Brady AG,Joyner WB.Improvements in strong-motion data processing procedures.Proceedings

of the8th World Conference on Earthquake Engineering,San Francisco,vol.II,1984;143–148.

12.Converse AM,Brady AG.BAP–Basic strong-motion accelerogram processing software,Version1.0.U.S.

Geological Survey Open File Report No.92-296A,Menlo Park,1992.

Copyright?2003John Wiley&Sons,Ltd.Earthquake Engng Struct.Dyn.2003;32:1729–1748

1748 D.M.BOORE AND S.AKKAR

13.Boore DM,Stephens CD,Joyner https://www.doczj.com/doc/1011913528.html,ments on baseline correction of digital strong-motion data:Examples

from the1999Hector Mine,California,earthquake.Bulletin of the Seismological Society of America2002;

92:1543–1560.

14.Lee VW,Trifunac MD.Automatic digitization and processing of accelerograms using PC.Report90-03,

Department of Civil Engineering,University of Southern California,Los Angeles,1990.

15.Inel M,Ascheim MA,Abrams DP.An algorithm for computing isoductile response spectra.Journal of

Earthquake Engineering2002;6:1–16.

16.Ji C,Wald DJ,Helmberger DV.Source description of the1999Hector Mine,California earthquake;Part II:

Complexity of slip history.Bulletin of the Seismological Society of America2002;92:1208–1226.

17.Malhotra PK.Response spectrum of incompatible acceleration,velocity and displacement histories.Earthquake

Engineering and Structural Dynamics2001;30:279–286.

18.Malhotra PK.Author’s reply to discussion by George Mylonakis and Costis Syngros of‘Response spectrum of

incompatible acceleration,velocity and displacement histories’Earthquake Engng Struct.Dyn.2001;30:279–286.Earthquake Engineering and Structural Dynamics2002;31:1033–1035.

Copyright?2003John Wiley&Sons,Ltd.Earthquake Engng Struct.Dyn.2003;32:1729–1748

幼儿园地震应急演练方案

幼儿园地震应急演练方案 一、演练目的 通过地震应急演练,使全园师生掌握应急避震的正确方法,熟悉震后我园紧急疏散的程序和线路,确保在地震来临时,我校地震应急工作能快速、高效、有序地进行,从而最大限度地保护全园师生的生命安全,特别是减少不必要的非震伤害同时通过演练活动培养幼儿听从指挥,团结互助的品德,提高突发公共事件的应急反应能力和自救互救能力。 二、演练安排 1、内容: (1)应急避震演练,紧急疏散 2、对象:全体幼儿和教职工 3、、时间:2018年3月29日上午随时 三、演练准备 教师事先熟悉(各班的逃生路线),下楼梯(方法、顺序、路线),教师活动前向幼儿讲解地震逃生知识。 1、演练前让教师熟悉应急避震的正确方法,分析我园应急避震的环境条件,对幼儿阐述地震应急演练的重要意义,讲明演练的程序、内容、时间和纪律要求,以及各个班级疏散的路线和到达的区域,同时强调演练是预防性、模拟性练习,并非真正的地震应急和疏散,以免发生误解而引发地震谣传。 2、演练前对疏散路线必经之处和到达的“安全地带”进行实地仔细检查,对存在问题即使进行整改,消除障碍和隐患,确保线路畅通和安全。 四、演练要求 1、不要惊慌,听从指挥,服从安排。 2、保持安静,动作敏捷、规范,严禁推拉、冲撞、拥挤。 3、按规定线路疏散,不得串线。

五、组织机构 (1)领导小组: 组长:园长 成员:全体教职工 信号员:副园长 (2)教室室内指导组:各班教师和保育员 1、“地震警报”发出后,指导幼儿进行室内避震,纠正幼儿的不正确动作和姿势。要注意保护自己的眼睛和头部,避免被课桌椅碰伤。 2、“地震警报”解除后,带领幼儿迅速有秩序疏散到指定的“安全地带”:幼儿园操场、户外。 幼儿在撤离过程中特别在楼梯口,千万不能推、挤、拉,以免造成挤压。 3、班级老师要自始自终跟队,密切关注演练现场,维护活动纪律, 整个演习过程应该保持紧张、严肃,不准喧哗、嬉闹。 防止意外发生。 (3)疏散线路沿线工作 1合理调节幼儿疏散的进度,特别是防止过度拥挤造成踩踏事故。 2处理幼儿疏散过程中偶发事件 六、演练程序 1、信号员发出“地震警报” 2、保育老师或上课教师(演练时为班小组长)立即停止授课,转而成为教室演练负责人,立即告知孩子“地震来了,不要慌”,并指挥幼儿迅速蹲在三角位置,用双交叉手护住头放在脖子后面保护头部和颈部,把眼睛闭起来,不要喊叫,

公司地震应急预案(参考范本)

公司地震应急预案 第一条编制目的。进一步加强某某市****公司地震应急工作,确保破坏性地震发生后本单位应急处置工作迅速、高效、有序地进行,最大程度地减少人员伤亡;维护社会稳定,构建和谐社会。 第二条编制依据。根据国家关于地震减灾的要求结合本单位实际情况,制定本地震应急预案(以下简称“预案”)。 第三条指导思想。坚持预防为主、防御与救助相结合的方针,贯彻“统一领导、分级负责,信息畅通、反应及时,加强协作、整体联动”的工作原则,保证各单位及时、准确、有效地实施预防、控制疏散和自救互救等措施,保障全体居民身体健康和生命、财产安全。 第四条适用范围。预案适用于某某市*****有限公司全体职应对处置我省及周边省份破坏性地震或受其他破坏性地震影响,造成人员伤亡和经济损失时的地震应急救援工作。 第五条启动条件。我省及周边省份发生破坏性地震或工作区所在地受其他破坏性地震影响,造成人员伤亡和经济损失时,立即启动本预案。 第六条组织机构及职责。在单位党组织的领导下,成立地震应急工作领导小组,全面负责本单位地震应急工作。领导小组下设办公室、抢险救灾组、医疗救护组、疏散安置组、治安保障组等应急工作机构。某某市*****公司地震应急工作领导小组、各工作组组成及电话见附件。 第七条健全制度。某某市****公司建立健全包括地震应急救援知识宣传、日常值班、灾情报告、应急检查与演练等地震灾害防范和应急处置

各项规章制度,并落到实处,常抓不懈。 第八条明确责任。我公司建立健全应急岗位责任制度,明确应急管理机构、应急处置组织、管理人员以及各级各类人员的震时应急责任。完善各项技术规范和程序,明确人员疏散、报警、指挥以及现场抢险等程序,做到分工明确、责任到人。 第九条应急准备。我公司地震应急工作领导小组坚持预防为主、常备不懈的方针和独立自主、自力更生的原则,认真做好以下地震应急准备工作: (一)明确应急工作领导小组办公地点及通讯方式,在明显的位置张贴使用,并印发给相关部门和应急人员。 (二)定期修订我单位应急预案,并组织指挥部成员学习和熟悉预案,适时组织演练;周密计划和充分准备抗震救灾设备、器材、工具等装备,落实数量,明确到人。 (三)利用已有的宣传阵地和载体宣传防震、避震、自救互救、应急疏散、逃生途径和方法等地震安全知识,并向干部职工发放地震安全知识画册、应急疏散路线图。 (四)制定并让干部职工熟悉应急疏散方案、疏散路线、疏散场地和避难场所。 (五)定期进行训练和演练,熟悉预案,明确职责,负责抢险工具、器材、设备的落实。 (六)制定治安管理措施,加强对重点部门、设施、线路的监控及巡视。

幼儿园防震应急疏散演练活动工作总结

幼儿园防震应急疏散演练活动工作总结 幼儿园是人群相对密集,事故易发地点,为了培养幼儿逃生自救技能,确保幼儿生命安全,我园制订了防震应急疏散演练方案,并在近日举行了防震演练。 一、领导重视,演练活动组织到位。 为了确保演练活动落到实处,我园召开了应急演练会议,部署演练工作。会上,学校领导要求全体成员首先从思想上要引起重视,增强安全意识,在幼儿中进行安全意识教育,抓住这次演练机会,提高应对紧急突发事件的能力。学校领导还着重强调,对于这样的大规模的活动,一定要注意安全,保障措施一定要到位,各年级要层层落实,以确保这次演练活动顺利进行。 二、筹划缜密,演练方案安全可行。 在方案中就演练的时间、地点、内容、对象都作了具体的说明。要求班主任教育学生,听到园长的宣布后,全园师生必须服从指挥,听从命令,立即快速、安全进行疏散,;不得拥挤、推搡,不得重返教室,更不得喧哗、开玩笑;如发现有人摔倒,应将其扶起,帮助一起逃离危险地。要求各小组按照各自的职责,到达规定的位置,完成各自的任务。

三、师生参与,演练效果呈现良好。 在演练期间,校园铃声长鸣,演习活动开始。当信号发出后,全校学生在老师的指挥下,快速有序地向操场疏散,由班主任紧急集中清点人数向校长汇报,校长对演习活动进行简要总结。校长宣布演练活动结束,请各班有秩序地回到教室,要求班主任就本班参加这次演练活动立即进行分析、小结。 各校的演练过程井然有序,达到了预期的效果。本次活动全园师生参加,幼儿从教室撤离到校园操场,演练按预案进行,整个演练过程既紧张、激烈,又有条不紊。这次演练活动是对我园《应急疏散演练方案》的一次检验,不仅再次落实了学校应付突发事件的防范措施,而且也提高了我园实际应对和处置突发事件的能力,更进一步增强师生对突发事故的应急能力,真正掌握在危险中迅速逃生、自救、互救的基本方法,整个演练活动达到了预期目标。

公司地震应急预案

集团公司地震应急预案1 总则 1.1 编制目的 1.2 编制依据 1.3 工作原则 1.4 适用范围 2 应急机构及职责 3 预防预警 3.1 信息监测 3.2 信息报告 3.3 预警发布 4 应急响应 4.1 分级响应标准 4.2 启动应急响应 4.3 应急响应行动 4.4 现场组织指挥 4.5 应急结束 5 后期处置 5.1 善后处置 5.2 保险 6 评估和总结 7 支援保障措施

7.1 通信保障 7.2 现场救援和工程抢险保障7.3 应急队伍保障 7.4 医疗卫生保障 7.5 紧急避难场所保障 8 宣传、培训和演练 8.1 公众信息交流 8.2 培训 8.3 演练 9 奖励与责任 9.1 表彰奖励 9.2 责任处罚 10 预案管理更新 10.1 应急预案更新 10.2 制定与解释部门 10.3 预案实施或生效时间 11 附则 11.1 名词解释 11.2 相关应急预案 11.3 附件

1 总则 1.1 编制目的。 为提高地震应急能力,确保全集团公司在地震发生后,地震应急工作能够迅速、高效、有序地进行,最大限度减轻地震灾害损失,特制定本预案。 1.2 编制依据。 《中华人民共和国突发事件应对法》、《中华人民共和国防震减灾法》、《中华人民共和国铁路法》、《铁路安全管理条例》、《铁路交通事故应急救援和调查处理条例》、《破坏性地震应急条例》、《国家突发公共事件总体应急预案》、《国家地震应急预案》、《铁路技术管理规程》和《铁路地震应急预案》。 1.3 工作原则。 集团公司地震应急工作实行“统一领导,分级负责,紧急处置,搞好结合”的原则。结合自身特点,抗震救灾工作与行车事故抢险、防洪抢险及战备方案等相结合。自救工作要与社会救灾工作相结合,形成抗震救灾的整体合力。 1.4 适用范围。 适用于集团公司遭受地震时的应急处置。 2 应急机构及职责 2.1成立集团公司抗震救灾应急领导小组(以下简称集团公司应急领导小组),组长由集团公司总经理、党委书记担任,常务副组长由分管安全副总经理担任,副组长由其他

幼儿园防震演练方案

幼儿园防震演练方案 Last revision date: 13 December 2020.

幼儿园防震疏散演练方案 一、演练目的 为了使幼儿园教职工和全体幼儿了解地震发生时的应急避震知识,掌握应对地震发生时的防护措施和方法,最大限度地降低地震带来的损失,从而提高大家紧急避险、自救自护和应变的能力。 二、参加演练人员 全体教师、全体幼儿 三、领导机构 幼儿园成立应急演练领导小组,确保演练工作安全有序开展。 组长:杨金玉 副组长:石惠月 成员:各班教师 四、演练步骤 1、让幼儿熟悉应急避震的方法。 2、让幼儿熟悉震后疏散的集中地点和途径的路线。 五、演练安排 1、演练的时间、参加人数: 时间:每周五 人数:全园162名幼儿及15名教师。

2、演练内容 就地避震;安全撤离 3、疏散通道人员安排: 一楼:贺佳丽(东侧拐角)张健(东侧门口)高月(小二班前门)石惠月王静(一楼楼道中间)杨雪莹(西侧拐角)杨金玉(西侧门口)付露露(中一班后门) 二楼:李莉(东侧楼梯)杨亚丽(大二班前门口)罗欢费珍珍(楼道中间)王贵梅(西侧楼梯)杨丽红(中二后门) 院子:鲍小菊 4、警报信号: 地震发生的信号:警报声起,代表发生地震,幼儿进行应急避震。 警报结束,幼儿进行疏散。 六、教师应做到: 1、有幼儿园组织全体教师学习防震减灾知识,观看安全股下发防震视频,让教师明确演练的必要性和基本步骤。 2、由班级为单位,给幼儿讲防震减灾知识,并进行就地避震和安全撤离演练。 3、讲安全方面的要求: 就地避震时,要注意保护好头部和眼睛,以免被桌椅碰伤。

撤离的总体要求是“安全、有序、快速”,首先要保证“安全、有序”。 4、要严肃,要当作是真的地震发生,而不是游戏。 5、及时纠正幼儿不正当的动作。 6、当发生意外事故时,要及时作出处理。 7、集合后及时清点人数。 七、活动形式及地点 预案启动后,幼儿园统一鸣警示信号,听到警示信号后班级教师马上停止一切教学活动,告诉孩子地震警报,并指挥孩子在第一时间蹲到桌子下边或蹲到教室角落。警报声停止后教师用最快的速度组织幼儿安全撤离教室,注意集体安全并关注个别幼儿别掉队。 八、地震发生时的应急避震应做到: 1、要保持镇定,切莫惊慌失措,尽快躲避到安全地点,千万不要匆忙逃离教室。 2、在室内的幼儿,应立即就近躲避,身体采用卧倒或蹲下的方式,使身体尽量小,躲到桌下或墙角,以保护身体被砸,但不要靠近窗口。 3、躲避的姿势:将一个胳膊弯起来保护眼睛不让碎玻璃击中,另一只手用力你抓紧桌腿。在墙角躲避时,把双手交叉放在脖子后面保护自己。 4、卧倒或蹲下时,可以采用以下姿势:连朝鲜,头近墙,两只胳膊在额前相交,右后正握左臂,左手反握右臂,前额枕在壁上,闭上眼睛和嘴,用鼻子呼吸。 5、在院子活动的幼儿,应跑到空旷的地方,要用双手放在头上,防止被砸,要避开建筑物和电线。 6、老师要迅速检查避震的情况,发现有采取不正当措施的,要及时纠正。

企业地震应急预案范本

企业地震应急预案范本 为贯彻落实《中华人民共和国防震减灾法》、《江苏省防震减灾条例》和《盐城市破坏性地震应急预案》,加强我公司防震减灾工作,提高地震应急能力,结合我公司实际,制定本预案。在有关本地区的破坏性地震发生后,或涉及本地区的破坏性地震临震预报发布后,我公司按照本应急预案采取紧急措施。 一、应急组织机构 (一)成立公司防震减灾综合保障中队,下辖纺纱、针服、水电、生活治安四个区队和通信综合、医疗防疫两个组。 中队长:XXX(总经理) 教导员:XXX(党委委员、总经理助理) 副中队长:XXX(办公室主任) XXX(安保部经理) 副教导员:XXX(XX公司总经理) (二)防震减灾综合保障中队的主要职责: 1、接受并落实大丰市抗震救灾指挥部的指示和命令: 2、在临震应急期间,组织、检查、落实临震应急;准备工作: 3、破坏性地震发生后,迅速部署抢险救灾工作,并及时将灾情和救灾工作进展情况报告大丰市抗震救灾指挥部: 4、地震灾情严重时,请求人民政府救援。 (三)各区队、组的组成及主要职责: l、纺纱区队 区队长:XXX(棉纺车间主任) 副区队长: XXX XXX 队员人数:2020 主要职责:在公司中队的统一指挥下,负责棉纺车间区域内的抗震救灾工作,并接受公司中队的人员调派。 2、针服区队 区队长:XXX(XX公司总经理) 副队长:XXX(服装车间主任) XXX(染整车间主任) 队员人数:15名 主要职责:在公司中队的统一指挥下,负责针织、染笋、服装生产区域的抗震救灾工作,并接受公司中队的。人员调派。 3、水电区队 区队长:XXX 队员人数:2020 主要职责:在公司中队的统一指挥下, 负责水电设施的保护和抢修工作,并接受公司中队的人员调派。 4、生活治安区队 区队长:XXX(安保部经理) 副区队长:XXX(供应部经理) XXX XXX 队员人数:15名 主要职责:在公司中队的统一指挥下, 负责食堂、集体宿舍、卫生所、幼儿园、仓库的抗震

幼儿园地震演练方案

幼儿园地震演练方案 一、演练目的 通过地震应急演练,使全体幼儿掌握应急避震的正确方法,熟悉震后我班紧急疏散的程序和线路,确保在地震来临时,我班地震应急工作能快速、高效、有序地进行,从而最大限度地保护全班幼儿的生命安全,特别是减少不必要的非震伤害,同时通过演练活动培养幼儿听从指挥,团结互助的品德,提高突发公共事件的应急反应能力和自救互救能力。 二、演练安排 1.内容:应急避震演练,紧急疏散 2.对象:全班幼儿 3.时间: 三、演练准备 1.演练前让教师熟悉应急避震的正确方法,分析我班应急避震的环境条件,对幼儿阐述地震应急演练的重要意义,讲明演练的程序、内容、时间和纪律要求,以及各个班级疏散的路线和到达的区域,同时强调演练是预防性、模拟性练习,并非真正的地震应急和疏散,以免发生误解而引发地震谣传。 2.演练前对疏散路线必经之处和到达的“安全地带”进行实地仔细检查,对存在问题即使进行整改,消除障碍和隐患,确保线路畅通和安全。 四、演练要求

1.不要惊慌,听从指挥,服从安排。 2.保持安静,动作敏捷、规范,严禁推拉、冲撞、拥挤。 3.按规定线路疏散,不得串线。 五、组织机构 1.领导小组: 组长:贾红霞 成员:张淑萍厚小元 2.教室室内指导组:本班教师和保育员 (1)“地震警报”发出后,指导幼儿进行室内避震,纠正幼儿的不正确动作和姿势。 (2)“地震警报”解除后,带领幼儿迅速有秩序疏散到指定的“安全地带”:幼儿园院子 (3)班级老师要自始自终跟对,密切关注演练现场,维护活动纪律,防止意外发生。 (4)疏散线路沿线工作 ①合理调节幼儿疏散的进度,特别是防止过度拥挤造成踩踏事故。 ②处理幼儿疏散过程中偶发事件 六、演练程序 1.学校信号员发出“地震警报” 2.保育老师或上课教师(演练时为班小组长)立即停止授课,转而成为教室演练负责人,立即告知孩子“地震来了,不要慌”,并指挥

企业地震应急预案范本

仅供参考[整理] 安全管理文书 企业地震应急预案范本 日期:__________________ 单位:__________________ 第1 页共5 页

企业地震应急预案范本 为贯彻落实《中华人民共和国防震减灾法》、《江苏省防震减灾条例》和《盐城市破坏性地震应急预案》,加强我公司防震减灾工作,提高地震应急能力,结合我公司实际,制定本预案。在有关本地区的破坏性地震发生后,或涉及本地区的破坏性地震临震预报发布后,我公司按照本应急预案采取紧急措施。 一、应急组织机构(一)成立公司防震减灾综合保障中队,下辖纺纱、针服、水电、生活治安四个区队和通信综合、医疗防疫两个组。中队长:xx(总经理)教导员:xx(党委委员、总经理助理)副中队长:xx(办公室主任)xx(安保部经理)副教导员:xx(xx公司总经理) (二)防震减灾综合保障中队的主要职责: 1、接受并落实大丰市抗震救灾指挥部的指示和命令: 2、在临震应急期间,组织、检查、落实临震应急;准备工作: 3、破坏性地震发生后,迅速部署抢险救灾工作,并及时将灾情和救灾工作进展情况报告大丰市抗震救灾指挥部: 4、地震灾情严重时,请求人民政府救援。 (三)各区队、组的组成及主要职责:l、纺纱区队区队长:xx(棉纺车间主任)副区队长:xx队员人数:20名主要职责:在公司中队的统一指挥下,负责棉纺车间区域内的抗震救灾工作,并接受公司中队的人员调派。 2、针服区队区队长:xx(xx公司总经理)副队长:xx(服装车间主任)xx(染整车间主任)队员人数:15名主要职责:在公司中队的统一指挥下,负责针织、染笋、服装生产区域的抗震救灾工作,并接受公司中队的。人员调派。 3、水电区队区队长:xx队员人数:20名主要职责:在公司中队的 第 2 页共 5 页

投资估算 设计概算 施工图预算 工程价款结算 竣工决算

工程项目的估算、概算、预算、结算和决算投资控制是工程项目管理的重点和难点,在工程项目的不同阶段,项目投资有估算、概算、预算、结算和决算等不同称唿,这些“算”的依据和作用不同,其准确性也“渐进明细”,一个比一个更真实地反映项目的实际投资。 估算也叫投资估算,发生在项目建议书和可行性研究阶段;估算的依据是项目规划方案(方案设计),对工程项目可能发生的工程费用(含建安工程、室外工程、设备和安装工程等)、工程建设其他费用、预备费用和建设期利息(如果有贷款)进行计算,用于计算项目投资规模和融资方案选择,供项目投资决策部门参考;估算时要注意准确而全面地计算工程建设其他费用,这部分费用地区性和政策性较强。 概算也叫设计概算,发生在初步设计或扩大初步设计阶段;概算需要具备初步设计或扩大初步设计图纸,对项目建设费用计算确定工程造价;编制概算要注意不能漏项、缺项或重复计算,标准要符合定额或规范。 预算也叫施工图预算,发生在施工图设计阶段;预算需要具备施工图纸,汇总项目的人、机、料的预算,确定建安工程造价;编制预算关键是计算工程量、

准确套用预算定额和取费标准。 结算也叫竣工结算,发生在工程竣工验收阶段;结算一般由工程承包商(施工单位)提交,根据项目施工过程中的变更洽商情况,调整施工图预算,确定工程项目最终结算价格;结算的依据是施工承包合同和变更洽商记录(注意各方签字),准确计算暂估价和实际发生额的偏差,对照有关定额标准,计算施工图预算中的漏项和缺项部分的应得工程费用。 决算也叫竣工决算,发生在项目竣工验收后;决算一般由项目法人单位编制或委托编制,汇总计算项目全过程实际发生的总费用;决算在编制竣工决算总表和资产清单时,要注意全面、真实地反映项目实际造价结算和客观地评价项目实际投资效果。

幼儿园防震应急演练方案知识讲解

幼儿园防震应急演练方案 一、演练目地 通过地震应急演练,使幼儿掌握应急避震的正确方法,熟悉震后我园紧急疏散的程序和线路,确保在地震来临时,能快速、高效、有序地进行撤离,从而最大限度地保护全园师生的生命安全。同时通过演练活动培养幼儿听从指挥、团结互助的品德,提高突发公共事件下的应急反应能力和自救互救能力。 二、演练安排 1、内容: (1)应急避震演练 (2)紧急疏散演练 2、对象:在园全体幼儿 3、时间:2013年12月17日10:10分

三、演练准备 1、演练前召开动员大会,让幼儿熟悉应急避震的正确方法,阐述地震应急演练的重要意义,讲明演练的程序、内容、时间和纪律要求,以及疏散的路线和到达的区域,同时强调演练是预防性、模拟性练习,并非真正的地震应急和疏散,以免发生误解而引发地震谣传。 2、演练前对疏散路线必经之处和到达的“安全地带”进行实地仔细检查,对存在问题及时进行整改,消除障碍和隐患,确保线路畅通和安全。 四、演练要求 1、不要惊慌,听从指挥,服从安排。 2、保持安静,动作敏捷、规范,严禁在台阶上推拉、冲撞、拥 挤。 3、按规定线路疏散,不得串线。 五、组织机构

(一)领导小组 职责: ①、“地震警报”发出后,指导学生进行室内避震和纠正学生的不正确动作和姿势。 ②、“地震警报”解除后,带领学生迅速有秩序疏散到指定的“安全地带”: ③、班级老师要自始至终跟队,密切关注演练现场,维护活动纪律,防止意外发生。 六、演练程序 (一)室内应急避震演练 1、信号员发出“地震警报”信号 2、各班级主班老师立即停止授课,转而成为教室演练负责人,立即告知学生“地震来了,不要慌”,并指挥学生迅速抱头、闭眼,

幼儿园应急演练总结-幼儿园地震演练小结

幼儿园应急演练总结-幼儿园地震演练小结 幼儿园地震演练总结篇一:幼儿园地震演练总结范文 为了更好的使全园教师及幼儿了解突发安全事件应急的相关措施,根据教日上月xxx育局会议精神,xx幼儿园在午组织幼儿园全体教师及幼儿进行了一次地震演练。此次演练得到了幼儿园领导的重

视,演练活动组织到位。为了确保演练活动落到实处,幼儿园成立了由园长任并召开领导小组会议,组长的领导小组,部署演练工作。会上,园长要求全体教师首先从思想上要引起 重视,增强安全意识,对幼儿进行安全意识教育,抓住 这次演练机会,提高应对紧急突发事件的能力。同时园长还强调此次活动一定要注意幼儿安全,以确保这次演练活动顺利进行。 在幼儿园演练方案中就演练的时间、路线、内容、对象都作了具体的说明。对这次演练的具体操作程序、疏散要求与注意事项作了一一讲解。

为了确保演练活动按方案顺利进行,进一步明确疏散集合地点、疏散顺序和注意事项,要求教师教育幼儿,听到地震了之后,全园幼儿必须听从教师指挥,立即跟随教师快速、安全进行疏散,不拥挤、不推搡、不害怕,不要重返教室,更不要喧哗;要求各班教师按照各自的职责,到达规定的位置,完成各自的任务。 x月x日上午,当幼儿园一名男教工大喊几声地震了地震了之后,后勤全体人员包括幼儿园的领导按事前 的演练方案各自奔跑到自己协助的 班级,协助各班教师迅速组织幼儿躲到教室最安全的地方,有的幼儿在教

师的协助下躲到了. 桌椅下、有的躲到寝室的床铺下。之后,教师再组织幼儿有秩序的从逃生通道撤离到室外的安全地带,到达安全地带后,各班教师马上清点人数,组织幼儿小手抱头蹲在地上,并立刻向园长汇报情况,园长随后宣布结束演练活动并对此次活动进行简要总结,各班幼儿载教师组织下有秩序地回到教室。 此次演练按预案进行,整个演练过程既紧张、激烈,又有条不紊。这次演练活动是对幼儿园《突发安全事件应急预案》的一次检验,不仅再次落实了幼儿园应付突发事件的防范措

公司地震灾害应急预案

公司地震应急预案 一、总则 (一)编制目的 建立健全突发地震应急救援体系和运行机制,规范应急救援行为,提高应急救援能力,科学、有序,高效地做好地震救援工作,最大程度地减少人员伤亡和经济损失,维护公司稳定。 (二)编制依据 根据《中华人民共和国突发事件应对法》、《中华人民共和国防震减灾法》、《国家地震应急预案》、《云南省防震减灾条例》、《XX省地震应急预案》、《XX州地震应急预案》、《XX县地震应急预案》等法律法规和规范性文件,结合我公司实际,制定本预案。 (三)使用范围 本预案使用于在XX县XX有限公司区域内地震和地质事件的处置和应对工作。 (四)工作原则 地震救援工作坚持“统一领导、协同应对,预防优先、分级负责、属地优先,资源共享、快速反应”的工作原则。地震发生后,灾区生产单位应立即职责分工和相关预案,开展前期处置工作。 二、组织体系

(一)抗震救援指挥部 总指挥长:XX 副总指挥长:XX 成员:XXXXX 在应急救援指挥部下设一个办公室,设在公司安全教育室。在应急处置工作中,指挥部可根据工作需要,对组织机构和职能职责进行调整。 (二)应急救援工作组 应急救援指挥部根据工作需要分设事故现场保卫组(保卫处)、事故抢险救护队(副总工程师、采矿科、技术科和灾区施工单位)、救援物资保障组(采购科、财务处、车队)、事故调查处理组(安全环保处、监察审计室)和联络人。 (三)应急救援应急联络员 指挥部制定一名人员负责本单位防地震具体事务,平时为本单位防地震联络员,负责单位防地震日常工作,发生地震时为指挥部应急工作联络员,负责灾区与指挥部和县相关部门的联络工作。 三、地震与应急响应分级管理 (一)地震事件分级 地震灾害分为特别重大、重大、较大、一般地震险情和地震灾情四级: 1.特别重大地震灾害是指在公司范围内因地震造成死亡300人以上300人(含失踪),或者重大经济损失的地震灾害(Ⅰ级)。

设计概算与施工图预算

设计概算 1概念:筹建到竣工交付全部费用 2、分类:单位工程T单项工程综合T建设工程项目总 3、作用:建设投资依据;建设计划依据;贷款依据;总承包合同依据 4、单位工程设计概算编制方法 (1)单位土建工程 ①概算定额法:初步设计深度足够,建筑结构明确 ②概算指标法:初步设计深度不够,工程量无法准确计算,有相似概算指标 ③类似工程预算法:以上两种方法无法使用 (2 )设备及安装工程 ①预算单价法:有详细设备清单 ②扩大单价法:仅有成套设备的重量 ③概算指标法:以上两种方法均不适用5、单位工程设计概算审核内容 (1)依据:合法性、时效性、适用范围 (2)单位土建工程:量、价、费、定额或指标 (3)设备及安装工程:设备清单、安装费用 施工图预算 1、作用:投标报价依据;施工准备依据;施工成本控制依据 2、编制方法: (1 )单价法: ①定额单价法:准备T量T价T工料分析T费T复核T编制文本 ②清单单价法:全费用和部分费用 (2 )实物量法:准备T量T消耗定额T工料机T费用T复核T编制文本 3、审查内容: (1)是否符合法律规定 2) 工程量是否准确 (3)计价依据和取费标准是否恰当 (4)要素市场价格是否合理 (5)是否超过设计概算 4、审查方法: (1)全面审查法:工程量小、工艺简单工程 (2)标准预算审查法:采用标准图纸工程 (3)分组计算审查法:分组、利用一组数据分析分项工程量 (4)对比审查法:有相同或类似的地方 (5)筛选审查法:高度不同也可以归类,住宅工程和不具备全面审查条件 6)重点审查法:工程量大、造价高工程

爱人者,人恒爱之;敬人者,人恒敬之;宽以济猛,猛以济宽,政是以和。将军额上能跑马,宰相肚里能撑船。 最高贵的复仇是宽容。有时宽容引起的道德震动比惩罚更强烈。 君子贤而能容罢,知而能容愚,博而能容浅,粹而能容杂。 宽容就是忘却,人人都有痛苦,都有伤疤,动辄去揭,便添新创,旧痕新伤难愈合,忘记昨日的是非,忘记别人先前对自己的指责和谩骂,时间是良好的止痛剂,学会忘却,生活才有阳光,才有欢乐。 不要轻易放弃感情,谁都会心疼;不要冲动下做决定,会后悔一生。也许只一句分手,就再也不见;也许只一次主动,就能挽回遗憾。 世界上没有不争吵的感情,只有不肯包容的心灵;生活中没有不会生气的人,只有不知原谅的心。 感情不是游戏,谁也伤不起;人心不是钢铁,谁也疼不起。好缘分,凭的就是真心真意;真感情,要的就是不离不弃。 爱你的人,舍不得伤你;伤你的人,并不爱你。你在别人心里重不重要,自己可以感觉到。所谓华丽的转身,都有旁人看不懂的情深。 人在旅途,肯陪你一程的人很多,能陪你一生的人却很少。谁在默默的等待,谁又从未走远,谁能为你一直都在? 这世上,别指望人人都对你好,对你好的人一辈子也不会遇到几个。人心只有一颗,能放在心上的人毕竟不多;感情就那么一块,心里一直装着你其实是难得。 动了真情,情才会最难割;付出真心,心才会最难舍。 你在谁面前最蠢,就是最爱谁。其实恋爱就这么简单,会让你智商下降,完全变了性格,越来越不果断。 所以啊,不管你有多聪明,多有手段,多富有攻击性,真的爱上人时,就一点也用不上。 这件事情告诉我们。谁在你面前很聪明,很有手段,谁就真的不爱你呀。 遇到你之前,我以为爱是惊天动地,爱是轰轰烈烈抵死缠绵;我以为爱是荡气回肠,爱是热血沸腾幸福满满。 我以为爱是窒息疯狂,爱是炙热的火炭。婚姻生活牵手走过酸甜苦辣温馨与艰难,我开始懂得爱是经得起平淡。

幼儿园地震演练方案

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 幼儿园地震演练方案   一、演练目的 通过地震应急演练,使全园师生掌握应急避震的正确方法,熟悉震后我园紧急疏散的程序和线路,确保在地震来临时,我园地震应急工作能快速、高效、有序地进行,从而最大限度地保护全园师生的生命安全,特别是减少不必要的非震伤害。同时通过演练活动培养幼儿听从指挥、团结互助的品德,提高突发公共事件下的应急反应能力和自 救互救能力。 二、演练安排 1、内容: (1)应急避震演练 (2)紧急疏散演练 2、对象:全体幼儿。 3、时间:2018年6月11日(周五) 上午9:10。 三、演练准备 1、演练前召开动员大会,让教职员工熟悉应急避震的正确方法,分 析我园应急避震的环境条件,阐述地震应急演练的重要意义,讲明演练的程序、内容、时间和纪律要求,以及各个班级疏散的路线和到达 的区域,同时强调演练是预防性、模拟性练习,并非真正的地震应急 1 / 16

和疏散,以免发生误解而引发地震谣传。 2、各班进行一周时间为幼儿教会紧急避震的正确方法,讲明演练的程序、内容、时间和纪律要求,以及各个班级疏散的路线和到达的区域,同时强调演练是预防性、模拟性练习,并非真正的地震应急和疏散,以免发生误解而引发地震谣传。 3、演练前对疏散路线必经之处和到达的安全地带进行实地仔细检查,对存在问题及时进行整改,消除障碍和隐患,确保线路畅通和安全。 四、演练要求 1、不要惊慌,听从指挥,服从安排。 2、保持安静,动作敏捷、规范,严禁推拉、冲撞、拥挤。 3、按规定线路疏散,不得串线。 五、组织机构 (1)领导小组: 组长:赵xx 副组长:梁xx 成员:全体教职员工 信号员:涂xx (2)教室室内指导组 具体安排见疏散演练表 职责: ①、地震警报发出后,指导幼儿进行室内避震,纠正幼儿的不正确动作和姿势。

【演练方案】地震应急演练方案

地震应急演练方案 为了更好地贯彻落实《中华人民共和国防震减灾法》、《破坏性地震应急条例》和《甘肃省防震减灾条例》,决定于20XX年10月底进行一次地震逃生演练活动,演练坚持“安全第一,预防为主”的方针,通过地震应急演练,进一步增强员工的防震减灾意识,掌握应急避震的正确方法,熟悉地震发生时紧急疏散的程序、方式、路线和安全避险区域,培养自我保护、自救互救、团队协作的基本能力,确保在地震来临时地震应急预案能够快速启动,各项工作能够快速、高效、有序地进行,从而最大限度地保护生命安全,减少不必要的非震伤害。根据单位应急演练年度安排。具体实施方案如下: 一、演练时间:具体时间不定,随机组织演练。 二、演练地点:XXXX单位内。 三、演练的内容:地震逃生 四、演练准备阶段 1.进行学习动员。在演练前,综合办做好宣传教育工作,组织学习有关地震、防震、避震、逃生和自救互救等方面的知识与技能,熟悉各种场合下应急避震的正确方法,懂得地震发生后如何自我保护和安全逃生。 2、演练准备。演练前,由综合办制作《地震应急预案演练方案》,提前下发各给各部门进行学习,熟练掌握各自职责。 五、演练过程 根据《地震应急预案演练方案》进行演练,此次演练启动三个程

序。 一、火情报警程序 1、火灾情况 州局(公司)综合楼,2016年4月** 日上午10:30 时左右,机关工作人员正在各自办公室办公。突然,一楼竖井线路着火,火势迅速漫延,几分钟之内,火苗已扑到楼道,并伴有浓烟产生,二楼以上楼道内烟雾弥漫。 2、当时发现火情的现场工作人员张建忠同志立即以移动电话报火警119,同时向安全生产管理者代表XXX同志汇报火势情况,安全生产管理者代表XXXX同志向局长(经理)、应急总指挥XXXX同志报告;同时组织人员疏散,并命令应急救援组,进行现场救援。 3、局长(经理)、应急总指挥XXXX同志立即赶赴起火现场,其他相关领导也先后到达现场。简要了解情况后,以应急救援指挥部总指挥的身份宣布立即启动消防应急预案,并现场指挥。 4、通讯联络组在组长的指挥下联系义务消防队员立即赶赴火灾现场,并在路口接应消防车辆; 二、火警处置程序 1、义务消防队人员在各组组长的指挥下立即行动,并随时评估火势情况,向总指挥报告; 2、应急救援组组长立即组织应急救援组目前在单位的工作人员,利用楼层消防栓和距离最近的灭火器进行灭火作业,并立即关闭电源总闸;

破坏性地震应急预案标准版本

文件编号:RHD-QB-K1335 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 破坏性地震应急预案标 准版本

破坏性地震应急预案标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一总则 1.编制的依据 根据《破坏性地震应急条例》(国务院令第172号)、《国家破坏性地震应急预案》(国办发[1996]54号、《中华人民共和国防震减灾法》(中华人民共和国主席令第九十九号),结合集团公司的实际情况,特编制中国石化集团公司“破坏性地震应急预案”(以下简称:预案)。 2.编制的目的 编制本预案的目的是:加强“破坏性地震的应急工作”(以下简称:应急工作)管理;根据集团公司

机关各部门职责,履行各自的应急工作职能,使集团公司隶属单位的应急工作快速启动,高效有序,最大限度地减轻集团公司隶属单位地震及其次生灾害造成的损失。 同时,利用集团公司现有条件和行业优势,为震后恢复生产和生活秩序创造有利条件。 3.应急工作原则 1)组织原则 集团公司“破坏性地震应急预案”是“国家破坏性地震应急预案”的组成部分,应服从国家主管部门或国务院抗震救灾指挥部的统一领导。集团公司隶属单位也要接受地方政府的具体指挥。坚持局部利益服从全局利益,一般工作服从应急工作的基本原则。 2)协调原则 应急工作既要与集团公司日常行政管理、生产管

理、安全管理、工业卫生管理、消防管理和抗震减灾管理协调一致,又要在应急工作实施过程中具有权威性;既要在应急工作时全面调动集团公司内部各职能部门的力量,分级、分部门负责,又要相互配合,协调一致。 3)重视次生灾害 由于石油化工行业的生产过程易燃、易爆、高温、高压、有毒、污染的特点,决定了地震的次生灾害将比较严重,甚至其危害远远大于地震本身造成的灾害。应急工作充分考虑了这些特点。 4)预案适用范围 本预案适用于集团公司本部和隶属单位所在地发生破坏性地震时的应急工作。本预案涉及集团公司机关各部门,并视震情由集团公司确定参与应急支援的有关单位、动员规模、接受支援的地震灾区。

施工工地地震应急预案

海盛-东方银座 施 工 工 地 地 震 应 急 预 案 编制单位:四川省双龙建筑工程有限公司编制日期:二0一三年四月二十四日

施工工地地震应急预案 一、工程概况 四川海盛房地产有限公司拟建“海盛-东方银座”项目,该工程项目规划建设净用地面积5467.1m2,规划总建筑面积43468m2,建筑主要为1栋26F高层、1栋25F高层,1栋14F小高层、3F商业和地下车库等,高层拟采用框支-剪力墙结构,筏板基础,预计场地整平标高约为523.00m,设2层地下室,总共280户。 二、编制目的 使地震应急能够协调、有序和高效进行,最大程度地减少人员伤亡、减轻经济损失和社会影响。 1.1编制依据 依据《中华人民共和国防震减灾法》、《破坏性地震应急条例》和《国家突发公共事件总体应急预案》制定本预案。 1.2适用范围 本预案适用于我公司城建的工程处置地震灾害事件的应急活动。 地震灾害事件发生后,有关各人员立即自动按照预案实施地震应急,处置本工地地震灾害事件。 三、组织指挥体系及职责 组长:周国成 副组长:杨胜戴俊斌 成员:陈平川、李大云、詹贵全、潘龙

领导小组下设若干工作小组: 1、信息通讯组:负责报警、信息通报、情况报告及各方面的联络沟通。(责任人:第一时间发现地震的任何职工)。 2、警戒保卫组:负责设置警戒区域,维护现场秩序,疏散人员和疏通道路,引导救险车辆。(责任人:李大云)。 3、抢险救灾组:负责人员、财产的抢救和安置。(责任人:全体职工)。 4、医疗救护组:负责对伤亡人员实施抢救治疗和处置。(责任人:潘龙)。 5、物资保障组:负责做好后勤保障工作,保障机动车、药品、物资等抢险救灾物品的供应。(责任人:廖理勇) 6、善后处理组:妥善处理各种善后事宜,恢复正常的教学秩序。(责任人:杨胜)。 领导小组的主要职责是: 1.迅速了解、收集和汇总震情、灾情和地震动态;负责与震区抗震救灾指挥部和市政府有关部门应急机构保持联系;处理其他涉及抗震救灾的有关工作。 2.负责传达、落实中央、省、市、公司领导对抗震救灾工作的指示。提出具体的抗震救灾方案和措施建议。 3.组织协调救灾物资、资金的筹集、安排、调配。 4.负责外援人员的有关接待工作。 5.负责处理市抗震救灾指挥部日常工作,协调指挥部成员单位之

企业地震应急预案

企业地震应急预案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

企业地震应急预案范本为贯彻落实《中华人民共和国防震减灾法》、《江苏省防震减灾条例》和《盐城市破坏性地震应急预案》,加强我公司防震减灾工作,提高地震应急能力,结合我公司实际,制定本预案。在有关本地区的破坏性地震发生后,或涉及本地区的破坏性地震临震预报发布后,我公司按照本应急预案采取紧急措施。 一、应急组织机构 (一)成立公司防震减灾综合保障中队,下辖纺纱、针服、水电、生活治安四个区队和通信综合、医疗防疫两个组。 中队长:XXX(总经理) 教导员:XXX(党委委员、总经理助理) 副中队长:XXX(办公室主任) XXX(安保部经理) 副教导员:XXX(XX公司总经理) (二)防震减灾综合保障中队的主要职责: 1、接受并落实大丰市抗震救灾指挥部的指示和命令: 2、在临震应急期间,组织、检查、落实临震应急;准备工作: 3、破坏性地震发生后,迅速部署抢险救灾工作,并及时将灾情和救灾工作进展情况报告大丰市抗震救灾指挥部: 4、地震灾情严重时,请求人民政府救援。 (三)各区队、组的组成及主要职责: l、纺纱区队 区队长:XXX(棉纺车间主任)

副区队长: XXX XXX 队员人数:20名 主要职责:在公司中队的统一指挥下,负责棉纺车间区域内的抗震救灾工作,并接受公司中队的人员调派。 2、针服区队 区队长:XXX(XX公司总经理) 副队长:XXX(服装车间主任) XXX(染整车间主任) 队员人数:15名 主要职责:在公司中队的统一指挥下,负责针织、染笋、服装生产区域的抗震救灾工作,并接受公司中队的。人员调派。 3、水电区队 区队长:XXX 队员人数:20名 主要职责:在公司中队的统一指挥下,负责水电设施的保护和抢修工作,并接受公司中队的人员调派。 4、生活治安区队 区队长:XXX(安保部经理) 副区队长:XXX(供应部经理) XXX XXX 队员人数:15名

幼儿园地震应急预案 (2)

幼儿园地震应急预案 为了保证发生地震时,幼儿园能快速、有序、安全地应急疏散师生,保护师生得生命安全,最大限度地减轻地震灾害造成得损失,结合幼儿园实际,特制定地震应急预案。 一、应急机构得组成及职责: 幼儿园抗震领导小组: 组长:王秀珍组织实施抗震预案,及时上报灾情;全面 负责地震疏散、安全指挥工作。 副组长:张友柱组织实施地震抢救行动,组织师生安全疏散。 成员:罗丽华熊晨晓吴锦萍熊霞方丽华骆丽红李舟马淑华万菊花 成员主要职责:负责幼儿安全抢救疏散工作,做好家长联系协调各种工作及宣传工作。 抢险救助组:各班班主任 在发生地震时,抢险救助成员第一时间赶到现场,分别至 一、二楼帮助疏散幼儿。 二、应急措施: (一)如发生轻度地震,处理如下: 1、地震时如果幼儿在教室,当班教师教育幼儿不能慌张、哭闹或随意乱跑,要听从教师得指挥,马上组织幼儿有序疏散, 疏散路线如下:

小(1)班、小(2)班:幼儿从侧门跑步到操场。(熊晨晓负责) 中班、大班、学前班:依次按顺序下楼,跑步到大门外。(罗丽华) 2、如发生地震时在室外,立即组织全部幼儿蹲下,并注意避开电线,大树等危险物品。 (二)如发生震动较大破坏性地震,处理如下: 1、如果幼儿在室内,不要试图跑出楼外,因为震动特大,时间来不及。最安全、最有效得方法就是,立即组织幼儿躲到两个承重墙之间最小得房间,如洗手间、厕所等;也可以躲在桌子、柜子等下面以及教室内侧得墙角,并且注意保护好头部;趴下时,头靠墙,使鼻子上方双眼之间凹部枕在横着得双臂上面,闭上眼与嘴,用鼻子呼吸;千万不要去窗下躲避;待地震减轻时,立即按疏散路线将全部幼儿疏散到一楼塑胶操场中间。 2、地震时如果幼儿正在睡觉,要立即叫醒幼儿,在震动激烈时,有序组织幼儿趴在午睡室通道上、躲在桌子下或墙脚下,待震动减轻时立即组织幼儿疏散到一楼操场,疏散路线及要求同上。 3、如果正在室外活动,教师马上将幼儿集中到操场中间空旷场地蹲下,注意避开高大物体或建筑物,视机疏散幼儿到安全地方。 4、如果地震发生后因不能迅速撤离而困于室内、或被建筑物挤压等千万不要惊慌,要就近检查幼儿身体状况,并尽

企业地震应急预案范本

企业地震应急预案范本为贯彻落实《中华人民共和国防震减灾法》、《江苏省防震减灾条例》和《盐城市破坏性地震应急预案》,加强我公司防震减灾工作,提高地震应急能力,结合我公司实际,制定本预案。在有关本地区的破坏性地震发生后,或涉及本地区的破坏性地震临震预报发布后,我公司按照本应急预案采取紧急措施。 一、应急组织机构 (一)成立公司防震减灾综合保障中队,下辖纺纱、针服、水电、生活治安四个区队和通信综合、医疗防疫两个组。 中队长:XXX(总经理) 教导员:XXX(党委委员、总经理助理) 副中队长:XXX(办公室主任) XXX(安保部经理) 副教导员:XXX(XX公司总经理) (二)防震减灾综合保障中队的主要职责: 1、接受并落实大丰市抗震救灾指挥部的指示和命令: 2、在临震应急期间,组织、检查、落实临震应急;准备工作: 3、破坏性地震发生后,迅速部署抢险救灾工作,并及时将灾情和救灾工作进展情况报告大丰市抗震救灾指挥部: 4、地震灾情严重时,请求人民政府救援。 (三)各区队、组的组成及主要职责: l、纺纱区队

区队长:XXX(棉纺车间主任) 副区队长: XXX XXX 队员人数:20名 主要职责:在公司中队的统一指挥下,负责棉纺车间区域内的抗震救灾工作,并接受公司中队的人员调派。 2、针服区队 区队长:XXX(XX公司总经理) 副队长:XXX(服装车间主任) XXX(染整车间主任) 队员人数:15名 主要职责:在公司中队的统一指挥下,负责针织、染笋、服装生产区域的抗震救灾工作,并接受公司中队的。人员调派。 3、水电区队 区队长:XXX 队员人数:20名 主要职责:在公司中队的统一指挥下,负责水电设施的保护和抢修工作,并接受公司中队的人员调派。 4、生活治安区队 区队长:XXX(安保部经理) 副区队长:XXX(供应部经理) XXX XXX 队员人数:15名 主要职责:在公司中队的统一指挥下,负责食堂、集体宿舍、卫生所、幼

相关主题
文本预览
相关文档 最新文档