当前位置:文档之家› 高耸塔桅结构抗风设计研究

高耸塔桅结构抗风设计研究

高耸塔桅结构抗风设计研究
高耸塔桅结构抗风设计研究

高耸塔桅结构抗风设计研究

摘要:本文采用线性过滤器中的自回归模型,模拟节点随机脉动风速时程,运用Matlab编程有效地模拟具有时间相关性、空间相关性的脉动风速时程。针对高耸塔桅结构提出了对脉动风荷载进行适时量化处理的计算方法,使设计更为科学、合理。

关键词:高耸塔桅结构,自回归法,时程分析

一、引言

在结构设计的荷载中,风荷载是重要的设计荷载之一。特别是对于跨越空间大、结构趋于柔性化的结构,如高耸塔桅结构、大跨空间结构,风荷载可能成为控制结构设计的关键因素。设计荷载是原始设计数据,它对结构计算的影响要比采用任何精确计算方法所产生的误差大得多。因此,确定设计荷载要准确,要符合实际,取值小了,固然影响结构安全,但取值大了,不仅造成材料浪费,而且会给设计带来难度,最终导致不合理设计。二、风荷载的特性及计算机模拟

风是由于太阳对地球的不均匀加热,使得空气在具有不同气压的区域间流动而形成的。风作用是不规则的,风压随着风速、风向的紊乱变化而不停的改变。通常把风作用的平均值看成稳定风压,而实际风压是在平均风压上下波动[1]。在风的顺风向时程曲线中,一般包含有平均风和脉动风两部分,平均风是在给定时间间隔内,风力大小、方向不随时间发生改变。脉动风则随时间按随机规律变化,要用随机振动理论来处理[2]。

目前,实测的空间风场曲线记录很少,很难满足工程计算的要求,因此对具有空间相关性的风场进行计算机模拟就显得十分必要,本文采用线性自回归过滤器法模拟风速时程。自回归模型的定义为[3]:任何一个时刻t上的数值vt 可表示为过去p个时刻上数值vt-1,vt-2,…,vt-p的线性组合加上t时刻的白噪声,因此p阶自回归过滤器可用如下方程表示:

式中:Δt为时间步长;N (t)为均值为0、方差为1的正态分布随机数,即白噪声;ψk为自回归参数。

将上式两端分别乘并取数学期望,可得到式(2)。自回归参数ψk可由式(2)解出。

最新土木工程结构

土木工程结构

结构设计毕业设计 题目:某股份责任有限公司 办公楼一 专业:土木工程学号:*** 班级:***级本科姓名:***

2011年*月

目录 第一章工程资料 (3) 第二章结构布置 (3) 第一节框架布置要求 (3) 第二节构件截面尺寸确定 (4) 第三章荷载计算 (5) 第一节面荷载标准值 (5) 第二节线荷载标准值 (6) 第三节风荷载计算 (7) 第四节地震荷载计算 (7) 第四章 PKPM设计 (13) 第一节PMCAD框架计算结果简图 (13) 第二节LTCAD楼梯钢筋计算书 (13) 第五章基础设计 (16) 第一节常用的基础 (16) 第二节基础选型 (17) 第三节基础计算 (17) 附录 (21) 参考文献 (33)

第一章工程资料 按给定的办公楼建筑施工图进行结构设计和施工组织设计。拟建办公楼位于某市市 郊,层楼四层,气象及自然条件如下: 1、主导风向:夏季东南风,冬季东北风; 2、最大基本风压:0.75kN/㎡; 3、温度:最热平均温度290C; 4、相对湿度:最热平均80%; 5、平均年总降水量1300mm。 第二章结构布置 结构布置是结构设计的一个十分重要的步骤,其内容包括:结构体系的选择、框架布置、变形缝设计以及构件截面尺寸的确定等。 本建筑为办公楼,共4层,建筑造型简洁,本着“满足使用要求,受力合理,技术上可行,尽可能达到综合经济技术指标先进”的原则,结合地基环境,综合考虑技术经济条件和建筑艺术的要求,参考以上结构体系的优缺点,本建筑宜使用框架结构体系。 第一节框架布置要求 框架结构是由梁和柱连接而成的。梁柱交接处的框架节点通常为刚接,有时也将部分节点做成铰接或半铰接。柱底一般为固定支座,必要时也设计成铰支座。为利于结构受力,框架梁宜拉通、对直,框架柱宜纵横对齐、上下对称,梁柱轴线宜在同一竖向平面内。 框架结构柱网布置应满足以下要求: (1)满足生产工艺的要求。在多层办公楼设计中,生产工艺的要求是厂房平面设计的主要依据,建筑平面布置主要有内廊式、统间式、大宽式等几种。与此相应,柱网布置方式可以分为内廊式、等跨式、对称不等跨式等几种; (2)满足建筑平面布置的要求。在旅馆、办公楼等民用建筑中,柱网布置应与建筑分隔墙布置相协调,一般常将柱子设在纵横建筑隔墙交叉点上,以尽量减少柱子对建筑使用功能的影响。柱网的尺寸还受梁跨度的限制,梁跨度一般在6~9米之间为宜; (3)满足结构受力合理。多层框架主要承受竖向荷载。柱网布置时,应考虑到结构

大跨度结构的抗风设计

大跨度结构的抗风设计 摘要:大跨度结构设计中风荷载是控制荷载之一。由于其在风荷载和结构特性方面的复杂性,至今还没有建立像高层建筑那样有效的风荷载分析方法。本文回顾总结国内外大跨度结构抗风设计方法,并指出其存在的不足,进一步分析这种结构的破坏形式及有关的抗风措施。 关键字:风荷载,风压分布,风振响应,风洞试验,抗风措施 Abstract: the big span structure design stroke is one of the load load control. For the wind load and structure characteristics of complexity, so far no set up like that effective high-rise building wind load analysis method. This paper reviewed and summarized up big span structure wind design method, and points out the existing problems and further analyses the structure, the destroy form of wind resistance and relevant measures. Key word: wind loading, wind pressure distributions, wind vibration response, wind tunnel test, wind measures 1. 引言 借着2008年北京奥运会和2010年上海世博会的契机,在中国掀起了一股修建大跨度体育馆(场)的热潮,出现了像“鸟巢”、“水立方”等跨度大、建筑新颖、结构复杂的建筑物。DavenPort[1]曾经说过,如果没有风,结构尤其是大型结构的设计将会容易很多,造价也会低很多。这些大跨度结构受力复杂,质量较轻、阻尼较小,处于湍流度高的低矮大气边界层中,其风致动力响应较为明显,很多时候已经不能单纯地依据规范进行设计,特别是这些结构的抗风设计几乎是无据可依。这时,大跨度空间结构的抗风设计成为衡量结构师水平的一个重要标志。 2大跨度结构抗风设计基本方法 建筑结构的抗风研究是个系统工程[2],在大跨度结构的抗风研究中,风工程研究人员的主要任务就是从外形迥异的建筑形式中归纳出结构表面风压分布的规律,解释风压分布的机理,通过结构风致响应的分析获得等效静风荷载。 图2.1结构抗风研究的主要流程

土木工程结构设计

东南大学土木工程结构设计作业 如图所示,预应力混凝土两跨连续梁,截面尺寸b×h = 350mm×900mm,预应力筋线性布置如图所示(二次抛物线),且已知有效预应力为1200kN (沿全长)。(9根直径为15.2mm 低松弛1860级钢绞线)混凝土的弹性模量为MPa E c 4103.25?=,(C40混凝土),抗拉 强度MPa f tk 3=。 (1)若作用60m kN /向下均布荷载(含自重),试计算此时跨中挠度; (2)若均布荷载增加到120m kN /(含自重),此时跨中挠度是否为60m kN /均布荷载下跨中挠度的两倍?如恒载与可变荷载各为60m kN /,梁跨中需要配HRB400钢筋的面积为多少? 单位:mm 100 100 100 10000 10000 1. 预应力梁等效荷载法 由题意,预应力钢筋的轴线为二次抛物线,则有效预加力N Pe 产生一个与均布荷载作用下梁的弯矩图相似的弯矩图。预应力筋的轴线为单波抛物线,则有效预加力N Pe 在单波抛物线内的梁中将产生一个等效的均布荷载q e ,其值:

(1-1) e pn为该抛物线的垂度,即单波抛物线中点到两端点所连成直线的距离,即: (1-2)l为该抛物线在水平线上的投影长度。 对称结构选取单跨梁进行分析,其中,, ,,, ,代入式(1-1)和式(1-2),得: ,。 作用在双跨连续梁上的等效均布荷载如图1-1所示。 p=50.4 KN/m 图1-1:双跨连续梁等效均布荷载图 2.连续梁弯矩 等效荷载q e及恒活荷载q均为作用在双跨连续梁上的均布荷载,计算简图如图2-1所示,根据结构力学相关知识,对称双跨梁在对称荷载作用下,可以等效为一半结构进行分析,约束可以简化为一端简支、一端固定,如图2-2所示,其弯矩、剪力、支座反力及挠度如下

建筑结构抗风设计

体育场网架屋盖结构风振浅析 XXX (学校,南京,210016) 摘要:伴随着的材料科学发展和土木工程施工工艺的进步,新建的体育场看台多用外形美观、结构新颖的大跨度柔性结构方向发展,这不仅满足了结构使用功能的需要,同时也给观众提供了开阔的视野。大跨度网架屋盖结构在风荷载下会受到强大的吸力,并引起柔性屋面的振动。本文简要介绍了大跨结构表面风压分布特征,风致破坏机理和风洞试验在大跨屋盖结构的应用。 关键词:大跨网架屋盖结构;风致破坏;风洞试验 A Brief Analysis of Study on Wind Induced Dynamic Response of Long Span Grid Roof Structures XXX ( College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China) Abstract:Along with the development of science and technology,the stands of stadium are often covered with long—span flexible roof structures with beautiful shapes and new structural systems.It not noly meets the function of use,but also provide the audience with good view.When wind flows around roofs,the airflow will be separated to form a high suction zone,and the flexible roofs will suffer from wind—induced buffeting response.The article made a brief introduction of the issue Key words:Long-span grid structures;wind damage;wind tunnel test 引言 风灾是自然灾害的主要灾种之一,虽然其作用幅度比一般地震荷载小,但其作用频度却比地震荷载高得多。随着结构规模的增加,风荷载变得越来越重要,以至于最后成为结构设计中控制性荷载,近年来,国内外建造了大量的重大工程建筑结构,在这些重大工程的设计中,强风作用下结构的风荷载往往决定着结构的安全性能。典型的实例是大跨度网架屋盖结构,此类结构不断出现在体育场馆、机场、文体活动中心和展览馆等大型公共建筑中。国内著名的大悬挑屋盖体育场有上海虹口足球场、青岛体育中心、上海八万人体育场以及台州体育中心主体育场等,国外实例有意大利罗马体育场、美国亚特兰大奥运会主体育场、加拿大蒙特利尔奥林匹克体育场等。此类建筑造价颇高,作为公共建筑,社会效益显著,多为当地标志性建筑。 此类体育场屋盖具有质量轻、跨度大、柔性大、阻尼小、自振频率低的特点,而且这类结构往往比较低矮,在大气边界层中处于风速变化大、湍流度高的区域,再加上屋顶形状多不规则,绕流和空气动力作用十分复杂,风在体育场内形成了一个大的三维空间的非定常湍流场,体育场内风流动的机理很复杂,所以这种大跨屋盖对风荷载十分敏感。风荷

大跨度屋盖结构

一、桁架 桁架应用极广,适用跨度范围(6—60m)非常大。以受力特点可分为: 平面桁架、立体桁架、空腹桁架。通常所指的桁架全是平面桁架,只在强调其与立体桁架或空腹桁架有所区别时,才称之为平面桁架。文艺复兴时期,改进完善了木桁架,解决了空间屋顶结构的问题;10 世纪工业大发展,因工业、交通建设需要,进一步加大跨度。出现了各种钢屋架采用桁架。 (一)桁架的基本特点 1.平面——外荷与支座反力都作用在全部桁架杆件轴线所在的平面内; 2.几何不变——桁架的杆件按三角形法则构成; 3.铰接——杆件相交的节点,计算按铰接考虑,木杆件的节点非常接近铰 接;钢桁架或钢筋混凝土桁架的节点非铰接、实属于刚架,其杆件除轴向力外,还存在弯矩,会产生应力但很小,依靠节点构造措施能解决,故一般仍按结点铰接考虑; 4,轴向受力——结点既是铰接,故各杆件(弦杆、竖杆、斜杆)均受轴向力,这是 材尽其用的有效途径。 (二)桁架的合理形式 选择桁架形式的出发点是受力合理,能充分发挥材力,以取得良好的经济效益。桁架杆件虽然是轴向受力,但桁架总体仍摆脱不了弯曲的控制,在节点竖向荷载作用下,其上弦受压、下弦受拉,主要抵抗弯矩,而腹杆则主要抵抗剪力。由力分析可以看出,在其他条件相同的情况下,受力最合理,结点构造最简单,用料最经济,自重最轻巧,施工也可行的是多边形或弧形桁架,因其上弦非直线,制作较复杂,仅适用于较大跨度的情况。一般为便于构造与制作,上下弦各采用等截面杆件,其截面按最大内力决定,故内力较小的节问,材料未尽其用;为充分发挥材力,应尽量使弦杆各节点内力值接近。为进一步改进多边形桁架,使其上弦制作方便些,可作成折线形上弦的桁架,其高度变化接近于抛物线,这样适用于中、大跨(l>18m),但其制作

土木工程专业设计

目录 一.工程概况- 1 - 二.设计资料与设计依据- 1 - (一)基本条件- 1 - (二)设计依据- 1 - 三.建筑设计- 1 - (一)办公区- 1 - (二)大厅部分- 2 - 四.结构设计- 2 - (一)结构布置- 2 - (二)荷载计算- 5 - (三)内力分析- 12 - (四)内力组合- 22 - (五)截面设计- 24 - (六)框架部分板配筋计算- 36 - (七)楼梯设计- 39 - (八)檩条设计- 41 - (九)牛腿设计- 42 - (十)柱的吊装验算- 43 - (十一)抗风柱设计- 45 - (十二)基础设计- 47 - 致谢- 54 - 参考文献- 55 -

土木工程专业毕业设计 一.工程概况 本工程为某大学土木馆结构试验室,包括实验大厅与办公楼两部分,总建筑面积5232.49㎡,主要建筑功能为结构试验与办公,设有150kN 中级制A2级桥式吊车。总长48m ,厂房跨度15m ,室内外高差600mm 。 二.设计资料与设计依据 (一)基本条件 1、气象条件 基本风压0.55kN/m 2,基本雪压为0.4 kN/m 2。 2、设计标高 室内设计标高±0.000m,与绝对标高相当,室内外高差0.6m. 3、地质条件 地下水埋深0.3-1.5m ,各土层为:杂填土平均厚度1.36m ,主要成分为碎 石.坡积土;粉质粘土平均厚度1.57m ,含水量28.9%-13.0=w ,比重 2.74-2.7=s G ,重度19.6kN/m -18.8=γ,塑性指数4.185.8-=I p ,液性指数0.69--0.68=I ,承载力标准值为kPa f k 100=;中砂 平均厚度2.7m ,承载力标准值为kPa f k 85=;淤泥质粉土平均厚度7.86m ,塑性指数 9.102.6-=I p ,液性指数2.222.1-=I ,承载力标准值为kPa f k 60=;粘土在地面下13.02m ,塑性指数9.253.10-=I p ,液性指数33.031.0--=I 4、抗震设防 抗震设防烈度为七度,设计基本加速度为0.1g ,属第一组 (二)设计依据 1、建筑结构荷载规范(GB5009-2001) 2、混凝土结构设计规范(GB50010-2002) 3、山东省建筑标准设计-建筑做法说明(DBJT14-2) 4、建筑地基基础设计规范(GB50007-2002) 5、建筑设计防火规范(GBJ16-87) 6、抗震设计规范(GB50011-2001) 三.建筑设计 (一)办公区 1、屋面做法 现浇楼板上铺膨胀珍珠岩保温层(檐口处厚30mm ,2%自檐口向中间找坡, 102水泥砂浆找平层厚20mm ,二毡三油防水层,撒绿豆砂保护。 2、楼面做法 楼板顶面20mm 厚水泥砂浆找平,5mm 厚1:2水泥砂浆加“107”胶水着 色粉面层,楼板底面为15mm 厚纸筋面石灰抹底,涂料两度。 3、墙面做法 墙身为粉煤灰砌块,用M5混合砂浆砌筑,内粉刷为混合砂浆底,纸筋灰面

太阳能路灯抗风设计

2.3.2 抗风设计 在太阳能路灯系统中,结构上一个需要非常重视的问题就是抗风设计。抗风设计主要分为两大块,一为电池组件支架的抗风设计,二为灯杆的抗风设计。下面按以上两块分别做分析。 ⑴太阳能电池组件支架的抗风设计 依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2700Pa。若抗风系数选定为27m/s(相当于十级台风),电池组件承受的风压只有365Pa。所以,组件本身是完全可以承受27m/s的风速而不至于损坏的。所以,设计中关键要考虑的是电池组件支架与灯杆的连接。 在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用螺栓杆固定连接。 ⑵路灯灯杆的抗风设计 路灯的参数如下: 电池板倾角A = 16o 灯杆高度= 5m 设计选取灯杆底部焊缝宽度δ= 4mm 灯杆底部外径= 168mm 如图3,焊缝所在面即灯杆破坏面。灯杆破坏面抵抗矩W 的计

算点P到灯杆受到的电池板作用荷载F作用线的距离为 PQ = [5000+(168+6) /tan16o]×Sin16o = 1545mm =1.545m。所以,风荷载在灯杆破坏面上的作用矩M = F×1.545。 根据27m/s的设计最大允许风速,2×30W的双灯头太阳能路灯电池板的基本荷载为730N。考虑1.3的安全系数, F = 1.3×730= 949N。 所以,M = F×1.545= 949×1.545= 1466N.m。 根据数学推导,圆环形破坏面的抵抗矩W = π× (3r2δ+3rδ2+δ3)。 上式中,r是圆环内径,δ是圆环宽度。 破坏面抵抗矩W = π×(3r2δ+3rδ2+δ3) =π×(3×842×4+ 3×84×42+43)= 88768mm3 =88.768×10-6 m3 风荷载在破坏面上作用矩引起的应力= M/W = 1466/(88.768×10- 6)=16.5×106pa=16.5 Mpa<<215Mpa 其中,215 Mpa是Q235钢的抗弯强度。 所以,设计选取的焊缝宽度满足要求,只要焊接质量能保证,灯杆的抗风是没有问题的。

建筑结构抗风设计

建筑结构抗风设计在如今经济高速发展的同时,建筑的高度也飞速增高,而且建筑体型越来越复杂。高楼引来“风速杀手”。由于高层、超高层建筑鳞次栉比而引发峡谷效应,使城市街道风速加大,以致危及行人和行车安全。这种峡谷效应还表现在某些高楼部分外墙表面因风速过大产生巨大负压,玻璃幕墙或大墙板块会像雪崩一样脱落,高档门窗等也常常会发生突然崩塌、坠落伤人事故。所以,建筑高度的增高和复杂的体型使得建筑结构抗风设计的难度也在不断提高。我们要明白风对建筑的危害机理才能更好地进行抗风设计。风是紊乱的随机现象。风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。 我国是世界上遭受台风灾害最为严重的国家之一,每年因台风灾害造成的经济 损失十分惨重。城市各类建筑物的损坏与倒塌是风灾直接损失的主要组成部分,快速预测和评估城市建筑物遭受风灾后的损伤情况,对城市防灾减灾工作至关重要,也是目前土木工程领域急待解决的一个问题。接下来让我们看一些比较成功的抗风设计的实例。 1974年美国芝加哥建成443m高(加上天线达500m)110层的西尔斯大楼成为当时世界最高的建筑,纽约的世界贸易中心大厦(412m,110层)只能让位,退居第二。大楼由9个标准方形钢筒体(22.9mx22.9m)组成。该结构由SOM设计.建筑师为FazlurKahn。建造到52层减少2个简体.到67层再减少2个简体.到92层再

高层建筑结构的抗风设计

高层建筑结构的抗风设计 【摘要】随着高层建筑高度的增加,结构对风荷载更加敏感,在不少地区,抗风研究和设计已成为控制结构安全性能和使用性能的关键因素。根据建设规模,我国城市建设中占据比例最大的是高层建筑,而高层建筑结构的多变性和复杂性,使得结构设计工作成为建筑施工的重点和难点。面对高层建筑结构设计的相关问题,本文将对高层建筑抗风结构常见结构的问题进行分析。 【关键词】高层,建筑结构,抗风设计 一.前言 随着我国经济的快速发,在建筑方面高层建筑结构与低层建筑结构一样,需要同时承受结构自身自重(及其他荷载)产生的垂直作用和风荷载产生的水平作用,相对于低层建筑结构水平荷载对整个结构受力影响通常较小的状况,在高层建筑结构中水平风荷载会成为高层(超高层)建筑结构设计的受力控制因素。针对我国高层建筑结构的抗风设计进行深入的研究和探讨。 二.高层建筑结构抗风设计中存在的问题 1.设计风压等级的确立 设计风压等级的建立需要考虑多种因素的影响。目前,我国还没有对结构设计风压等级给出明确定义,具体的划分原则和范围界定还需进一步的研究探讨。 2.风振系数的确定 我国目前确定结构风震系数时采用的阻尼比是按已建建筑在微振下所获取的阻尼比实测值确定的,而抗风设计所取的风载是30-100年一遇的大风荷载。此时,结构的振动将不是微小振动,而是有较大位移的振动,而大位移振动与微振的结构阻尼比是不同的,一般前者比后者大;而阻尼比增大,将使风振系数减小。因此目前我国进行高层建筑钢结构抗风设计所取的风振系数可能偏大。 3.风振舒适度的考虑 《高规》中规定重现期为10年的最大加速度限值为:公共建筑0.28m/s2;公寓建筑0.20m/s2。本文认为存在如下有待完善之处:首先,重现期取为10年已不能满足要求。《建筑荷载设计规范》中对一般结构基本风压重现期已规定为50年,且对特殊结构还要进行重现期为100年的舒适度验算;其次,该规定只将民用建筑分为公共建筑和公寓建筑两类,不够具体;再次,将峰值加速度限值仅定为0.28m/s2和0.20m/s2,不够精确。 三.高层建筑的抗风设计

高层建筑结构的抗风设计

高层建筑结构的抗风设计 一、前言 当前,我国高层建筑的高度不断增加,加之全球气候和环境问题,使得高层建筑抗风设计受到人们的广泛关注。 二、高层建筑抗风的研究方法 结构抗风性能研究的主要方法有风洞试验、CFD数值模拟、理论分析和现场实测四种。 1、风洞试验方法 风洞试验,即在大气边界层风洞中用模型试验来模拟实际结构在风的作用下静力和动力效应。常用的风洞试验方法包括刚性模型测压试验、高频动态天平试验、节段模型测力试验、节段模型测振试验和气动弹性模型试验等。刚性模型测压试验也就是按照外形几何相似的原则,以一定缩尺比例制作测压模型进行风洞测压试验。这种试验方法是一种结构表面上的所有压力测点的同步压力测试法,它要求所有测点同步测试,结构响应的计算可以考虑多模态的影响,但较多测点的同步测试需要较好的试验测试设备。 高频动态天平试验得到理想状态下的结构响应,较容易实现,在高层建筑模型的风洞试验中该方法应用较广,但是它只能考虑一阶直线型模态,不能考虑高阶模态影响,一般只能从理论上进行修正或加入一定的假定来弥补试验的不足。节段模型测力试验和节段模型测振试验一般使用刚性或弹性支座模型,通常用于桥梁结构,也可以用于其它细长形状的结构。气动弹性模型试验能够全面考虑结构和气流的相互耦合作用,较为真实地反映结构在大气边界层中的动力响应形式,是进行结构风致响应研究的一种重要手段,但是模型制作和试验都比较复杂。 2、计算流体力学数值模拟的方法 CFD数值模拟,即应用计算流体力学(CFD)技术在计算机上模拟建筑物周围的风压场变化并求解建筑物结构表面的风荷载分布。它拥有直接模拟实际风环境的能力,但是,建筑物位于大气边界层中,气流在大气边界层中的流动状态十分复杂,往往是计算流体力学中最难模拟的内容。同时,钝体建筑物周围流场也十分复杂,它是由撞击、分离、回流、环绕和旋涡等组成的,因此就目前来说,CFD 数值模拟方法还是无法替代风洞试验。

大跨屋盖结构

第3章大跨屋盖结构 3.1结构形式 大跨钢结构按几何形状、组成方法、结构材科及受力特点的不同可分为平面结构体系和空间结构体系两大类。属于平而结构体系的有:梁式结构(平而桁架、空间桁架),平面刚架和拱式结构。属于空间结构体系的有:平板网架结构,网壳结构,大部分悬索结构,斜拉结构,张拉整体纠构等。 平板网架是由杆件按一定规律组成的结构,大多数为高次超静意结构。网架具有多向传力的性能,空间刚度大,整体性好,具有良好的抗震性能,既适用于大跨度建筑,也适用于中小跨度的房屋,能覆盖各种形状的平面。 网壳是由杆件按一定规律组成的曲面结构.分单层及双层两大类。网壳可设计成各种曲面,能充分满足建筑外形及功能方面的要求。网壳结构主要承受压力,稳定问题比较突出。跨度较大时,不能充分利用材料的强度。杆件和节点的几何偏差,曲面偏离等初始缺陷对网壳内力和整体稳定影响较大。 悬索结构为一系列高强度钢索按一定规律组成的一种张力结构。不同的支承结构形式和钢索布置可适用各种平面形状和建筑造型的要求。钢索承受拉力,能充分利用钢材强度,因而悬索结构自重轻,可以较经济地跨越很大跨度。悬索屋盖为柔性结构体系,设计时应注意采取有效措施保证屋盖结构在风,地震作用下有足够的刚度和稳定性。 3.2网架的形式 网架按弦杆层数不同可分为双层网架和三层网架。双层网架是出上弦、下弦和腹杆组成的空间结构(图3-1),是最常用的网架形式。三层网架是由上弦、中弦、下弦、上腹杆和下腹杆组成的空间结构(图3-2),其特点是增加网架高度,减小弦杆内力,减小网格尺寸和腹杆长度。当网架跨度较大时,三层网架用钢量比双层网架用钢量省。但由于节点和杆件数量增多,尤其是中层节点所连杆件较多,使构造复杂,造价有所提高。 3.2.1 网架结构的几何不变性分析 网架为一空间铰接杆系结构,杆件布置必须保证不出现结构几何可变性。 网架结构几何不变的必要条件是: m W J =r - 3≤ - 式中J——网架的节点数; m——网架的杆件数; r——支座约束链杆数,r≥6。 当0 W>网架为几何可变体系; W=网架无多余杆件,如杆件布置合理,为静定结构; W<网架有多余杆件,如杆件布置合理,为超静定结构。 网架结构几何不变的充分条件一般可通过对结构的总刚度矩阵进行检查来判断。满足下来条件之一者,该网架结构为几何可变体系: (1)引入边界条件后,总刚度矩阵[]K中对角线上出现零元素,则与之对应的节点为几何可变; (2)引入边界条件后,总刚度矩阵0 K=,该矩阵奇异,结构为几何可变。 3.2.2 双层网架的常用形式

结构抗风抗震感想

结构抗风抗震感想 结构抗风抗震是个庞大的学科,但最主要的是桥梁抗风与抗震,桥梁抗风抗震无论是在中国还是在国外,都有着一定的发展历史,长期的发展历程。整个世界每天都在改变,而桥梁抗风抗震也随科学的进步而发展。力学的发现,材料的更新,不断有更多的科学技术引入桥梁中。以前只能建在小的地方的桥,现在不仅可以建各种类型的大跨度桥,更要追求美观,不同的思想,不同的科学,推动了桥梁抗风抗震的发展,使其更加完美的融入结构抗风抗震中。 结构抗风抗震也是一门古老的学科,它已经取得了巨大的成就,未来的桥梁抗风抗震将在人们的桥梁建设生活中占据更重要的地位。这是一门需要心平气和和极大的耐心和细心的专业。因为成千上万,甚至几十万根线条要把桥梁的每一处结构清楚的反映出来。没有一个平和的心态,做什么事情都只是浮在表面上,对任何一座桥梁的结构,对要从事的事业便不可能有一个清晰、准确和深刻的认识,这自然是不行的。从事这个行业,可能没有挑灯夜战的勇气,没有不达目的不罢休的精神,只会被同行所淘汰。这是一个需要责任感和爱心的行业。要有一颗负责的心——我一人之命在我手,千万人之命在我手。既然选择了桥梁抗风抗震建设,就应该踏踏实实的肩负起这个责任。这更是一个不断追求完美的行业。金字塔,壮观吧;长城,雄伟吧......但如果没有一代又一代人的不断追求,今天的我们或许还用那种最古老的办法来造这同样的桥梁建筑。设计一座桥梁的结构是很繁,但是这都是经历了数个世纪的涤荡,经过不断的积累,不断改良,不断创新所得到的。而且这样的追求,绝不局限于过去。试想,如果设计一座桥梁能够像计算一加一等于二一样简单而易于掌握,那何了而不为呢?因此,桥梁抗风抗震大师总是在不断的求索中。一个最简单的结构,最少的耗费,最大的功用。选择研究桥梁抗风抗震,选择了一条踏实勤奋,不断创新,追求完美的道路。随着人们生活的水平的不断提高,人们对自己所处的地球空间已经不仅仅单纯从数量上提出更高的要求,而且从速度上也提了更高的要求,要求快速,有一定抗风险能力。这就需要对桥梁进行必要的加固。如果说桥梁主体工程构成了桥梁的骨架,那么装饰后的桥梁抗风减震则成了有血有肉的有机体,最终以丰富的,完善的面貌出现在人们的面前,最佳的桥梁抗风抗震应该充分体现各种材料的有关特性,结合现有的施工技术,最有效的手法,来达到构思所要表达的效果。桥梁设

(完整版)土木工程结构设计开题报告

南京工程学院 毕业设计开题报告 课题名称:南京公寓住宅楼设计 学生姓名:史精 指导教师:何培玲 所在系部:建筑工程学院 专业名称:土木工程 南京工程学院 2013年3月4日

1.根据南京工程学院《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、教研室审查,系教学主任批准后实施。 2.开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。 3.毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000 字,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5.开题报告检查原则上在第2?4周完成,各系完成毕业设计开 题检查后,应写一份开题情况总结报告。

课题名称 南京公寓住宅楼设计 本工程总建筑面积约为3000平方米左右,总占地面积为400平方米 左右。层数约为6层。主要立面临街。采用框架结构。主要用房:客厅, 卫生间,卧室,厨房,阳台,书房等。底层层高大约2.48m ,标准层2.9m , 底层是储藏间和车库。一栋住宅楼分为两个单元,每个单元每层两户住 房,在单元中间设置楼梯。屋面为上人屋面。顶层以上设置阁楼。 参考密度:30%-50%、参考容积:1-2、绿化率:25%以上 依据: 所学教材:房屋建筑学,建筑制图,混凝土结构,材料力学,结构 力学,施工技术与组织管理,土力学,基础工程,建筑抗震设计等; 图集:建筑制图标准等; 国家现行有关规范和标准:混凝土结构设计规范,建筑结构何在规 范,高层建筑混凝土结构技术规程,建筑抗震设计规范,建筑制图标准 等,建筑防火设计,建筑防火规范,建筑工程标准荷载学; 其他:多高层框架结构,高等学校建筑工程专业毕业设计指导、公 寓住宅楼建筑设计规范等。 设计内容 (1) 建筑方案设计。 1 ?总平面设计:合理布置建筑主、次入口;尽可能考虑室外停车; 满足建 筑物防火间距及消防通道要求。 2. 平面设计:合理确定平面柱网尺寸;布置房间;确定楼梯数量、 位置及 形式;满足室内采光、通风要求。 3. 剖面设计:确定合理层高;给出楼(地)面、屋面、墙身工程做 法。 4. 立面设计:建筑风格、造型应富有创意,有时代感。 (2) 建筑施工图设计。 建筑施工图就是建筑工程上所用的,一种能够十分准确地表达出建筑 物的 外形轮廓、大小尺寸、结构构造和材料做法的图样。它是房屋建筑 施工的依 据。建筑施工图的组成部分:建筑平面、建筑立面和建筑剖面。 (3) 建筑结构设计与计算。 以建筑施工图为依据,确定结构平面、竖向布置方案;初定结构构件尺 寸及材料; 选定结构计算简图;进行竖向荷载统计,地震作用计算;风 荷载计算;完成选定 一榀框架的内力计算及内力组合;进行楼盖和屋盖 结构设计;结构零星构件(阳 台、雨篷、挑檐等)设计;楼梯设计;基 础设计等。 (4)绘制结构施工图。结构施工图是关于承重构件的布置 ,使用的材形 状,大小.及内部构造的工程图样,是承重构件以及其他受力构件施 工的依学生姓名 指导教师姓名 课题来源 史精 何培玲 自拟课题 240095330 专业 教授 所在系部 课题性质 土木工程 建筑工程 工程设计 毕业设计的内 容和意义

土木工程结构设计

结 构 设 计 毕 业 设 计 2011年*月 题 目: 某股份责任有限公司 办公楼一 专 业: 土木工程 学 号: *** 班 级: ***级本科 姓 名: ***

目录 第一章工程资料 (3) 第二章结构布置 (3) 第一节框架布置要求 (3) 第二节构件截面尺寸确定 (4) 第三章荷载计算 (5) 第一节面荷载标准值 (5) 第二节线荷载标准值 (5) 第三节风荷载计算 (7) 第四节地震荷载计算 (7) 第四章PKPM设计 (13) 第一节PMCAD框架计算结果简图 (13) 第二节LTCAD楼梯钢筋计算书 (13) 第五章基础设计 (16) 第一节常用的基础 (17) 第二节基础选型 (17) 第三节基础计算 (17) 附录 (22) 参考文献 (33)

第一章工程资料 按给定的办公楼建筑施工图进行结构设计和施工组织设计。拟建办公楼位于某市市郊,层楼四层,气象及自然条件如下: 1、主导风向:夏季东南风,冬季东北风; 2、最大基本风压:0.75kN/㎡; 3、温度:最热平均温度290C; 4、相对湿度:最热平均80%; 5、平均年总降水量1300mm。 第二章结构布置 结构布置是结构设计的一个十分重要的步骤,其内容包括:结构体系的选择、框架布置、变形缝设计以及构件截面尺寸的确定等。 本建筑为办公楼,共4层,建筑造型简洁,本着“满足使用要求,受力合理,技术上可行,尽可能达到综合经济技术指标先进”的原则,结合地基环境,综合考虑技术经济条件和建筑艺术的要求,参考以上结构体系的优缺点,本建筑宜使用框架结构体系。 第一节框架布置要求 框架结构是由梁和柱连接而成的。梁柱交接处的框架节点通常为刚接,有时也将部分节点做成铰接或半铰接。柱底一般为固定支座,必要时也设计成铰支座。为利于结构受力,框架梁宜拉通、对直,框架柱宜纵横对齐、上下对称,梁柱轴线宜在同一竖向平面内。 框架结构柱网布置应满足以下要求: (1)满足生产工艺的要求。在多层办公楼设计中,生产工艺的要求是厂房平面设计的主要依据,建筑平面布置主要有内廊式、统间式、大宽式等几种。与此相应,柱网布置方式可以分为内廊式、等跨式、对称不等跨式等几种; (2)满足建筑平面布置的要求。在旅馆、办公楼等民用建筑中,柱网布置应与建筑分隔墙布置相协调,一般常将柱子设在纵横建筑隔墙交叉点上,以尽量减少柱子对建筑使用功能的影响。柱网的尺寸还受梁跨度的限制,梁跨度一般在6~9米之间为宜; (3)满足结构受力合理。多层框架主要承受竖向荷载。柱网布置时,应考虑到结构在竖向荷载作用下内力分布均匀合理,各构件材料强度均能充分利用; (4)柱网布置应满足方便施工。建筑设计及结构布置时应该考虑到施工方便,以加快施工进度,降低工程造价。承重框架的布置:一般情况下柱在两个方向均应由梁拉结,亦即沿房屋纵横方向均应布置梁系。按楼面竖向荷载传递路线的不同,承重框架的布置方

大跨度结构分析1

大跨度结构分析 摘要:现阶段,随着社会生活和科技的发展需要,人们需要更大的覆盖空间,而其他结构形式受到跨度的限制,工程师们倾向于选择大跨度结构,于是大跨度空间结构得到了快速的发展。大跨度结构花样百出,但是最基本的结构形式有桁架结构、拱结构、网架结构、网壳结构、悬索结构、膜结构等。 关键词:大跨度结构、建筑、应用 横向跨越30米以上空间的各类结构形式的建筑。大跨度结构多用于民用建筑中的影剧院、体育馆、展览馆、大会堂、航空港候机大厅及其他大型公共建筑工业建筑中的大跨度厂房、飞机装配车间和大型仓库等。 古代罗马已有大跨度拱顶见古罗马建筑。近代大跨度结构建筑至19世纪末已有较大成就。如1889年巴黎世界博览会的机械馆,是用三铰拱式的钢结构,跨度达115米。20世纪初,金属材料的进步和钢筋混凝土技术的发展促使大跨度建筑出现很多新的结构形式。如19121913年在波兰布雷斯劳建成的百年大厅采用钢筋混凝土穹窿顶,直径达65米,覆盖面积5300平方米。第二次世界大战后大跨度建筑又有新的发展以欧洲国家、美国和墨西哥发展最快。这个时期的大跨度建筑广泛地应用各种高强轻质材料如合金钢、特种玻璃和化学合成材料减轻了大跨度结构的自重使新颖的空间结构不断出现覆盖面积日益扩大。 结构类型有桁架结构、拱结构、网架结构、薄壳结构、网壳结构等。 1.桁架结构 桁架结构是指由若干直杆在其两端用铰连接而成的结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构中各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 2.拱结构 拱结构是一种主要承受轴向压力并由两端推力维持平衡的曲线或折线形构件。 拱结构比桁架结构具有更大的力学优点,因为桁架结构从整体上看毕竟还相当于一个受弯构件,而拱结构的受力状态则发生了与梁根本不同的受力改变,梁以其与外荷载垂直的直杆来抗衡外荷载,并借受弯把力传给支座,而拱借其凸向外荷载的曲杆来抗衡外荷载。 拱结构主要产生轴向压力。 按结构支撑方式分类,拱可分为三铰拱、两铰拱和无铰拱3种,如图所示。三铰拱为静定结构,较少采用;两铰拱和无铰拱为超静定结构,目前较为常用。拱结构的支座会产生水平推力,跨度大时这个力不小,要对付这个水平推力是一件麻烦而又耗费材料的事。鉴于这个缺点,在实际工程应用中,桁架结构比拱结构用得更普遍。 3.单层刚架和排架结构 刚架结构通常是指由直线杆件通过刚性节点连接起来的结构。当梁与柱之间为铰接的单层结构,一般称为排架;多层多跨的刚架结构则常称为框架。

建筑物抗风设计措施

建筑物抗风设计措施 毕永丽孙科源 摘要:既有建筑结构由于先天设计不足(风荷栽估计不够、结构抗风构造不合理)已经结构的老化、年久失修等原因,使得结构的抗风能力不足,留下结构抗风安全隐患。鉴于此,本文对建筑物抗风设计措施进行了探讨。 关键词:建筑抗风设计措施 我国拥有400多亿m3的城镇建筑物,由于过去许多建筑结构的对风荷载估计不足、结构抗风构造不合理以及结构的老化、年久失修等原因,致使大量的建筑结构物在大风中倒塌或损坏,造成巨大的经济损失。 1、房屋抗风设计措施 (1)房屋选址:应根据村镇规划,合理选址,选择抗风有利地段,应尽量避开风口、山口、河口等抗风不利地段。(2)优先选择四坡屋面!或采用现浇钢筋混凝土屋面,并对几何突变部位采取局部加强措施。对于低层房屋常用的坡屋面,四坡屋面总的来说要比普通人字形屋面具有更好的抗风性能,因此应优先选择四坡屋面,且应尽量采用现浇钢筋混凝土平

屋面或坡屋面,最小混凝土板厚不宜小于90mm,砖房应在屋盖及每层楼盖处设置现浇混凝土圈梁,同时在外墙四角、内外墙交接处均应设置钢筋混凝上构造柱。对于处于经常受台风影响的村镇,采用小青瓦屋面的,应采用重物加压、用混凝土或砂浆砌筑等加固、加强措施,避免由于屋面吸力过大而被刮走。尤其在屋檐、屋脊、边缘和屋脊等几何突变部位,为了避免由于流动分离造成破坏,应采取恰当的局部加强措施。(3对于屋面结构,计算风压时应考虑上下表面风压值的叠加。对于开敞式屋面结构,上下表面都受到风的作用,在设计时需要考虑屋盖上下表面的风压差,即净风压。一般来说,屋面上表面常受负风压,而下表面受正风压,净风压应大于土表面风压,所以只考虑上表面负风压的设计偏于不安全。内外压力共同作用对于几悬臂屋檐最为明显,屋檐上表面因流动分离而产生负压,下表面由上风被墙体阻挡而淤塞在屋檐下产生正压,净风压为两者绝对值之和,因而屋檐较易受破坏。建议屋面风荷载设计宜分别按屋面结构,上、下表面的最不利风荷载进行设计。(4)注意地面粗糙度的类别选择,近海地区的地面粗糙度取A类。对檐口、雨蓬、遮阳板等应进行抗上浮验算,计算上浮的局部风压体型系数取2.0。女儿墙应按围护结构进行抗风计算,风压体型系数取L3,阵风系数取l.9。同时,对女儿墙应采取构造措施,如选择合理的宽度和高度,设置构造柱,进行合理的压顶配筋等。

风灾及抗风设计

风灾及抗风设计 徐聪聪 2014092238 摘要: 本文主要讨论自然界的风灾害及工程抗风设计,首先列举了几种常见的风灾,并对它们的形成原因和主要特点作了阐述,并举了几个风灾的实例,然后初步讨论工程抗风设计,着重阐述了抗风设计需要考虑的几项因素,最后综合这几项因素,给出了规范内的风压标准值计算公式,强调设计结构要满足强度,刚度设计要求,一些特定的结构,还有特定的设计要求。 关键词:风灾,抗风设计 Wind calamities and wind resistant design XUcongcong 2014092238 Abstract This paper mainly discusses the wind natural calamities and wind engineering design,it first enumerated several kinds of common disaster and the cause of formation ,then it describes their main characteristics and lists several examples of disaster.Afterwards,it briefly discusses wind engineering design, focusing on several factors needed to be considered in the wind resistant design, finally combining the factors,it gives the calculation formula of pressure values within the specification standard, and emphasize the design structure meet the strength, stiffness design requirements. somes pecific structure should also meet some specific design requirements.. keywords:wind calamities,wind resistant 引言 自然界的风,当风力和风速超过一定的限度时,会对人或建筑物造成伤害,这样的灾害叫作风灾。常见的风灾有热带气旋灾害,龙卷风,沙尘暴等。下面我们依次来介绍这些灾害的形成原因和主要特点。 一.风灾的类型 (1)热带气旋灾害 热带气旋按其中心附近最大风速划分 为6个等级,分别是热带低压,热带风暴,

超高层建筑结构抗风性能研究

超高层建筑结构抗风性能研究 发表时间:2018-11-27T11:18:27.293Z 来源:《建筑学研究前沿》2018年第21期作者:白旭涛1 袁王辉2 李超然3 [导读] 在结构设计中我们需要考虑高层建筑与多层建筑的区别,且高层建筑由于整体高度,结构内部受力情况也更加复杂。对于高层建筑而言,风荷载引起的效应在总荷载效应中所占的比重比较大,所以要做好高层建筑结构抗风设计工作,提高建筑结构的科学性和合理性,从而为人们提供一个舒适的居住环境,以此促进高层建筑的发展和进步。 白旭涛1 袁王辉2 李超然3中国启源工程设计研究院有限公司陕西省西安市 710018摘要:高层建筑数量的不断增加更加充分利用土地资源,在结构设计中我们需要考虑高层建筑与多层建筑的区别,且高层建筑由于整体高度,结构内部受力情况也更加复杂。对于高层建筑而言,风荷载引起的效应在总荷载效应中所占的比重比较大,所以要做好高层建筑结构抗风设计工作,提高建筑结构的科学性和合理性,从而为人们提供一个舒适的居住环境,以此促进高层建筑的发展和进步。 关键词:超高层;建筑结构;抗风;性能 1高层建筑结构抗风设计理论高层建筑一般具备较大的高宽比,同时其抗侧刚度较小;并且地震作用和风荷载都是其主要承担的水平荷载。相比较地震作用,风荷载出现的频率比较高。所以,在高层建筑结构中,主要设计的荷载是风荷载。 1.1基于性能的结构抗风设计理论 基于性能的结构抗风设计理论,主要目标是在不一样强度水平风振的影响下,对建筑结构的安全和舒适度进行有效的控制,从而确定不同性能水准,确保在整个生命周期内的建筑物,在承担可能会出现的风振作用下,其总体成本费用是最小的。 1.2结构风振性能水准 1. 2.1风振系数 作为我国目前使用得荷载规范的一个重要系数,风振系数对风载值的作用比较大。 1.2.2人体舒适度 在侧向力的影响下,高层建筑会出现振动的情况,如果振动处于某一个限值时,人们会产生不舒服的感觉。人体得舒服度可以分为六个不同的等级,分别是无振感、轻微振感、中等振感、烦恼和非常烦恼以及无法忍受。 1.2.3结构风振性能水准 性能水准,主要是指所设计的建筑物,在可能会遭受的特定风作用下,所明确的最大容许舒服度,或者所容许的最大破坏度。主要是从舒适度和变形两个方面确定性能水准的指标。 1.3结构性能目标 性能目标,主要指的是所设计的建筑物,在设计风压等级的需求下,满足性能水准的总和。结构性能目标,要综合考虑建筑物的使用要求、功能要求的重要性等等要素。 1.4结构抗风计算 1.4.1理论计算 在计算分析的工作中:①要充分的考量结构的线性,同时要充分的考量非线性恢复力特性,从而完成模型分析工作;②选择科学的计算方法,计算模拟风场,同时分析风振的动力时程;③按照不一样的性能目标,选择有效的分析方法;④推广实用性较强和容易掌握的计算方法,降低计算量,重视前后处理软件程序的开发和利用工作。 1.4.2风洞试验 风洞试验的主要目标,是对大气边界层风对建筑物产生的作用进行测量。高楼会导致比较强的地面风,对地面的破坏作用也比较大;如果高层建筑集聚在一起,群体效应会危害建筑物和建筑物之间的通道,上述情况都可以利用风洞试验完成分析工作。 2提高超高层建筑稳定性的相关方法超高层建筑会有正常的摆动,顶层会有一个自动配重的装置,主要用于预防地震。这个配重装置的学名叫做风阻尼器(tunedmassdump-er)。这是一个几百吨重的悬挂在楼顶部的大铁球,它调整了房屋的共振频率,使房屋在强风,地震情况下减少震动幅度,调整振动频率避免共振。房屋在大风中引起的晃动,包括建造过程中,是主要靠地基来保证建筑的整体完整性的。超大型建筑的保险系数是很高的,比一般小高层之类的要稳得多。另外在结构较高时,风阻尼器的安装,会减少震动幅度,也是为了减少人在内部活动的眩晕感,对于建造好的建筑结构如何做抗震与抗风设计的。建造过程中,并不是抗震的最不利状态。所以在设计过程中,有一个原则或者方法:对最不利状态进行设计。所谓最不利,就是各种情况下,对结构物危害最大的情况。一个结构物,受力状态多种多样,设计者不可能对每一个状态都进行计算,只能选择最不利的状况进行设计计算。最不利状况没有问题了,那么其他状况也就自然满足。值得指出的是,与最优化问题类似,通常也没法找到最不利(对应全局最优)的状况,只能找到若干个次不利(对应局部最优)的状况,以此作为依据进行结构稳定设计。回到这个问题本身,在建造过程中,如果将施工辅助设施牢固的固定在建筑物上,这时候如果发生地震,似乎并不是结构的最不利状况。因为地震荷载与几个因素有关,结构物的质量,结构物的刚度,结构物的高度。在建筑物达到最高处,建造完毕时,此时结构物的质量最大,刚度最小,高度最高。这时候,似乎才是结构物的最不利状况。这时候,抗震性能满足要求,那么建造过程中的抗震性能就自然满足了。 3高层建筑结构抗风措施 3.1横向风控制 高层建筑具有高而柔的特点,其一阶自振频率往往与风荷载峰值频率比较接近,在风荷载作用下很容易产生强烈的共振效应,导致结构响应放大。从横风向风力形成以及横风向响应的特点来看,控制横风向风致响应可以采用气动措施和结构措施。气动措施包括:减小横风向风力和改变建筑周边漩涡脱落频率,改变横风向风力功率分布;结构措施包括改变结构刚度或改变结构阻尼。 3.1.1气动措施

相关主题
文本预览
相关文档 最新文档