当前位置:文档之家› 我的 三相异步电动机星三角启动论文

我的 三相异步电动机星三角启动论文

我的   三相异步电动机星三角启动论文
我的   三相异步电动机星三角启动论文

江西农业工程职业学院

毕业论文(设计)

三相异步电动机星三角启动

学生刘观音

指导教师陈冬生

专业机电一体化

层次大学专科

班级 09大专机电2班

学号 A0911225

日期 2012.4.12

江西农业工程职业学院科研处制

目录

摘要 (1)

第一章三相异步电机存在的缺点 (2)

1.1笼型感应电动机存在的主要缺点 (2)

1.2绕线型感应电动机存在的主要缺点 (3)

第二章三相异步电机工作特性 (6)

2.1三相异步电动机工作特性 (6)

2.2 三相异步电动机机械特性 (7)

第三章三相异步电机的典型启动方式 (8)

4.1.直接启动 (8)

4.2软启动 (9)

4.3降压启动 (10)

结论 (15)

致谢 (16)

参考文献 (17)

摘要

异步电动机具有结构简单、制造容易,运用可靠、效率较高,价格低廉,坚固耐用等优点。它在工农业和日常生活中获得最为广泛的应用。在电网的总负荷中,异步电动机用电量约占60%以上。

本文是对三相异步电动机做出深入的剖析与设计。三相异步电动机是一种具有高效率、低磨损、低噪声的电机机种.本设计在介绍三相异步电动机设计中,关于相数、极数、槽数及绕组连接方式的选择方法和应遵从的规律.而且针对电动机结构特点和工作性能,在电枢反应理论基础上设计出功率为7.5KW的交流电动机。

【关键词】设计三相异步电动机

一.异步电动机存在的缺点

1-1.笼型感应电动机存在的主要缺点。

(1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。

(2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。

(3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。

1-2.绕线型感应电动机

绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改变外串电阻调速。绕线型电动机虽起动特性和运行特性兼优,但仍存在下列缺点:

(1)由于转子上有集电环和电刷,不仅增加制造成本,并且降低了起动和运行的可靠性,集电环和电刷之间的滑动接触,是这种电动机发生故障的主要原因。特别是集电环与电刷之间会产生火花,使传统绕线型电动机在矿山、井下、石油、华工等防爆要求的场所,对于灰土、粉尘浓度很高的地方,也不敢使用,这就限制了其应用范围。

(2)当前的传统绕线型电动机为了提高可靠性,多数不提刷,因此运行时存在下列电能浪费:集电环和电刷间的摩擦损耗和接触电阻上的电损耗,电刷至控制柜短路开关间三根电缆的电损耗,若电动机与控制柜之间距离很长,则该损耗将非常严重。并且由于集电环与电刷产生碳粉、电火花和噪声,长期污染周围环境,损害管理人员和周围居民健康。

(3)传统绕线型电动机的起动转矩比笼型电动机的有所提高,但仍往往不能满足满载起动的需要,以至仍然需要增容而形成“大马拉小车”。

上述传统感应电动机存在的严重缺点的根本原因在于“起动”、“运行”和“可靠性”三者之间存在难以调和的矛盾,因此势必顾此失彼,不可兼优。

这样在假设了电机的效率后,便可求出I*

1,于是

kw

I

I

I1*

1

二三相异步电动机工作特性

2.1三相异步电动机的转矩特性

异步电动机的电磁转矩T是由载流导体在磁场中受电磁力的作用而产生的,

它使电动机旋转,T≈CSR

2U

I

2/(f

1

R

2

2+f

1

S2X

20

2)。

u1——定子绕组线电压有效值,单位伏特(v);

f

1

——定子电源频率,单位是赫兹(Hz);

s——电动机的转差率;

R

2

——转子绕组一相电阻,单位是欧姆(Ω);

X

20

——转子不动时一相感抗,单位是欧姆(Ω);

C——与电机结构有关的比例常数。为了分析方便,将异步电动机的电磁转矩T

代替电动机的输出转矩T

2

2.2异步电动机的机械特性

1)电动机的额定转矩的实用计算式

旋转机械的机械功率等于转矩和转动角速度的乘积,对于电动机而言,就有

P 2=T

2

Ω。

当电动机的输出转矩T

2

用牛·米(N·m)作单位,旋转角速度Ω用弧度/秒(rad/s)

作单位时,输出功率P

2

的单位是瓦特。

在电动机中计算转矩时输出功率P

2

的单位是千瓦(kW),转速n的单位是转/分(r/min),可以将计算公式简化,在额定状态下转矩公式为:Tn=9550Pn/Nn。

电动机在旋转时,作用在轴上的有两种转矩,一种是电动机产生的电磁转矩T,一种是生产机械作用在轴上的负载转矩T

L

(其它如摩擦转矩忽略不计),当

T=T

L 时,电动机便以某种相应转速稳定运行;当T>T

L

时,电动机则提高转速;

当T<T

L

时,电动机将降低转速。

2)异步电动机的机械特性参数

(1)额定转矩:额定转矩T是指电动机在额定状态下工作时,轴上输出的最大允许转矩。电动机的额定转矩可根据电动机铭牌的额定功率和额定转速用公式来求得。

(2)最大转矩与过载系数

电动机的额定转矩应小于最大转矩Tm,而且不许太接近Tm,否则,电动机略一过载,电动机便停转,因此,一般电动机的额定转矩较最大转矩小得多。把最大转矩与额定转矩的比值称作过载系数λ,它是表示电动机过载能力的一个参数。

(3)起动转矩与起动能力

电动机的起动转矩Tst是指电动机刚起动瞬间(n=0,s=1)的转矩。起动转矩与额定转矩之比可表示起动能力,用起动转矩倍数来表示,是标明异步电动机起动性能的重要指标。

空载或轻载起动的电动机,起动能力为1~1.8,一般的电动机起动能力为

1.5~

2.4,在重负荷下起动的电动机,要求有大的起动转矩,故起动能力可达

2.6~3。

三三相异步电机的典型启动方式

3.1.直接启动

直接启动就是用闸刀开关或接触器把电机直接接到具有额定电压的电源上。在变压器容量允许的情况下,鼠笼式异步电动机应该尽可能采用全电压直接起动,既可以提高控制线路的可靠性,又可以减少电器的维修工作量。电动机单向起动控制线路常用于只需要单方向运转的小功率电动机的控制。例如小型通风机、水泵以及皮带运输机等机械设备。图5是电动机单向起动控制线路的电气原理图。这是一种最常用、最简单的控制线路,能实现对电动机的起动、停止的自动控制、远距离控制、频繁操作等。

图5 电动机单向起动控制线路的电气原理图

直接启动方法主要受电网配电变压器的容量限制,过大启动电流可能会使电压下降,影响在同一电网上其他设备的正常运行。一般异步电机的功率小于7.5千瓦时允许直接启动,对于更大容量的电机能否使用要视配电变压器的容量和各地电网部门而定。

3.2软启动

以上几种降压启动的方法是有级启动,启动的平滑性不高,应用一些自动控制线路组成的软启动器可以实现鼠笼式异步电机的无级平滑运动,这种方法称为软启动。软启动分为磁控式和电子式两种。磁控式故障率高,已被电子式取代。启动过程电机所加的电压不是一个固定值,软启动装置输出电压安指定要求上升,被控电机电压由零安指定斜率上升至全电压,转速相应由零上升到规定转速。软启动能保证电机在不同负载下平滑启动,减少电机启动对电网冲击,又降低对自身承受的较大结构冲击力。

软启动可以设定起始电压、上升方式、启动电流倍数等参数,以适用重载、轻载启动不同情况。

3.3降压启动

鼠笼式异步电动机采用全压直接起动时,控制线路简单,维修工作量较少。但是,并不是所有异步电动机在任何情况下都可以采用全压起动。这是因为异步电动机的全压起动电流一般可达额定电流的4-7倍。过大的起动电流会降低电动机寿命,致使变压器二次电压大幅度下降,减少电动机本身的起动转矩,甚至使电动机根本无法起动,还要影响同一供电网路中其它设备的正常工作。

如何判断一台电动机能否全压起动呢?一般规定,电动机容量在10kW以下者,可直接起动。10kW以上的异步电动机是否允许直接起动,要根据电动机容量和电源变压器容量的比值来确定。对于给定容量的电动机,一般用下面的经验公式来估计:Iq/Ie≤(3/4+电源变压器容量)/(4×电动机容量),式中 Iq—电动机全电压起动电流;Ie—电动机额定电流。

若计算结果满足上述经验公式,一般可以全压起动,否则不予全压起动,应考虑采用降压起动。有时,为了限制和减少起动转矩对机械设备的冲击作用,允许全压起动的电动机,也多采用降压起动方式。

鼠笼式异步电动机降压起动的方法有以下几种:定子电路串电阻(或电抗)降压起动、自耦变压器降压起动、Y-△降压起动、△-△降压起动等.使用这些方法都是为了限制起动电流,(一般降低电压后的起动电流为电动机额定电流的

2-3倍),减小供电干线的电压降落,保障各个用户的电气设备正常运行。

3.3.1串电阻(或电抗)降压起动控制线路

在电动机起动过程中,常在三相定子电路中串接电阻(或电抗)来降低定子绕组上的电压,使电动机在降低了的电压下起动,以达到限制起动电流的目的。一旦电动机转速接近额定值时,切除串联电阻(或电抗),使电动机进入全电压正常运行。这种线路的设计思想,通常都是采用时间原则按时切除起动时串入的电阻(或电抗)以完成起动过程。在具体线路中可采用人工手动控制或时间继电器自动控制来加以实现。

图6定子串电阻降压起动控制线路

图6是定子串电阻降压起动控制线路。电动机起动时在三相定子电路中串接电阻,使电动机定子绕组电压降低,起动后再将电阻短路,电动机仍然在正常电压下运行。这种起动方式由于不受电动机接线形式的限制,设备简单,因而在中小型机床中也有应用。机床中也常用这种串接电阻的方法限制点动调整时的起动电流。图6(A)控制线路的工作过程如下:

按SB2,KM1得电(电动机串电阻启动),KT 得电,KM2得电(短接电阻,电动机正常运行),按SB1,KM2断电,其主触点断开,电动机停车。

只要KM2得电就能使电动机正常运行。但线路图(A)在电动机起动后KM1与KT一直得电动作,这是不必要的。线路图(B)就解决了这个问题,接触器KM2得电后,其动断触点将KM1及KT断电,KM2自锁。这样,在电动机起动后,只要KM2得电,电动机便能正常运行。

串电阻起动的优点是控制线路结构简单,成本低,动作可靠,提高了功率因数,有利于保证电网质量。但是,由于定子串电阻降压起动,起动电流随定子电压成正比下降,而起动转矩则按电压下降比例的平方倍下降。同时,每次起动都要消耗大量的电能。因此,三相鼠笼式异步电动机采用电阻降压的起动方法,仅

适用于要求起动平稳的中小容量电动机以及起动不频繁的场合。大容量电动机多采用串电抗降压起动。

3.3.2串自耦变压器降压起动控制线路

在自耦变压器降压起动的控制线路中,限制电动机起动电流是依靠自耦变压器的降压作用来实现的。自耦变压器的初级和电源相接,自耦变压器的次级与电动机相联。自耦变压器的次级一般有3个抽头,可得到3种数值不等的电压。使用时,可根据起动电流和起动转矩的要求灵活选择。电动机起动时,定子绕组得到的电压是自耦变压器的二次电压,一旦起动完毕,自耦变压器便被切除,电动机直接接至电源,即得到自耦变压器的一次电压,电动机进入全电压运行。通常称这种自耦变压器为起动补偿器。这一线路的设计思想和串电阻起动线路基本相,都是按时间原则来完成电动机起动过程的。

图7定子串自耦变压器降压起动控制线路

在自耦变压器降压起动过程中,起动电流与起动转矩的比值按变比平方倍降低。在获得同样起动转矩的情况下,采用自耦变压器降压起动从电网获取的电流,比采用电阻降压起动要小得多,对电网电流冲击小,功率损耗小。所以自耦变压器被称之为起动补偿器。换句话说,若从电网取得同样大小的起动电流,采用自耦变压器降压起动会产生较大的起动转矩。这种起动方法常用于容量较大、正常

运行为星形接法的电动机。其缺点是自耦变压器价格较贵,相对电阻结构复杂,体积庞大,且是按照非连续工作制设计制造的,故不允许频繁操作。

3.3.3 Y—△降压起动控制线路

线路设计思想:Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。这一线路的设计思想仍是按时间原则控制起动过程。所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压220V,减小了起动电流对电网的影响。而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压380V,电动机进入正常运行。凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。定子绕组接成Y—△降压起动的自动控制线路如图8所示。

图8 Y—△降压起动控制线路

图中,可以看到主电路中有三组主触点,其中接触器KM2和KM3主触点一定不能同时闭合,意味着电源将被短路。所以,控制线路的设计必须保证一个接触器吸和时,另一个接触器不能吸和,这就叫做互锁。也就是说KM2和KM3两个接触器需要互锁。通常的方法是在控制线路中解除其KM2与KM3线圈的支路里分别串联对方的一个动断辅助触电。这样,每个接触器线圈能否被接通,将取决于另一个接触器是否处于释放状态,如解除其KM2已接通,它的动断辅助触点八KM3

线圈的电路断开,从而保证KM2和KM3两个接触器不会同时吸合。这一对动断触点叫做互锁触点。

Y-Δ降压起动控制线路的工作原理如下:合上电源开关QS,按下起动按钮SB2,这时,接触器KM1、KM2时间继电器KT线圈通电,解除其KM1主触点和自锁触点闭合。KM2主触点闭合与KM2互锁触点断开,电动机按Y形接法起动,经过所整定延时时间后,时间继电器KT的动合触点闭合和动断触点断开,使接触器KM2线圈断电,接触器KM2主触点断开,电动机暂时断电,同时接触器KM2

互锁触点闭合,使得接触器KM3线圈通电,接触器KM3主触点和自锁触点闭合,电动机改为三角形连接,然后进入稳定运行,同时接触器KM3互锁触点断开,使时间继电器KT线圈断电。

Y接法的起动的电流仅为Δ接法的三分之一,从而限制了起动电流,但是Y 接法的起动转矩为Δ接法的三分之一,所以Y-Δ起动只适用空载或轻载起动。这种方法适用在正常运行时绕组是三角接法的电机。电机定子的六个线头都引出来,接到换接开关上。在起动时先将定子接成星型,这时加在每相绕组上的电压将为额定电压的倍,待起动完成后再改接到三角接法,加上额定电压。下图是星三角启动的接线图。

图9 星型——三角起动的接线图

结论

三相异步电动机星三角启动的优点是附加设备少,操作简便。所以现在生产的小型异步电动机常采用这种方法。为了便于采用星三角启动,小型异步电动机的定子绕组一般设计成三角形连接,刚开始采用星型连接的电流是三角连接的三分之一,从而减小启动电流,保护电网安全,待启动后改为三角形连接,转矩就为开始星连接的三倍,从而保证对电机力矩的要求。

致谢

毕业论文设计是一项证明自己在学校期间学习的成果的文章,我所能写出这片论文,首先是要感谢 <陈冬生>老师,学习期间耐心教导我,无论什么时候你都不耐烦我的请教,还叫我要努力学习。我的论文你也认真批改,指出错误,提出问题所在,是我能完成这篇论文。同时也要感谢我的同学,好朋友们,他们让我感到了学习的气氛,让我也融入其中,氛围是学习重要条件。最后我也要感谢我们的学院(江西农业工程职业学院),有这么好的学校,才能培养那么多的人才,也没有我今天的论文出示。

参考文献

1. 汤蕴璆,电机学,机械工业出版社,北京:2003.1

2. 邓星钟,机电传动控制,华中科技大学出版社,2001.3

4. 秦曾煌,电工学,第五版,高等教育出版社,北京,200

5.12 3. 李永东,交流电机数字控制系统,机械工业出版社,2002.5

三相异步电动机三角形、Y形接线方法及区别(详细解释)

三相异步电动机三角形、Y形接线方法及区别(详细解释) 图电机接线柱 上图是三相异步电动机的接线柱,很多同志看到六个接线柱就懵逼了,不知道如何接线;今天我们就一起来探讨下电动机的接线问题。 一、两种接法 三相异步电动机广泛应用于工厂企业中,接线方法有两种:△和Y形,Y形习惯又称为星形接法。 U1 V1W1 W2U2 V2 U1 V1W1 U2 V2W2 图a电机三相绕组

U1 V1W1 W2U2 V 2星形(Y)联结 3 ~ U1 V1W1 W2U2 V 2 三角形(△)联结 3 ~ 图b 电机Y形和△接法

图c 电机连接片 三相异步电动机三个绕组一般用U、V、W三个字母表示,位置如上图a所示,这里需要注意的是绕组的接线组并不是上下对应的,而是错开的,三相异步电机基本都是这样的,所以大家最好把这个位置记住;错开的原因是△接线时比较方便,大家注意图b,接线时只需要通过连接片(如图c所示)把接线柱上下联结起来就可以了,如果不错开接成△接法就比较麻烦了;图b中的另一种接法就是Y形接法,通过连接片把三个接线柱横着联结起来。这两种接法接线方式,总结下就是△竖着接线,Y形横着接线;大部分情况是这样,但是大家不能死记硬背,大家还是要理解,才能举一反三。

图电机△接法 图电机Y形接法 二、两种接法的区别 经常有人问我,这两种接法有什么区别?区别是这两种接法的电机的电压和电流不一样,其他参数都一样;所以这两种对负载来说没有区别。所以,在实际应用时不管选择哪一种接法,都能正常工作;一般根据电源的电压进行选择,那种电压容易接引,就选哪一种。 图某电机铭牌 上图是一个电机的铭牌,可以看出△和Y形接法的电压分别是220V和380V,还有另一种常用电机△和Y形接法的电压分别是380V

电机星三角接法(三相异步电动机星形接法(Y)和三角形接法(Δ))

三相异步电动机的接法与星三角起动 目前电动机的接法有两种(参考电机铭牌): 一:额定电压380V/220V,接法为星/三角。这表明电机每相绕组的额定电压为220V,如果电源线电压为220V,定子绕组则应接成三角形,如果电源电压为380V,则应接成星形。切不可误将星形接成三角形,将烧毁电机。 二:额定电压为380V,接法为三角形,这表明定子每相绕组的额定电压是380V,适用于电源线电压为380V的场合。 如果电机额定电压为220V(日本工业电压为220V,电机额定电压为220V,民用照明为110V),电机原接法为三角形,可改成星形接法接到380V电压上。如电机已经是星形接法,则不能再接到380V电源上。 再说星—三角降压起动: 目前,我国三相异步电动机功率在3KW以下的一般用星型接法,4KW 及以上时,均采用三角形接法,以利广泛采用星—三角降压起动。

星型起动的目的是降低电机的起动电流,减少对电网的冲击。星型起动时,加在定子每相绕组上的电压为电源电压的根3分之一倍(220V),待电动机转速接近额定转速时,转为三角形运转。 由计算得知,定子绕组接成星形起动时,由电源供给的起动电流仅为接成三角形时的三分之一,星形接法时的起动转矩也减小为三角形接法时的三分之一。 星三角降压起动设备简单,成本较低,但起动转矩较小,所以只适用于空载或轻载起动的电动机。 三相异步电动机分星形链接和角形链接两种。 星形连接:把电机三相线圈的3个末端连接在一起作为公共端,由3个首端引出3条火线的连接方式。(如A相线圈用A X表示,B相线圈用B Y表示,C相线圈用C Z表示,那就是X和Y和Z连一起,引出A、B、C三根线) 三角形连接:把电机三相线圈的每一相的绕组的始端依次相接的连接方式。(如A相线圈用A X表示,B相线圈用B Y表示,C相线圈用C Z表示,那就是X和B相连,Y 和C相连,Z和A相连,引出的三根线为B X、C Y、A Z) 电机的三相绕组完全是引到端盖上连接的,端盖内有六个头,下面的三个头连在一起,上面三个头分别引出三根线的是星形连接;把上下两个头垂直连接,分别引出三根线的是三角形连接。 无论哪一种接法,线电压,线电流都是相同的,所以有功功率都是P=1.732UI COSΦ

电机星三角启动电路图

电机星三角启动原理 令狐采学 这种YΔ(星三角)起动方法,目的是降低起动电流,减小对电网及共电设备的危害,这个方法只适合于几十千瓦的小型电机,如大型电机采用的是自藕变压器起动方式。M为主接触器,不论在启动还是正常运转是都是接通的。 S接触器,为起动时间内星接法短路接触器,把电动机三根尾端线短路。 R接触器,为启动之后,把电机绕组首尾连接起来。即UZ,YW,XV三个绕组的三角形接法。T时间继电器,起动时,比如要让电机在5秒内完成起动进入正常运转状态,就可把时间继电器设定到5秒 FR热继电器,串接到主回路,如主回路因电机负载电流过大,缺相等会使热继电器内金属过热,顶开热继电器内的控制触点,达到断开控制回路的目的。新艺图库126计算公式大全

838电子 起动过程:合上隔离开关合上断路器按下ON启动按钮M,S,T得电M接通主回路,S通过T的常闭触点及R的常闭触点得电S主回路接通正在做起动运转过程。 当时间继电器T的时间到了T常闭触点断开,T常开触点接通S因此断电,接触器R接通完成起动 停止按下OFF按钮断开其控制回路完成。等待下次起动。 接触器R,S各有一个常闭触点与R,S互相牵制,是防止接触器主触点粘连,而引起短路事故而设的互锁电路。 M为主接触器,不论在启动还是正常运转是都是接通的。 S接触器,为起动时间内星接法短路接触器,把电动机三根尾端线短路。 R接触器,为启动之后,把电机绕组首尾连接起来。即UZ,YW,XV三个绕组的三角形接法。 T时间继电器,起动时,比如要让电机在5秒内完成起动进入正常运转状态,就可把时间继电器设定到5秒

FR热继电器,串接到主回路,如主回路因电机负载电流过大,缺相等会使热继电器内金属过热,顶开热继电器内的控制触点,达到断开控制回路的目的。电脑桌面壁纸 126计 起动过程: 合上隔离开关合上断路器按下ON启动按钮M,S,T得电M 接通主回路,S通过T的常闭触点及R的常闭触点得电S主回路接通正在做起动运转过程。 当时间继电器T的时间到了T常闭触点断开,T常开触点接通S因此断电,接触器R接通完成起动 停止按下OFF按钮断开其控制回路完成。等待下次起动。 接触器R,S各有一个常闭触点与R,S互相牵制,是防止接触器主触点粘连,而引起短路事故而设的互锁电路。 原理图

三相异步电动机星形接法(Y)和三角形接法(Δ)

三相异步电动机星形接法(Y)和三角形接法(Δ)3)每根绕组都有两个接头,一为首端,一为尾端。图1中U1、 V1、 W1是首端,而U2、V2、W2是尾端。连接绕组时,首端尾端不能搞错,错了就不能保证相间的空间电角度为120&s30;,影响正常旋转磁场的形成,这是我们接线时必须十分注意的问题。 2.三相异步电机的出线盒里有那些标志?它们代表什么意义? 答:电机走子绕组的引出线,都集中引到出线盒内,以便接线。所以出线盒也叫接线盒.接线盒内设有相互绝缘的接线柱,有的还设有接地螺钉。 (l)绕组引出线标志 Y系列电机第一相、第二相、第三相的首端分别为 U1、 V1、 W1;尾端分别为U2、V2、W2。 JO2老系列电机第一相、第二相、第三相的首端分别为D l、D2、D3;尾端分别为D4、D5、 D6。 有些电机,绕组内部连接好了,只引出三根线,那它们的标志:在新系列电机为U、V、W,在老系列电机为D1、D2、D3。要是有第四根标志为N的引出线,这是星接绕组的中性点。 (2)接线螺技标志

与绕组的标志完全相同,其标志有的用标号垫,有的在绝缘底座上压出凸纹(3)接地螺钉的标志3.三相异步电动机有那几种接线方法?在接线盒里是怎样连接的? 答:三相异步电动机定于绕组通常采用两种接线方法,即星形接法(Y)和三角形接法(Δ)。功率大的电机,在每相绕组里由两条或两条以上的支路并联。星形接法见图2,把三相统组的尾端连在一起,由三个首端去接电源。当然也可以把三个首端连在一起,由三个尾端去接电源。但是决不可在短接的星点上既有首端,又有尾端,否队便不能形成正常的旋转磁场.(参见问题1)在接线盒里(见图动)星点是用两个连接片连接的。 三角形接法见图3,它是由一根绕组的首端与另一格的尾端相连,形成一个三角形,再由三角形的顶点接向电源。同样的道理,采用三角形接法,决不可

电动机星三角转换启动原理图解

电动机星三角转换启动原理图解 就是对电机的三相绕组在启动时和正常运转时施加的不同的电压,来降低电机启动时的冲击电流。在启动时对电机绕组施加的是星形接法的,就是将电源的三条火线分别与电机三个绕组的一个端点相连,将电机三个绕组的另一个端点同时与电源的零线相连,在这种接法下,电机每个绕组所承接的电压就是220v。由于施加的电压较低,所以启动时的电流会比较小点,减少了对电网的冲击,电机也比较容易启动。当电机启动基本正常后,它的工作电流与启动时相比会大幅减少,这时由控制电路通过和的转换,将电机三个绕组改成首尾相连,形成所谓三角形连接,并将三角形的每个“角”与电源的三条火线相连,这时电机绕组中所受到的电压变成了380v,电机就能满负荷工作。 三相异步的三角接法和星型接法区别(把123看为首,456视为尾,首首相连为y(星)型接法,首尾相连为角型接法) 两种接法,与我们的接入没什么关系,如图2和3,d1。d2。d3接a。b。c三相,具体的区别是电动机接线盒中的不同,三个接线片,一般不进行随便修改,我们只要了解

他们的区别就行,图2是星型,图3是角型电动机内部有三组绕组,六个接线端,当把三个绕组的一端连在一起,而另一端分别接电源,连成一个y型,就是星型接法;这时候电源两相之间的电流是相电流,比线电流小根3倍;如果把三组绕组的首尾相连,然后三个首尾相连处接电源,连成一个三角形,就是三角形接法;这时候电源两相之间的电流就是线电流,比相电流大根3倍;通常的星三角启动方式目的就是减小启动电流,而通常电机启动的瞬间电流比较大,所以一般先以y型启动,再转换为三角形。究竟采用哪种接法,需要看电机铭牌,这和绕组有关系。如果标有380v或者400v,后面画一个三角就三角型接法,画y就星型接法;大部分电机默认三角形接法,也有一些是380v下以y型运行的。区别电动机三角接法的功率较大,一般是7.5kw以上采用(也有人说是4kw)星型接法的功率小,三角接法的电动机劲很大.但是对电网冲击很大,一旦启动,周围的灯泡都要暗2下,所以三角接法的电动机很少直接启动,一般采用降压启动、自偶减压启动、变频启动(我只见过变频启动,不过还没搞明白)电动机的接法是可以调整的,当电机的铭牌上出现y/△标志的时候就可以调整了,一般来说,星型接法的电机的电压是三角接法的1.73倍如 y/△660/380.. 注意区分,y/△和y—△ ...y—△的意思的电动机的启动方式是星三角启动。

三相异步电动机的三角形连接与星形连接

1. 三相异步电动机启动按铭牌标示接法为△形或Y形时,均为全压启动,若铭 牌标示接法为△形而采用Y形接法启动,则为降压启动,启动电流为原接法时的1/3;若铭牌标示接法为Y形而采用△形接法时,则不适合负载三相380V 电压,只适合负载三相220V电压运行。 在额定电压380v运行的三相异步电动机,三角形接法和星形接法的转速可视为一样,功率相差很大,例如三角接法为10kw电动机,在星形下运行,其功率只有三角的1/3左右. 但是,在380*1.73=660v电压下运行功率相等。 2. 正常运行时,有些三相异步电动机的定子绕组可以接成星形,也可以接成三角形。试问在什么情况下采用三角形或星形连接方法?采用这两种接法时,电动机的额定值有无改变? 一般三相异步电动机的每个绕组可以做成两种额定电压:220V和380V. 一般小型三相异步电动机的每个绕组是220V的,接成星形运行于380V, 接成三角形运行于220V. 而一般中型三相异步电动机的每个绕组是380V的, 接成三角形运行于380V, 接成星形运行于660V. 一般三相鼠笼式异步电动机的启动电流是额定值的3-5倍. 往往采用星形/三角形变换方式启动380V的中型三相鼠笼式异步电动机, 以减小电动机启动电流: 1. 启动时接成星形(降压启动), 电机启动功率变小, 减小电动机启动电流. 2. 运行时接成三角形, 达到满功率运行目的. 这对中型三相鼠笼式异步电动机的应用是很有作用的.

如果电机启动时, 既要电机启动电流小, 又要电机启动功率或启动转矩不变, 那就必须改用绕线转子等型式三相异步电动机了 注解:鼠笼式三相异步电动机: 鼠笼式三相异步电动机Y-△降压手动控制电路原理图 凡正常运行时定子绕组接成三角形的是三相鼠笼式异步电动机,在启动时临时成星形,待电动机启动后接近额定转速时,在将定子绕组通过Y-△降压启动装置接换成三角形运行,这种启动方法叫Y-△降压启动。属于电动机降压启动的一种方式,由于启动时定子绕组的电压只有原运行电压的,启动力矩较小只有原力矩的,所以这种启动电路适用于轻载或空载启动的电动机。 线路分析如下: 1、合上空气开关QF接通三相电源, 2、按下启动按钮SB2,首先交流接触器KM3线圈通电吸合,KM3的三对主触头将定子绕组尾端联在一起。KM3的辅助常开触点接通使交流接触器KM1线圈通电吸合,KM1三对主常触头闭合接通电动机定子三相绕组的首端,,电动机在Y接下低压启动。

星三角启动电路图

星三角启动电路图 此种接法只适合于电动机正常运行时为三角型联接。 所需主要元器件:三个交流接触器,一个热继电器,一个时间继电器,启动、停止按钮各一,熔断器两个。 三个接触器作用:一个为主电路接通电源,一个为Y型启动,一个为△启动。 时间继电器作用:通过设定确定星型到三角型转换的时间,需要延时触点。 热继电器作用:提供过载保护。 熔断器作用:为电动机提供短路保护。 了解Y--△ 这是一种降压启动方式,适用的电机有局限性,能降多少压,怎么个算法,看下面的:

可以看到通过Y--△,能够实现降压启动,降压起动时的电流为直接启动时的1/3。 下面重点巩固一下接线方式,这个看过很多次,也画过很多次,过了一段时间,今天再画时,又有些健忘了。无奈,继续加强。 先来看一下主接线图。

Y-△启动的话,先要星型启动的话,肯定KM和 KM -Y 先要启动,之后KM -Y要停下来,KM要一直得电,不然没电源肯定不行,KM和KM-△要一直运行,到正常运行。 接下来看下控制回路图吧:

根据上面一次回路的分析,再看这个控制回路,很简单的,按下启动按钮SB2,主回路电源启动,KM线圈得电,其常开触点闭合,实现自保持,SB2复归;下面的时间继电器线圈回路和KM-Y线圈回路也接通,这时Y型启动已经实现,通过时间继电器时间的整定,Y型回路的时间继电器NC(常闭)触点得电后要延时打开,使Y启动保持住,而△回路KT的NO(常开)触点得电后要延时闭合,使得△型回路不得电,同时Y型启动的接触器常闭接点对△回路有闭锁(Y-△两回路都要有闭锁)。整定时间到后,时间继电器的常开触点瞬时闭合,接通△型回路,KM-△线圈得电,其常开触点闭合,起保持作用,而其常闭触点断开,切断Y型启动回路,同时另一个常闭触点使得KT时间继电器回路断开,KT 线圈失电,常闭瞬时复归,常开也复归,电机此时已经处于正常

三相异步电动机星形接法与三角形接法

三相异步电动机的星形接法及三角形接法 一、星形接法: 星形接法是三相交流电源与三相用 电器的一种接线方法。把三相电源三个 绕组的末端、X、Y、Z连接在一起,成 为一公共点O,从始端A、B、C引出 三条端线。是由频率相同、振幅相 等而相位依次相差120°的三个正 弦电源以一定方式连接向外供电 的系统。是将三相电源绕组或负载 的一端都接在一起构成中性线,由 于均衡的三相电的中性线中电流 为零,故也叫零线:三相电源绕组或负载的另一端的引出线,分别为三相电的三个相线。远程输电时,只使用三根相线,形成三相三线制。到达用户的电路,往往涉及220V和380V两种电压,需三根相线和一根零线,形成三相四线制。用户为避免漏电形成的触电事故,还要添加一根地线,这时就有三根相线,一根零线和一根地线,故也有三相五线制的说法。 I线=I相,U线=√3×U相, P相=U相×I相, P=3P相=√3×U线×I相=√3×U线×I线;

二、三角形接法: 三相电的三角形接法是将各相电源或负载依次首尾相连,并将每个相连的点引出,作为三相电的三个相线。三角形接法没有中性点,也不可引出中性线,因此只有三相三线制。添加地线后,成为三相四线制。三角形接法的三相电,线电压等于相电压而线电流等于相电流的√3倍。 I线=√3×I相,U线=U相, P相=I相×U相, P=3P相=√3×I线×U相=√3×I线×U线。 说明:三角(△)联接,Iab=Ia向量+Ib向量=(Ia+Ib)×cos30°=2Ia×√3/2=√3×Ia,线电流是相电流的根号三倍。 三、目前电动机的接法有两种(参考电机铭牌): 一:额定电压380V/220V,接法为星/三角。这表明电机每相绕组的额定电压为220V,如果电源线电压为220V,定子绕组则应接成三角形,如果电源电压为380V,则应接成星形。切不可误将星形接成三角形,将烧毁电机。 二:额定电压为380V,接法为三角形,这表明定子每相绕组的额定电压是380V,适用于电源线电压为380V的场合。 如果电机额定电压为220V(日本工业电压为220V,电机额定电压为220V,民用照明为110V),电机原接法为三角形,可改成星形接法接到380V电压上。如电机已经是星形接法,则不能再接到380V电源上。

星三角控制程序实例

星/三角控制程序实例 一、主电路图与常规控制线路图 电机星三角启动运行的常规电路见上图——为一个比较典型的电路。原理简述:先是KM3得电,将电机绕组接成星形,继之KM1得电,两只接触器的得电,使电机进入星接降压启动阶段;由延时继电器KT1控制启动时间的长短,当延时时间到时,KM3失电,同时KM2得电。KM1与KM2将电机绕组接成角形,进入正常运行阶段。KT1用作时间调节和星/角切换控制,KM3和KM2有触点互锁控制,严禁其同时接通造成对电源的短路。电机故障时热继电器FR1动作,实施停机保护的控制。 一般线路中,启动后KM1、KM3是同时得电的,这样KM3须承受启动时的冲击电流。该线路中先将KM3闭合后,再使KM1得电,对KM3的使用上更为合理,因为KM3的容量往往取得较小。 二、据常规继电器线路图优化的程序图 如果直接将此控制线路用PLC程序做出来,或者说,依此继电控制的思路成PLC程序,

即是通俗所说的“经验编程法”。直接将断电控制线路的实际触点用PLC程序中的“软触点”代替,将硬件的继电器,用PLC中的软继电器来代替,应该是水到渠成,不费力气的。当然,采用PLC后,硬件控制线路也是有所改动的。参看下附PLC接线图(以三菱PLC为例): 可以看出,控制线路的接线已变得非常简单了。时间控制控制与切换完全由PLC的内部程序来做。SB2、SB1为启动、停止接钮,切停止按钮按习惯接成常闭点控制的。接入KM2的常开点是用来确实工作状态的,PLC判断发出启动运行信号后,控制线路是否是作出正确的动作,无相应正确的动作,则判断为故障动作。当然也可以把FR1热继电器的触点接入PLC 输入点,用作故障报警、停机保护等KM3与KM2的动作控制虽然在软件上已作了互锁,但为确保安全,必须在硬件上作互锁的连接! 下面是一段依照继电控制线路作的PLC程序,二者是很相似的。仍用时间继电器T2作星/角切换的控制。

三相异步电动机星形接法(Y)和三角形接法(Δ)

三相异步电动机星形接法(Y)和三角形接法(Δ) 3)每根绕组都有两个接头,一为首端,一为尾端。图 1中U1、 V1、 W1是首端,而U2、V2、W2是尾端。连接绕组时,首端尾端不能搞错,错了就不能保证相间的空间电角度为120&s30;,影响正常旋转磁场的形成,这是我们接线时必须十分注意的问题。 2.三相异步电机的出线盒里有那些标志?它们代表什么意义? 答:电机走子绕组的引出线,都集中引到出线盒内,以便接线。所以出线盒也叫接线盒.接线盒内设有相互绝缘的接线柱,有的还设有接地螺钉。 (l)绕组引出线标志 Y系列电机第一相、第二相、第三相的首端分别为 U 1、 V 1 、 W 1 ;尾端分 别为U 2、V 2 、W 2 。 JO 2老系列电机第一相、第二相、第三相的首端分别为D l 、D 2 、D 3 ;尾端分别 为D 4、D 5 、 D 6 。 有些电机,绕组内部连接好了,只引出三根线,那它们的标志:在新系列电 机为U、V、W,在老系列电机为D 1、D 2 、D 3 。要是有第四根标志为N的引出线, 这是星接绕组的中性点。 (2)接线螺技标志 与绕组的标志完全相同,其标志有的用标号垫,有的在绝缘底座上压出凸纹(3)接地螺钉的标志 3.三相异步电动机有那几种接线方法?在接线盒里是怎样连接的? 答:三相异步电动机定于绕组通常采用两种接线方法,即星形接法(Y)和三角形接法(Δ)。功率大的电机,在每相绕组里由两条或两条以上的支路并联。星形接法见图2,把三相统组的尾端连在一起,由三个首端去接电源。当然也可以把三个首端连在一起,由三个尾端去接电源。但是决不可在短接的星点上既有首端,又有尾端,否队便不能形成正常的旋转磁场.(参见问题1)在接线盒里(见图动)星点是用两个连接片连接的。

三相电动机星三角降压启动控制电路图解

三相电动机星三角降压启动控制电路图解 文章目录 ?接触器控制星三角降压启动 ?时间继电器自动星三角降压启动 星三角(星形-三角形)降压启动是指电动机启动时,把定子绕组接 成星形,以降低启动电压,限制启动电流;等电动机启动后,再把定子绕组改接成三角形,使电动机全压运行。凡事在正常运行时定子绕组作三角形连接的异步电动机,均可采用这种星三角降压启动方式。 接触器控制星三角降压启动 如右图所示是用按钮和 接触器控制的星三角降压启动的控制电路。该线路使用了三个接触器、一个热继电器和三个按钮。接触器KM作引入电源用,接触器KMy 和KM△分别作星形启动用和三角形运行用,SB1是启动按钮,SB2

是星~三角转换按钮,SB3是停止按钮,熔断器FU1作为主电路的短路保护,熔断器FU2作为控制电路的短路保护,FR作过载保护。电路的工作原理如下:先合上电源开关SQ: 电动机星形(Y)连接降压启动:按下SB1→接触器KM和KMy线圈通电→KM自锁触头闭合自锁、KMy互锁触头分断对KM△的互锁、KM主触头闭合、KMy主触头闭合→电动机M接成星形(Y)降压启动。 电动机三角形(△)连接全压运行:当电动机转速上升到接近额定值时,按下SB2→SB2动合触头闭合、SB2动断触头先分断→接触器KMy线圈断电→KMy互锁触头恢复闭合、KMy主触头分断→KM△线圈通电→KM△互锁触头分断对KMy互锁、KM△自锁触头闭合自锁、KM△主触头闭合→电动机M接成三角形全压运行。 停止时按下SB3按钮即可。 时间继电器自动星三角降压启动 下图所示为时间继电器自动控制星三角降压启动电路图。该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。时间继电器KT作控制星形降压启动时间和完成星三角自动切换用,其他电器的作用和上个线路中相同。

我的一个星三角启动程序

TIME EQU 30H GEBIT EQU 31H SHIBIT EQU 32H BAIBIT EQU 33H ORG 0000H AJMP MAIN ORG 000BH LJMP INTT0 ORG 0040H MAIN: CLR P2.7 MOV P1,#0FFH MOV TIME,#255 MOV R0,#255 MOV TMOD ,#11H MOV TH0,#3CH MOV TL0,#0B0H SETB EA SETB ET0 MOV R4,#14H START: CALL SCANKEY CALL DISPLAY AJMP START SCANKEY: JB P3.2,ADD1P CALL DELAY10MS JB P3.2,ADD1P MOV R0,TIME DENG1: CALL DISPLAY JNB P3.2,DENG1 SETB ET0 SETB TR0 CLR P1.6 SETB P1.7 CLR P1.0 CLR P1.3 CPL P1.1 ADD1P: JB P3.3,DEC1P CALL DELAY10MS JB P3.3,DEC1P DENG2: CALL DISPLAY JNB P3.3,DENG2 MOV A,#1

ADD A,R0 MOV R0,A MOV TIME,A CJNE A,#255,DEC1P MOV R0,#1 MOV TIME,#1 DEC1P: JB P3.4,STOPKEY CALL DELAY10MS JB P3.4,STOPKEY DENG3: CALL DISPLAY JNB P3.4,DENG3 DEC R0 MOV A,R0 MOV TIME,A CJNE A,#0,STOPKEY MOV R0,#255 MOV TIME,#255 STOPKEY: JB P3.5,STOPOUT CALL DELAY10MS JB P3.5,STOPOUT CLR TR0 DENG4: CALL DISPLAY JNB P3.5,DENG4 MOV R0,TIME MOV TH0 ,#3CH MOV TL0,#0B0H MOV R4,#14H STOPOUT: RET INTT0: PUSH ACC PUSH PSW CLR ET0 CLR TR0 MOV TH0,#3CH MOV TL0,#0B0H DJNZ R4,OUTT0

三相异步电动机的Y—△启动控制实验报告(DOC)

可编程控制器课程设计报告书三相异步电动机的Y—△启动控制 学院名称:自动化学院 学生姓名: 专业名称: 班级: 时间:2013年5月20日至5月31日

三相异步电动机的Y—△启动控制 一、设计目的: 1.了解交流继电器、热继电器在电器控制系统中应用。 2.了解对自锁、互锁功能。 3.了解异步电动机Y—△降压启动控制的原理、运行情况及操作方法。 二、设计要求: 1、设计电动机Y—△的启动控制系统电路; 2、装配电动机Y—△启动控制系统; 3、编写s7_300的控制程序; 4、软、硬件进行仿真,得出结果。 三、设计设备: 1.三相交流电源(输出电压线); 2.继电接触控制、交流接触器、按钮、热继电器、熔断器、PLCS300; 3.三相鼠笼式电动机。 四、设计原理: 对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击,这样的起动方式称为星三角减压启动,或简称为星三角启动(Y-Δ启动)。星三角起动法适用于正常运行时绕组为三角形联接的的电动机,电动机的三相绕组的六个出线端都要引出,并接到转换开关上。起动时,将正常运行时三角形接法的定子绕组改接为星形联接,起动结束后再换为三角形连接。这种方法只适用于中小型鼠笼式异步电动机.定子绕组星形连接时,定子电压降为三角形连接的1/√3,由电源提供的起动电流仅为定子绕组三角形连接时的1/3。就是可以较大的降低启动电流,这是它的优点.但是,由于起动转矩与每相绕组电压的平方成正比,星形接法时的绕组电压降低了1/ √3倍,所以起动转矩将降到三角形接法的1/3,这是其缺点。Y-△降压启动器仅适用于△运行380V的三相鼠笼式电动机作空载或轻载启动。三相鼠笼式异步电动机Y—△降

推荐:什么是电机的星三角启动

什么是电机的星三角启动 【学员问题】什么是电机的星三角启动? 【解答】1.当负载对电动机启动力矩无严格要求又要限制电动机启动电流且电机满足380V/接线条件才能采用星三角启动方法; 2.该方法是:在电机启动时将电机接成星型接线,当电机启动成功后再将电机改接成三角型接线(通过双投开关迅速切换); 3.因电机启动电流与电源电压成正比,此时电网提供的启动电流只有全电压启动电流的1/3,但启动力矩也只有全电压启动力矩的1/3. 星三角启动,属降压启动他是以牺牲功率为代价来换取降低启动电流来实现的。所以不能一概而以电机功率的大小来确定是否需采用星三角启动,还的看是什么样的负载,一般在需要启动时负载轻运行时负载重尚可采用星三角启动,一般情况下鼠笼型电机的启动电流是运行电流的57倍,而对电网的电压要求一般是正负10%(我记忆中)为了不形成对电网电压过大的冲击所以要采用星三角启动,一般要求在鼠笼型电机的功率超过变压器额定功率的10%时就要采用星三角启动。只有鼠笼型电机才采用星三角启动。一家之言,姑且听之。 在实际使用过程中,发现需星三角降压启动的电机从11KW开始就有需要的,如风机、在启动时11KW电流在7-9倍(100)A左右,按正常配置的热继电器根本启动不了,(关风

门也没用)热继电器配大了又起不了保护电机的作用,所以建议用降压启动。而在一些启动负荷较小的电机上,由于电机到达恒速时间短,启动时电流冲击影响较小,所以在30KW左右的电机,选用1.5倍额定电流的断路器直接启动,长期工作一点问题都没有。以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。 结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。事实表明,习惯左右了成败,习惯改变人的一生。在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一朝一夕的事,需要坚持。希望大家坚持到底,现在需要沉淀下来,相信将来会有更多更大的发展前景。

星三角启动电路图

星三角启动电路图 容量较大的电动机。通常采用降压启动方式。降压启动的方式很多,有星三角启动,自耦降压启动,串联电抗器降压启动,延边三角形启动等。本文介绍电动机的星三角(Y一△)启动方式。所谓Y一△启动,是指启动时电动机绕组接成星形,启动结束进入运行状态后,电动机绕组接成三角形。在启动时。电机定子绕组因是星形接法,所以每相绕组所受的电压降低到运行电压的1/、(约57.7%),启动电流为直接启动时的1/3,启动转矩也同时减小到直接启动的1/3。所以这种启动方式只能工作在空载或轻载启动的场合。例如,轴流风机启动时应将出风阀门打开,离心水泵应将出水阀门关闭,使设备处于轻载状态。图1是电动机Y-△启动的一次电路图,U1-U2、V2-

V2、Wl-W2是电动机M的三相绕组。如果将U2、V2和W2在接线盒内短接,则电动机被接成星形;如果将U1和W2、V1和U2、W1和V2分别短接,则电动机被接成三角形。实现电动机的Y-△启动的二次控制电路见图2。现在分析Y-△启动电路的工作过程。按下启动按钮SB2,接触器KM3和时间继电器的线圈得电,KM3的主触点闭合,将电动机的三相绕组接成星形;KM3的辅助触点(常开)KM3-3同时闭合使接触器KM2动作,电动机进入星形启动状态,KM2的辅助触点KM2-1闭合,使电路维持在启动状态。待电动机转速达到一定程度时,时间继电器KT延时时间到。其延时触点(常闭)断开,接触器KM3线圈失电.主触点断开,辅助触点(常例)KM3-1闭台。接触器KMl得电工作.电动机进入三角运行状态。这里时间继电器的延时时间应通过试验调整在5~15秒之间。按下停止按钮,或电动机出现异常过电流使热继电器FH动作时,电动机均会停止运行。电动机停运时绿灯HG点亮;启动过程中黄灯HY点亮;运行过程则红灯HR点亮。电流表PA和电压表PV用于电动机运行参数的测量。热继电器的调整.应根据负载轻重和运行电流的大小,在热态(热继电器接入电路,并经过启动电流的预热)实地进行。观察电流表的读数.按照读数的 1.2倍整定其电流调整钮。电动机出现1.2倍的异常电流时.热继电器会在20分钟内动作。如果电动机运行电流是随负载不断变化的,则整定值可按较大电流值计算选取.但最大不能超过电动机额定电流的1.2倍。

plc星三角启动设计[1]

镇江高专ZHENJIANG COLLEGE 课程设计任务书 题目:三相异步电机星三角控制 系名:机械系 专业班级:机电 学生姓名: 学号: 指导教师姓名:洪剑青 指导教师职称:副教授

设计任务书 设计目的: 设计一个电动机Y-△起动装置的PLC 控制系统。用PLC控制电动机Y-△起动电路,如下图所示: 设计要求: 1、电动机M能实现正、反向Y-△启动。 2、根据电动机Y-△起动要求,设计PLC外部电路(配合通用器件板开关 元器 件); 3、连接PLC外部(输入、输出)电路,编写用户程序 4、输入、编辑、编译、下载、调试用户程序 5、运行用户程序,观察程序运行结果。 6、论文采用A4纸,在“页面设置/页边距”中设置参数为:上3 cm,下3 cm,左3 cm,右3 cm,装订0 cm。在“页面设置/文档网格”中设置“只指定行网格”和每页“33”行。 7、正文字号和字体:汉字:各章标题和目录、摘要、谢辞、参考文献、附录等部分的标题用小3号黑体;各节标题用4号黑体;各条标题、各款标题用小4号黑体,正文段落文字小4号宋体;图题和表题用5号宋体,表格内和插图中的文字一般用5号宋体,根据需要在保证清楚的前提下也可用更小号的字体;页眉和页码用小5号字。英文:英文字体和数字采用TIMES NEW ROMAR字体,与中文混排的英文字体应与周围的汉字大小一致。

一、设计方案; 1、电气操作流程说明: 按动正向启动按钮SB2,KM1和KM4闭合(Y 型起动),经3秒后KM4断开,KM3闭 合,实现正向△型运行;按动反向启动按钮SB3,KM2和KM4闭合(Y型起动),经3秒后 KM4 断开,KM3 闭合,实现正向△型运行,按停车按钮SB1,电动机M 停止运行。 2、为了防止同时按正反向启动按钮时造成短路故障,因此正反向间需要有一种联锁关系。即将其中一个接触器的常闭触点串入另一个接触器线圈电路中,则任一接触器线圈先带电后,即使按下相反方向按钮,另一接触器也无法得电。电路要实现反转运行,必须先停止正传运行,再按反向启动按钮才行;反之亦然。所以这个电路称做“正—停—反”控制。 二、硬件电路设计、I/O地址分配; 1. 实验设备 (1)计算机(编程器)1台; (2)实验装置(含S7-200 24点CPU)1台;图10.16 Y-△启动模拟控制 (3)电动机Y-△起动实验模板1块; (4)连接导线若干。 2、I/O地址分配

星三角降压启动电路图原理-电机星三角降压启动电路

星三角降压启动电路图-Y—△降压起动控制线路在以前变频器、软启动器等电子设备价格比较贵,技术比较落后的时候是一个最常用的的电工电路,随着科技的发展,这种启动方式有逐步被淘汰的趋势,但是该启动电路中应用的基本电路中的互锁、自锁、延时继电器,电机的绕组接法等对于刚刚接触电路的朋友是一个很好的教材,下面就根据星三角降压启动电路图给大家介绍一下星三角降压启动电路的工作过程以及电流电压关系。精品文档,超值下载 1、首先介绍一下图纸中各个元器件的符号 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 2、下面介绍一下工作过程 合上QS,按下St,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,KMY和KM△互锁避免KM△误动作; KM-1闭合,自锁启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP停止按钮,才能使全部接触器线圈失电跳开,才能停止运转。 3、星三角降压启动中的电压电流关系

星三角启动电路图

星三角启动电路图 令狐采学 容量较大的电动机。通常采用降压启动方式。降压启动的方式很多,有星三角启动,自耦降压启动,串联电抗器降压启动,延边三角形启动等。本文介绍电动机的星三角(Y一△)启动方式。所谓Y一△启动,是指启动时电动机绕组接成星形,启动结束进入运行状态后,电动机绕组接成三角形。在启动时。电机定子绕组因是星形接法,所以每相绕组所受的电压降低到运行电压的1/、(约57.7%),启动电流为直接启动时的1/3,启动转矩也同时减小到直接启动的1/3。所以这种启动方式只能工作在空载或轻载启动的场合。例如,轴流风机启动时应将出风阀门打开,离心水泵应将出水阀门关闭,使设备处于轻载状态。图1是电动机Y-△启动的一次电路图,U1-U2、V2-V2、Wl-W2是电动机M的三相绕组。如果将U2、V2和W2在接线盒内短接,则电动机被接成星形;如果将U1和W2、V1和U2、W1和V2分别短接,则电动机被接成三角形。实现电动机的Y-△启动的二次控制电路见图2。现在分析Y-△启动电路的工作过程。按下启动按钮SB2,接触器KM3和时间继电器的线圈得电,KM3的主触点闭合,将电动机的三相绕组接成星形;KM3的辅助触点(常开)KM3-3同时闭合使接触器KM2动作,电动机进入星形启动状态,KM2的辅助触点KM2-1闭合,使电路维持在启动状态。待电动机转速达到

一定程度时,时间继电器KT延时时间到。其延时触点(常闭)断开,接触器KM3线圈失电.主触点断开,辅助触点(常例)KM3-1闭台。接触器KMl得电工作.电动机进入三角运行状态。这里时间继电器的延时时间应通过试验调整在5~15秒之间。按下停止按钮,或电动机出现异常过电流使热继电器FH动作时,电动机均会停止运行。电动机停运时绿灯HG点亮;启动过程中黄灯HY点亮;运行过程则红灯HR点亮。电流表PA和电压表PV用于电动机运行参数的测量。热继电器的调整.应根据负载轻重和运行电流的大小,在热态(热继电器接入电路,并经过启动电流的预热)实地进行。观察电流表的读数.按照读数的1.2倍整定其电流调整钮。电动机出现1.2倍的异常电流时.热继电器会在20分钟内动作。如果电动机运行电流是随负载不断变化的,则整定值可按较大电流值计算选取.但最大不能超过电动机额定电流的1.2倍。

三相异步电动机星形接法(Y)和三角形接法(Δ)

三相异步电动机星形接 法(Y)和三角形接法 (Δ) -CAL-FENGHAI.-(YICAI)-Company One1

三相异步电动机星形接法(Y)和三角形接法(Δ) 3)每根绕组都有两个接头,一为首端,一为尾端。图 1中U1、 V1、 W1是首端,而U2、V2、W2是尾端。连接绕组时,首端尾端不能搞错,错了就不能保证相间的空间电角度为120&s30;,影响正常旋转磁场的形成,这是我们接线时必须十分注意的问题。 2.三相异步电机的出线盒里有那些标志它们代表什么意义 答:电机走子绕组的引出线,都集中引到出线盒内,以便接线。所以出线盒也叫接线盒.接线盒内设有相互绝缘的接线柱,有的还设有接地螺钉。 (l)绕组引出线标志 Y系列电机第一相、第二相、第三相的首端分别为 U1、 V1、 W1;尾端分别为U2、V2、W2。 JO2老系列电机第一相、第二相、第三相的首端分别为D l、D2、D3;尾端分别为D4、D5、 D6。 有些电机,绕组内部连接好了,只引出三根线,那它们的标志:在新系列电机为U、V、W,在老系列电机为D1、D2、D3。要是有第四根标志为N的引出线,这是星接绕组的中性点。 (2)接线螺技标志 与绕组的标志完全相同,其标志有的用标号垫,有的在绝缘底座上压出凸纹(3)接地螺钉的标志 3.三相异步电动机有那几种接线方法在接线盒里是怎样连接的 答:三相异步电动机定于绕组通常采用两种接线方法,即星形接法(Y)和三角形接法(Δ)。功率大的电机,在每相绕组里由两条或两条以上的支路并联。星形接法见图2,把三相统组的尾端连在一起,由三个首端去接电源。当然也可以把三个首端连在一起,由三个尾端去接电源。但是决不可在短接的星点上既有首端,又有尾端,否队便不能形成正常的旋转磁场.(参见问题1)在接线盒里(见图动)星点是用两个连接片连接的。

三相电动机星三角降压启动控制电路图解

三相电动机星三角降压启动控制电路图解

————————————————————————————————作者:————————————————————————————————日期:

三相电动机星三角降压启动控制电路图解 文章目录 ?接触器控制星三角降压启动 ?时间继电器自动星三角降压启动 星三角(星形-三角形)降压启动是指电动机启动时,把定子绕组接成星形,以降低启动电压,限制启动电流;等电动机启动后,再把定子绕组改接成三角形,使电动机全压运行。凡事在正常运行时定子绕组作三角形连接的异步电动机,均可采用这种星三角降压启动方式。 接触器控制星三角降压启动 如右图所示是用按钮和接触器控制的星三角降压启动的控制电路。该线路使用了三个接触器、一个热继电器和三个按钮。接触器KM作引入电源用,接触器KMy和KM△分别作星形启动用和三角形运行用,SB1是启动按钮,

SB2是星~三角转换按钮,SB3是停止按钮,熔断器FU1作为主电路的短路保护,熔断器FU2作为控制电路的短路保护,FR作过载保护。电路的工作原理如下:先合上电源开关SQ: 电动机星形(Y)连接降压启动:按下SB1→接触器KM和KMy线圈通电→KM自锁触头闭合自锁、KMy互锁触头分断对KM△的互锁、KM主触头闭合、KMy主触头闭合→电动机M接成星形(Y)降压启动。 电动机三角形(△)连接全压运行:当电动机转速上升到接近额定值时,按下SB2→SB2动合触头闭合、SB2动断触头先分断→接触器KMy线圈断电→KMy互锁触头恢复闭合、KMy主触头分断→KM△线圈通电→KM△互锁触头分断对KMy互锁、KM△自锁触头闭合自锁、KM△主触头闭合→电动机M接成三角形全压运行。 停止时按下SB3按钮即可。 时间继电器自动星三角降压启动 下图所示为时间继电器自动控制星三角降压启动电路图。该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。时间继电器KT作控制星形降压启动时间和完成星三角自动切换用,其他电器的作用和上个线路中相同。

(完整版)三相异步电动机练习题及答案

1电动机分为(交流电动机)(直流电动机),交流电动机分为(同步电动机)(异步电动机)异步电动机分为(三相电动机)(单相电动机) 2电动机主要部件是由(定子)和(转子)两大部分组成。此外,还有端盖、轴承、风扇等部件。定子铁心:由内周有槽的(硅钢片)叠成三相绕组,机座:铸钢或铸铁。 3根据转子绕组结构的不同分为:(笼型转子转子)铁心槽内嵌有铸铝导条,(绕线型转子)转子铁心槽内嵌有三相绕组。 4笼型电机特点结构简单、价格低廉、工作可靠;(不能人为)改变电动机的机械特性。绕线式转子电机特点结构复杂、价格较贵、维护工作量大;转子(外加电阻可人为改变)电动机的机械特性。 5分析可知:三相电流产生的合成磁场是一(旋转的磁场),即:一个电流周期,旋转磁场在空间转过(360°)旋转磁场的旋转方向取决于(三相电流的相序),任意调换两根电源进线则旋转磁场(反转)。 6若定子每相绕组由两个线圈(串联) ,绕组的始端之间互差(60°),将形成(两对)磁极的旋转磁场。旋转磁场的磁极对数与(三相绕组的排列)有关。旋转磁场的转速取决于磁场的(极对数)。p=1时(n 0=60f 1)。旋转磁场转速n0与(频率f1)和(极对数p )有关。 7旋转磁场的同步转速和电动机转子转速之差与旋转磁场的同步转速之比称为(转差率S ) 异步电动机运行中S=(1--9)%。 8一台三相异步电动机,其额定转速 n=1460 r/min ,电源频率 f1=50 Hz 。试求电动机在额定负载下的转差率。 解:根据异步电动机转子转速与旋转磁场同步转速的关系可知:n0=1500 r/min , 即 9定子感应电势频率 f 1不等于转子感应电势频率 f 2。 10 电磁转矩公式 由公式可知:1. T 与定子每相绕组电压 U 2 成(正比)。U 1↓ 则T ↓ 。 2. 当电源电压 U1 一定时,T 是 s 的函数, 3. R2 的大小对 T 有影响。绕线式异步电动机可外接电阻来改变(转子电阻R2 ),从而改变转距。 11三个重要转矩:(1) (额定转矩TN) 电动机在额定负载时的转矩(2) (最大转矩 Tmax)电机带动最大负载的能力,(3) (起动转矩 Tst)电动机起动时的转矩。 12 如某普通机床的主轴电机(Y132M-4型) 的额定功率为7.5kw, 额定转速为1440r/min, 则额定转矩为( )。 13转子轴上机械负载转矩T2 不能(大于Tmax ),否则将造成堵转(停车)。 一般三相异步电动机的过载系数为 14 启动条件( Tst>TL ) 否则电动机不能启动,正常工作条 件:所带负载的转矩应为(TL

相关主题
文本预览
相关文档 最新文档