当前位置:文档之家› 稀溶液法测定偶极矩

稀溶液法测定偶极矩

稀溶液法测定偶极矩
稀溶液法测定偶极矩

华南师范大学实验报告

学生姓名学号 2

专业化学(师范)年级、班级2009级化6

课程名称结构化学实验项目稀溶液法测定偶极矩

实验类型验证综合实验时间2011 年12 月 2 日

实验指导老师实验评分

一、实验目的

1.掌握溶液法测定偶极矩的主要实验技术

2.了解偶极矩与分子电性质的关系

3.测定正丁醇的偶极矩

二、实验原理

1.偶极矩与极化度

分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是

qd =→

μ ①

式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→

μ是一个矢量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10

m ,电荷的数量级为10-20

C ,所以偶极矩的数量级是10-30

C ·m 。

通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。

极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。

kT 9μ

πN 4P A μ=

② 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此

P 诱导 = P e + P a ③

如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010

H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。

P = P μ+ P e +P a ④

如何从测得的摩尔极化度P 中分别出P μ的贡献呢?介电常数实际上是在107

H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就等于P μ,在实验上,若把频率提高到可见光范围,则原子极化也可以忽略,则在可见光范围:

P μ =P -( P e +P a ) ≈ P - P e ⑤ 2. 摩尔极化度的计算

克劳休斯、莫索和德拜从电磁场理论得到了摩尔极化度P 与介电常数 ε 之间的关系式。

ρM

×

+2ε-1ε=

P ⑥

式中,M 为被测物质的摩尔质量;ρ 为该物质的密度;ε 是介电常数。

但式⑥是假定分子与分子间没有相互作用而推导得到的。所以它只适用于温度不大低的气相体系,对某种物质甚至根本无法获得气相状态。因袭后来就提出了用一种溶液来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中的溶质的摩尔极化度可以看作是式⑥中的P 。

在稀溶液中,若不考虑极性分子间相互作用和溶剂化现象,溶剂和溶质的摩尔极化度等物理量可以被认为是具有可加性。因此,式⑥可以写成:

2

2111,2

2211212121ρx M x M ×+2ε-1εP x P x P +=+=

,,, ⑦

式中,下标1表示溶剂;下标2表示溶质;x 1表示溶剂的摩尔分数;x 2表示溶质的摩尔

分数;1P

表示溶剂的摩尔极化度;2P 表示溶质的摩尔极化度。 对于稀溶液,可以假设溶液中溶剂的性质与纯溶剂相同,则

11

110

11ρM ×

+2ε-1ε=

=P P ⑧

2

1

12121212-x x P x P x P P P -==,

, ⑨

Hedestrand 首先推导出经验公式,指出在稀溶液中溶液的介电常数和密度可以表示为 2121ax εε+=, ⑩ 2

11,2bx ρρ+= ?

因此

???????????

??+--++?++-+==→→∞2111

11212

21121210202ρ2ε1εbx ρ2ax ε1εlim lim 22x M x x M x M ax P x x P

()11

211112

11ρ2ε1ερ2εε3bM M M a -?+-+?+=

?

做ε1,2-x 2图,根据式⑦由直线测得斜率a ,截距ε1;作ρ1,2 -x 2图,并根据式 ?由直线测得斜率b ,截距ρ1,代入式?得

P

∞2

3. 由折光度计算电子极化度P e

电子极化度可以使用摩尔折光度R 代替,即

()

122112

11122121202

ρ26ρ21lim 2++-?+-===→∞n c

M n bM M n n R x e

R

P ?

根据测量的溶液折射率n 1,2作图n 1.2-x 2,由斜率求出c ,就可以按照式?计算出P e 。 4. 介电常数的测定

介电常数是通过测定电容计算而得的。如果在电容器的两个板间充以某种电解质,电容器的电容量就会增大。如果维持极板上的电荷量不变,那么充电解质的电容器两板间电势差就会减少。设C 0为极板间处于真空时的电容量,C 为充以电解质时的电容量,则C 与C 0的比值ε称为该电解质的介电常数:

ε = C

C 0

?

法拉第在1837年就解释了这一现象,认为这是由于电解质在电场中极化而引起的。极化作用形成一个反向电场,因而抵消了一部分外加电场。

测定电容的方法一般有电桥法、拍频法和谐振法,后两者为测定介电常数所常用,抗干扰性能好,精度高,但仪器价格昂贵。本实验中采用电桥法。实际所测得的电容C'样品包括了样品的电容C 样品和电容池的分布电容C x 两部分,即

C'样品 = C 样品 + C x ?

对于给定的电容池,必须先测出其分布电容 C x 。可以先测出以空气为介质的电容,记为C'空 ,再用一种已知介电常数的标准物质,测得其电容C'标 。

C'空 = C 空 + C x C'标 = C 标 + C x 又因为

ε标 = C 标C 0 ≈C 标C 空

可得

C x = C'空 - C'标-C'空

ε标-1

?

C 0 = C'标-C'空

ε标-1 ?

计算出 C x 、C 0 之后,根据式⑥和式?可得样品的介电常数: ε溶 = C'溶-C x

C 0

? 5. 偶极矩的计算 通过上述步骤分别计算出

P

∞2

R

∞2

之后,根据式②可得:

()

()

T

R P

T R P ∞∞∞

∞-=-=22A

22128

.0πN 49k μ ?

三、仪器与试剂

(1)仪器

电容测量仪、25mL 容量瓶,移液管、电子天平、阿贝折射仪、滴管、烧杯、洗耳球、干燥器等。 (2)试剂

正丁醇(分析纯);环己烷(分析纯);丙酮(分析纯)

四、实验步骤

1. 溶液配制

3 溶液法测定极性分子的偶极矩

实验3 溶液法测定极性分子的偶极矩 1 目的要求 (1) 用溶液法测定乙酸乙酯的偶极矩。 (2) 了解偶极矩与分子电性质的关系。 (3) 掌握溶液法测定偶极矩的主要实验技术。 2 基本原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不 重合。前者称为非极性分子,后者称为极性分子。 图18-1电偶极矩示意图 图18-2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ 的概念来度量分子极性的大小,如图18-1所示, 其定义是 d q ?=μ (1-1) 式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ 是一个 向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图Ⅱ-29-2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 转向 P 与永久偶极矩2μ的值成正比,与绝对温度T 成反比。 kT N P 3432μπ ?=转向 kT N μ π ?=9 4 (1-2) 式中:k 为玻兹曼常数,N 为阿伏加德罗常数。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱 导 来衡量。显然P 诱导可分为二项,即电子极化度P 电子和原子极化度P 原子,因此P 诱导=P 电子 +P 原子。P 诱导与外电场强度成正比,与温度无关。 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率 小于1010s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 原子电子转向P P P P ++= (1-3) 当频率增加到1012~1014的中频(红外频率)时,电子的交变周期小于分子偶极矩的松弛时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场方向定向,故转向P =0,此时极性分子的摩尔极化度等于摩尔诱导极化度诱导P 。当交变电场的频率进一步增加到>1015秒-1的高频(可见光和紫外频率)时,极向分子的转向运动和分子骨架变形都跟不上电场的变化。此时极性分子的摩尔极化度等于电子极化度电子 P 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子摩尔转向极化度转向P ,然后代入(18-2)式就可算出极性分子的永久偶极矩μ来。 (2) 极化度的测定:克劳修斯、莫索和德拜从电磁场理论得到了摩尔极化度P 与介电常数ε之间的关系式: ρ εεM P ?+-= 21 (1-4) 式中,M 为被测物质的分子量;ρ为该物质在TK 下的密度;ε可以通过实验测定。 但(1-4)式是假定分子与分子间无相互作用而推导得到的。所以它只适用于温度不太低的气相体系,对某些物质甚至根本无法获得气相状态。因此后来提出了用一种溶液来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞2P ,就可以看作为(1-4)式中的P 。 海台斯纳特首先利用稀释溶液的近似公式。

稀溶液法测定偶极矩

华南师范大学实验报告 学生姓名学号 2 专业化学(师范)年级、班级2009级化6 课程名称结构化学实验项目稀溶液法测定偶极矩 实验类型验证综合实验时间2011 年12 月 2 日 实验指导老师实验评分 一、实验目的 1.掌握溶液法测定偶极矩的主要实验技术 2.了解偶极矩与分子电性质的关系 3.测定正丁醇的偶极矩 二、实验原理 1.偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。

1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是 qd =→ μ ① 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10 m ,电荷的数量级为10-20 C ,所以偶极矩的数量级是10-30 C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。 kT 9μ πN 4P A μ= ② 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a ③

偶极矩的测定

偶极矩的测定 XXX 中国科学技术大学材料科学与工程系,合肥 联系人Email :XXX 摘要:本实验通过溶液法测定正丁醇偶极矩。通过测定不同浓度正丁醇的环己烷稀溶液的折射率、密度、介电常数,利用外推法得到一系列数据,从而计算得到正丁醇分子的偶极矩。 关键词: 偶极矩溶液法外推法正丁醇极性分子 ABSTRACT:In this experiment,we determined the dipole moment of Butanol by usingsolution method.Wemeasuredthe density, dielectric constantand refractive index of Butanol cyclohexane solution. Then we used extrapolation to determine the relative value which help calculate the dipole moment of Butanol. Key word: Dipole momentButanol Solution method extrapolation Polar molecule 前言 偶极矩是分子结构的重要参数, 在无机化学、分析化学、有机化学、物理化学中都有涉及。它对判断分子的空间结构, 了解分子中的电荷分布、极性、对称性有重要作用。 分子结构可以被看成是由电子和分子骨架所构成。由于其空间构型不同其正负电荷中心可以重合,也可以不重合,前者称为非极性分子,后者称为极性分子,分子的极性可用偶极矩μ=q?r 来表示。式中r是两个电荷中心间距矢量,方向是从正电荷指向负电荷。q为电荷量,一个电子的电荷为4.8×10-10CGSE,而分子中原子核间距为1? = 10-8cm的量级,所以偶极矩的量级为:μ = 4.8×10-10×10-8 = 4.8×10-18 CGSE×cm = 4.8 Debye,即1 Debye = 10-18 CGSE×cm。电介质分子处于电场中,电场会使非极性分子的正负电荷中心发生相对位移而变得不重合,电场也会使极性分子的正负电荷中心间距增大这样会使分子产生附加的偶极矩(诱导偶极矩)。这种现象称为分子的变形极化。 如将电介质置于交变电场中,则其极化和电场变化的频率有关。交变电场的频率小于1010秒-1时,极性分子的摩尔极化度P中包含了电子原子和取向的贡献。当频率增加到1012-1014秒-1时,电场的交变周期小于分子偶极矩的松弛时间,极性分子的取向运动跟不上电场的变 化,这时极性分子来不及沿电场取向,故P O = 0。当交变电场的频率进一步增加到大于1015 秒-1高频场时,分子的取向和分子骨架的变形都跟不上电场的变化,这时的摩尔极化度称为摩尔折射度R。 这样我们用交变频率为1000HZ的交流电桥测出电容池中各浓度下溶液的电容,用此电容除以真空下电容池的电容即得介电常数。用阿贝折射仪测出可见光下各溶液的折射率,再用分析天平测出各溶液的密度,可定出α、β、γ,而后算出P∞和R∞,进而算出分子的永久偶 极矩μ。 1实验部分 (i)试剂. 正丁醇(分析纯,国药集团化学试剂有限公司) 环已烷(分析纯,国药集团化学试剂有限公司) (ii)仪器. 2W AJ型阿贝折射仪(上海申光仪器仪表有限公司) PCM-1A型精密电容测量仪(南京南大万和科技有限公司)

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩 一、实验目的 (1)掌握溶液法测定偶极矩的主要实验技术 (2)了解偶极矩与分子电性质的关系 (3)测定正丁醇的偶极矩 二、实验原理 2.1偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。 1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是 qd =→ μ (1) 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负,的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。 kT 9μ πN 4P A μ= (2) 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a (3) 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 P = P μ+ P e +P a (4) 介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就

偶极矩的测定

偶极矩的测定 一、实验目的: 1.用溶液法测定CHCl 3的偶极矩 2.了解介电常数法测定偶极矩的原理 3.掌握测定液体介电常数的实验技术 二、基本原理: 1. 偶极矩与极化度 分子结构可近似地被看成是由电子云和分子骨架(原子核及内层电子)所构成的,分子本身呈电中性,但由于空间构型的不同,正、负电荷中心可重合也可不重合,前者称为非极性分子,后者称为极性分子。分子极性大小常用偶极矩来度量,其定义为: qd =μ (1) 其中q 是正负电荷中心所带的电荷,d 为正、负电荷中心间距离,μ 为向量,其方向规定为从正到负。因分子中原子间距离的数量级为10-10m ,电荷数量级为10-20C ,所以偶极矩的数量级为10-30C ·m 。 极性分子具有永久偶极矩。若将极性分子置于均匀的外电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔定向极化度P u 来衡量。P u 与永久偶极矩平方成正比,与热力学温度T 成反比 kT N kT L P A 2 294334μπμπμ==(A N kTP πμμ49=) (2) 式中k 为玻尔兹曼常数,N A 为阿伏加德罗常数。 在外电场作用下,不论是极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,为电子极化和原子极化之和,分别记为P e 和P a ,则摩尔极化度为: P m = Pe + Pa + P μ (3) 对于非极性分子,因μ=0,所以P= Pe + Pa 外电场若是交变电场,则极性分子的极化与交变电场的频率有关。当电场的频率小于1010s -1 的低频电场或静电场下,极性分子产生的摩尔极化度P m 是定向极化、电子极化和原子极化的总和,即P m = Pe + Pa + P μ。而在电场频率为1012s -1~1014 s -1的中频电场下(红外光区),因为电场的交变周期小,使得极性分子的定向运动跟不上电场变化,即极性分子无法沿电场方向定向,则P μ= 0。此时分子的摩尔极化度P m = P e + P a 。当交变电场的频率大于1015s -1(即可见光和紫外光区),极性分子的定向运动和分子骨架变形都跟不上电场的变化,此时Pm = Pe 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P m ,在红外频率下测得极性分子的摩尔诱导极化度P 诱导,两者相减得到极性分子的摩尔定向极化度P u ,带入(2)式,即可算出其永久偶极矩μ。 因为Pa 只占P 诱导中5%~15%,而实验时由于条件的限制,一般总是用高频电场来代替中频电场。所以通常近似的把高频电场下测得的摩尔极化度当作摩尔诱导偶极矩。 2.极化度和偶极矩的测定 对于分子间相互作用很小的体系,Clausius-Mosotti-Debye 从电磁理论推得摩尔极化度P 于介电常数ε之间的关系为 d M P ?+-= 21εε (4) 式中:M 为摩尔质量,d 为密度。 上式是假定分子间无相互作用而推导出的,只适用于温度不太低的气相体系。但测定气相介电常数和密度在实验上困难较大,所以提出溶液法来解决这一问题。溶液法的基本思想是:在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞ P 就可看作为上式中的P ,即:

溶液法测定偶极矩结构化学实验二

结构化学实验二 溶液法测定极性分子的偶极矩 一、实验目的 1.用溶液法测定正丁醇的偶极矩 2.了解偶极矩与分子电性质的关系 3. 掌握溶液法测定偶极矩的实验技术 二、实验原理 1.偶极矩与极化度 两个大小相等方向相反的电荷体系的偶极矩定义为: μ=q d (1) 极性分子在电场作用下极化程度可用摩尔定向极化度P定向来衡量: P定向=4/3πN A*μ02/(3kT)=4/9πN A*μ02/(kT) (2) 极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和: P=P定向+P诱导=P定向+P电子+P原子(3) 2. 溶液法测定偶极矩 无限稀释时溶质的摩尔极化度的公式: P=P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1(9) 习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P 定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式: P电子=R2∞=(n12-1)/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1] (13) 稀溶液的近似公式:

ε溶=ε1(1+α* x2) (7) ρ溶=ρ1(1+β*x2) (8) n溶=n1(1-γ*x2) (12) 由P定向=P2∞-R2∞=4/9πN A*μ02/(kT) (14) 得μ0=0.0128*[(P2∞-R2∞)*T]1/2 (D)(15) 需测定参数:α,β,γ,ε1,ρ1 n1 三、仪器和试剂 仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球两个 试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮 四、实验步骤 1.溶液的配制 配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。 2.折光率的测定 用阿贝折光仪测定环己烷和各配制溶液的折光率。测定时注意各样品需加样三次,每次读取一个数据,取平均值。 3.介电常数的测定 (2)电容C0 和Cd 的测定:本实验采用环己烷为标准物质,其介电常数

溶液法测定极性分子的偶极矩

溶液法测定极性分子的偶极矩 I. 目的与要求 一、 用溶液法测定乙酸乙酯的偶极矩 二、 了解偶极矩与分子电性质的关系 三、 掌握溶液法测定偶极矩的实验技术 I I. 基本原理 一、偶极矩与极化度 分子结构可以近似地被石成是由电子。和对于骨架(原子核及内层电子)所构成的。由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。 图1 电偶极矩示意图 1912年,德拜(Debye )提出―偶极矩‖μ的概念来度量分子极性的大小,如图1所示,其定义是 d q ?=μ (1) 式中 q 是正、负电荷中心所带的电荷量,d 为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。因分子中原子间距离的数量级为1010 -m ,电荷的数量级为2010-C ,所以偶极矩的数量级是3010-C·m 。 通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶极矩的统计值等于零。若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度转向P 来衡量。 转向P 与永久偶极矩平方成正比,与热力学温度T 成反比 kT L kT L P 2294334μπμπ=?=转向 (2)

式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。 在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度诱导P 来衡量。显然,诱导P 可分为二项,即电子极化度电子P ,和原子极化度原子P ,因此诱导P = 电子P + 原子P 。诱导P 与外电场强度成正比,与温度无关。 如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。当处于频率小于1010-s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和 P = 转向P + 电子P + 原子P (3) 当频率增加到1210-~1410-s -1的中频(红外频率)时,电场的交变周期小于分子偶极矩的弛豫时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场定向,故转向P = 0。此时极性分子的摩尔极化度等于摩尔诱导极化度诱导P 。当交变电场的频率进一步增加到大于1510-s -1的高频(可见光和紫外频率)时,极性分子的转向运动和分子骨架变形都跟不上电场的变化,此时极性分子的摩尔极化度等于电子极化度电子P 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。 二、极化度的测定 克劳修斯、莫索蒂和德拜(Clausius -Mosotti -Debye )从电磁理论得到了摩尔极化度P 与介电常数ε之间的关系式 ρ εεM P ?+-=21 (4) 式中,M 为被测物质的摩尔质量,ρ是该物质的密度,ε可以通过实验测定。 但(4)式是假定分子与分子间无相互作用而推导得到的,所以它只适用于温度不太低的气相体系。然而测定气相的介电常数和密度,在实验上困难较大,某些物质甚至根本无法使其处于稳定的气相状态。因此后来提出了一种溶液法来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞2P 就可以看作为(4)式中的P 。 海德斯特兰(Hedestran )首先利用稀溶液的近似公式 ()211x αεε+=溶 (5) ()211x βρρ+=溶 (6) 再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式 ()1 1211112112022123lim 2ρβεερεαεM M M P P P x -?+-+?+===→∞ (7) 上述(5)、(6)、(7)式中,溶ε、溶ρ是溶液的介电常数和密度,2M 、2x 是溶质的摩尔质量和摩尔分数,1ε、1ρ和1M 分别是溶剂的介电常数、密度和摩尔质量,α、β在

偶极矩的测定--用小电容测量仪测偶极矩(带思考题答案)

用小电容测量仪测偶极矩 【实验目的】 1. 掌握溶液法测定偶极矩的原理、方法和计算。 2. 熟悉小电容仪、折射仪的使用。 3. 用溶液法测定正丁醇的偶极矩,了解偶极矩与分子电性质的关系。 【实验原理】 1.偶极矩与极化度 分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,其定义为 μ=gd(1) 式中,g为正、负电荷中心所带的电荷量;d是正、负电荷中心间的距离。偶极矩的SI单位是库米(C·m)。而过去习惯使用的单位是德拜(D),1D=×10-30C·m。 若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。极化的程度用摩尔极化度P来度量。P是转向极化度(P转向)、电子极化度(P电子)和原子极化度(P原子)之和, P =P转向+ P电子+ P原子(2) 其 中, (3) 式中,N A为阿佛加德罗(Avogadro)常数;K为玻耳兹曼(Boltzmann)常数;T为热力学温度。 由于P原子在P中所占的比例很小,所以在不很精确的测量中可以忽略P原子,(2)式可写成 P = P转向 + P电子 (4) 只要在低频电场(ν<1010s-1)或静电场中测得P;在ν≈1015s-1的高频电场(紫外可见光)中,由于极性分子的转向和分子骨架变形跟不上电场的变化,故P转向=0,P原子=0,所以测得的是P电子。这样由(4)式可求得P转向,再由(3)式计算μ。 通过测定偶极矩,可以了解分子中电子云的分布和分子对称性,判断几何异构体和分子的立体结构。 2.溶液法测定偶极矩 所谓溶液法就是将极性待测物溶于非极性溶剂中进行测定,然后外推到无限稀释。因为在无限稀的溶液中,极性溶质分子所处的状态与它在气相时十分相近,此时分子的偶极矩可按下式计算: (5) 式中,P∞2和R∞2分别表示无限稀时极性分子的摩尔极化度和摩尔折射度(习惯上用摩尔折射度表示折射法测定的P电子);T是热力学温度。 本实验是将正丁醇溶于非极性的环己烷中形成稀溶液,然后在低频电场中测量溶液的介电常数和溶液的密度求得P∞2;在可见光下测定溶液的R∞2,然后由(5)式计算正丁醇的偶极矩。 (1)极化度的测定 无限稀时,溶质的摩尔极化度P∞2的公式为

实验一、稀溶液法测偶极矩

实验二十二 稀溶液法测偶极矩 一、目的要求 1.用溶液法测定极性分子的偶极矩,了解偶极矩与分子电性质的关系。 2.掌握稀溶液法测定偶极矩的实验技术。 二、原理 偶极矩是表示分子中电荷分布情况的物理量,它的数值大小可以量度分子的极性。偶极矩是一个向量,规定其方向由正到负,定义为分子正负电荷中心所带的电荷量q与正负电荷中心之间的距离d的乘积: μ = q d (1) 从分子的偶极矩数据的大小可以了解分子的对称性、空间构型等结构特征。由于分子中原子间距离数量级是10-8cm,电子电量数量级是10-10静电单位,故分子偶极矩的单位习惯上用"德拜(Debye)"表示,记为D,它与国际单位库仑米(c m)的关系为: 1D=1×10-18静电单位厘米=3.336×10-30C m (2) 偶极矩的大小与配合物中的原子排列的对称性有关。对于[M A2B2]或[M A4B2]型配合物,他们的反式构型应具有对称中心,其偶极矩为0或者比较小,而顺式构型要大得多。应用这一方法的必要条件是配合物在非极性溶剂中要有一定的溶解度。 分子偶极矩通常可采用微波波谱法、分子束法、介电常数法等几种方法进行测量。由于受仪器和样品的局限,前两种方法使用极少,文献上发表的偶极矩数据均来自介电常数法。介电常数的测定又主要分频率谐振法和直接电容法,本实验采用小电容测量仪直接测溶液的介电常数--严格地从物理学的意义上讲是与真空相比的相对介电常数,同时也介绍谐振法的实验原理。 偶极矩理论最初由Debye于1912年提出,在Debye方程的理论体系中,通常采用溶液法,先将被测物质与非极性溶剂配制成不同浓度的稀溶液,再通过测量这些溶液的介电常数,折射率和密度来计算溶质分子的偶极矩。 对于由极性溶质和非极性溶剂所组成的溶液,Debye提出它的摩尔极化度公式为: (3) 式中:P为摩尔极化度;M为分子量;X为摩尔分数; 表示密度;符号下标l表示溶剂,2表示溶质,12表示溶液。 摩尔极化度P与介电常数ε之间关系为: (4) 极性分子在交变电场中所产生的摩尔极化度是转向极化、电子极化和原于极化的总

29 偶极矩的测定

实验二十九 偶极矩的测定 1 目的要求 (1) 用溶液法测定乙酸乙酯的偶极矩。 (2) 了解偶极矩与分子电性质的关系。 (3) 掌握溶液法测定偶极矩的主要实验技术。 2 基本原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。前者称为非极性分子,后者称为极性分子。 图18-1电偶极矩示意图 图18-2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ的概念来度量分子极性的大小,如图18-1所示,其 定义是 (18-1) 式中,q 是正负电荷中心所带的电量; 为正负电荷中心之间的距离;μ? 是一个向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图Ⅱ-29-2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 与永久偶极矩 的值成正比,与绝对温度T 成反比。 KT N P 3432 μπ??=转向 KT N μ π? ? =94 (18-2) 式中:K 为玻兹曼常数,N 为阿伏加德罗常数。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然P 诱导可分为二项,即电子极化度P 电子和原子极化度P 原子,因此P 诱导=P 电子+P 原子。P 诱导与外电场强度成正比,与温度无关。 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 d q ?=μ? d 转向P 2μp

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩 、实验目的 (1)掌握溶液法测定偶极矩的主要实验技术 (2)了解偶极矩与分子电性质的关系 (3)测定正丁醇的偶极矩 二、实验原理 2.1偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。 1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是 卩qd (1) 式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;卩是 一个矢量,其方向规定为从正到负,的数量级是10-3°Cm 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来 鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P卩来衡量。R与永久偶极矩卩的平方成正比,与绝对温度T成反比。

(2) (6) 4 nN A A 巳-9kF 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;A 为分子 的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架 的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导 摩尔极化度P 与介电常数c 之间的关系式。 极化度 P 诱导来衡量。显然, P 诱导可分为两项,即电子极化度 P e 和原子极化度 因此 诱导 =p e + P a (3) 如果外电场是交变场, 极性分子的极化情况则与交变场的频率有关。 当处于 频率小于101O H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度 P 是转向 极化、电子极化和原子极化的总和。 A + P e +R (4) 介电常数实际上是在107HZ 一下的频率测定的,测得的极化度为 P A + P e +P a 。 若把频率提高到红外围,分子已经来不及转向,此时测得的极化度只有 P e 和 P a 的贡献了。所以从按介电常数计算的P 中减去红外线频率围测得的极化,就等于 P A , 在实验上,若把频率提高到可见光围,则原子极化也可以忽略,则在可见光 围: A =P -( P e +P a ) e P - P (5) 2.2 摩尔极化度的计算

稀溶液法测定偶极矩实验报告

结构化学实验报告 题目:稀溶液法测定偶极矩 报告作者: 学号: 班级: 指导老师: 实验时间:2016年11月21日

稀溶液法测定偶极矩 一、【实验目的】 1. 掌握溶液法测定偶极矩的主要实验技术 2. 了解偶极矩与分子电性质的关系 3. 测定乙酸乙酯的偶极矩 二、【实验原理】 1.偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。 1912年德拜提出“偶极矩”的概念来度量分子极性的大小,其定义式为 qd =→ μ ① 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。 kT 9μ πN 4P A μ= ② 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a ③ 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 P = P μ+ P e +P a ④ 如何从测得的摩尔极化度P 中分别出P μ的贡献呢?介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就等于P μ,在实验上,若把频率提高到可见光范围,则原子极化也可以忽略,则在可见光范围:

稀溶液法测定极性分子的偶极矩0109(精)

稀溶液法测定极性分子的偶极矩 一、实验目的 1. 掌握溶液法测定偶极矩的原理、方法和计算。 2. 熟悉小电容仪、折射仪和比重瓶的使用。 3. 测定正丁醇的偶极矩,了解偶极矩与分子电性质的关系。 二、实验原理 1. 分子的极性 分子是由带正电荷的原子核和带负电荷的电子组成的。分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,其定义为 μ=qd (1) 式中:q 为正、负电荷中心所带的电荷量,单位是C ;d 是正、负电荷中心的距离,单位是m 。μ是偶极矩,单位是(SI 制)库[仑]米(C·m)。而过去习惯使用的单位是德拜(D): 1D =1×10-18静电单位·厘米=3.338×10-30C·m 在不存在外电场时,非极性分子虽因振动,正负电荷中心可能发生相对位移而产生瞬时偶极矩,但宏观统计平均的结果,实验测得的偶极矩为零。极性分子具有永久偶极矩,由于分子热的运动,偶极矩在空间各个方向的取向几率均等,统计值等于零。若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。极化的程度用摩尔极化度P 来度量。分子因转向而极化的程度用摩尔转向极化度P 转向 来表示,因变 形而极化的程度用摩尔变形极化度P 变形来表示。而P 变形又由P 电子 (电子极化度)和P 原子 (原子极化度)两部分组成,于是有 P =P 转向+P 变形=P 转向+(P 电子+P 原子) (2) P 转向 与永久偶极矩的平方μ2的值成正比,与热力学温度T 成反比: kT N p A 33441 2 0μππε???=转向 (3) 式中:N A 为阿佛加德罗(Avogadro)常数;k 为玻耳兹曼(Boltzmann)常数。 由于P 原子在P 中所占的比例很小,所以在不很精确的测量中可以忽略P 原子,(2)

偶极矩实验测定

【数据处理】 1.实验数据 室温T=22.9℃大气压P=101.93kpa 盐酸浓度=1.869mol/l 碘溶液浓度=0.01888mol/l 丙酮溶液浓度=2.0807mol/l [30.0℃] T 碘溶液 = 45.2% 时间t 0 2 4 6 8 10 12 14 透光率T1 % 52.4 54.7 56.9 59.2 61.9 64.4 66.8 70.1 lgT1-0.2807 -0.2620 -0.2449 -0.2277 -0.2083 -0.1911 -0.1752 -0.1543 16 18 20 22 24 26 28 30 32 72.6 75.5 78.9 82.2 85.7 89.0 92.4 96.3 100.0 -0.1391 -0.1221 -0.1029 -0.0851 -0.0670 -0.0506 -0.0343 -0.0164 0.0000 [35.0℃] T 碘溶液 = 45.6% 时间t 0 1 2 3 4 5 6 7 8 9 10 11 透光率T2 % 50.9 53.3 54.3 55.0 56.8 57.7 59.6 61.6 63.6 65.7 67.8 69.9 lgT2-0.29 33 -0.27 36 -0.26 49 -0.25 96 -0.24 59 -0.23 88 -0.22 51 -0.21 04 -0.1 967 -0.18 24 -0.16 87 -0.15 55 12 13 14 15 16 17 18 19 20 21 72.1 75.3 77.7 80.2 82.8 86.1 88.9 91.9 94.8 97.8 -0.1418 -0.1232 -0.1095 -0.0958 -0.0821 -0.0650 -0.0513 -0.0367 -0.0230 -0.0097 2.将lgT对t作图,求反应速率常数

物理化学实验报告_偶极矩

华南师范大学实验报告 课程名称:结构实验 实验项目:稀溶液法测定偶极矩 实验类型:□验证□设计□综合 实验时间:2009年11月20日 一、实验名称:稀溶液法测定偶极矩 二、实验目的 (1) 掌握溶液法测定偶极矩的主要实验技术。 (2) 了解偶极矩与分子电性质的关系。 (3) 用溶液法测定乙酸乙酯的偶极矩。 三、实验原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。前者称为非极性分子,后者称为极性分子。 图1电偶极矩示意图 图2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ 的概念来度量分子极性的大小,如图1所示,其定义是 (1) 式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ 是一个向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 与永久偶极矩 的值成正比,与绝对温度T 成反比。 KT N P 3432μπ ?=转向 d q ?=μ 转向P 2μ

稀溶液法测定偶极矩 2013.11.12

华 南 师 范 大 学 实 验 报 告 一、实验目的 1. 掌握溶液法测定偶极矩的主要实验技术 2. 了解偶极矩与分子电性质的关系 3. 测定乙酸乙酯的偶极矩 二、实验原理 1.偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。 偶极矩的定义式为 qd =→ μ ① 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。 kT 9μ πN 4P A μ= ② 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a ③

偶极矩的测定

偶极矩的测定 一、实验目的: 1.用溶液法测定CHCl 3的偶极矩 2.了解介电常数法测定偶极矩的原理 3.掌握测定液体介电常数的实验技术 二、基本原理: 1. 偶极矩与极化度 分子结构可近似地被看成是由电子云和分子骨架(原子核及内层电子)所构成的,分子本身呈电中性,但由于空间构型的不同,正、负电荷中心可重合也可不重合,前者称为非极性分子,后者称为极性分子。分子极性大小常用偶极矩来度量,其定义为: qd =μ (1) 其中q 是正负电荷中心所带的电荷,d 为正、负电荷中心间距离,μ 为向量,其方向规定为从正到负。因分子中原子间距离的数量级为10-10m ,电荷数量级为10-20C ,所以偶极矩的数量级为10-30C ·m 。 极性分子具有永久偶极矩。若将极性分子置于均匀的外电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔定向极化度P u 来衡量。P u 与永久偶极矩平方成正比,与热力学温度T 成反比 kT N kT L P A 2294334μπμπμ==(A N kTP πμμ49=) (2) 式中k 为玻尔兹曼常数,N A 为阿伏加德罗常数。 在外电场作用下,不论是极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,为电子极化和原子极化之和,分别记为P e 和P a ,则摩尔极化度为: P m = Pe + Pa + P μ (3) 对于非极性分子,因μ=0,所以P= Pe + Pa 外电场若是交变电场,则极性分子的极化与交变电场的频率有关。当电场的频率小于1010s -1的低频电场或静电场下,极性分子产生的摩尔极化度P m 是定向极化、电子极化和原子极化的总和,即P m = Pe + Pa + P μ。而在电场频率为1012s -1~1014 s -1的中频电场下(红外光区),因为电场的交变周期小,使得极性分子的定向运动跟不上电场变化,即极性分子无法沿电场方向定向,则P μ= 0。此时分子的摩尔极化度P m = P e + P a 。当交变电场的频率大于1015s -1(即可见光和紫外光区),极性分子的定向运动和分子骨架变形都跟不上电场的变化,此时Pm = Pe 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P m ,在红外频率下测得极性分子的摩尔诱导极化度P 诱导,两者相减得到极性分子的摩尔定向极化度P u ,带入(2)式,即可算出其永久偶极矩μ。 因为Pa 只占P 诱导中5%~15%,而实验时由于条件的限制,一般总是用高频电场来代替中频电场。所以通常近似的把高频电场下测得的摩尔极化度当作摩尔诱导偶极矩。 2.极化度和偶极矩的测定 对于分子间相互作用很小的体系,Clausius-Mosotti-Debye 从电磁理论推得摩尔极化度P 于介电常数ε之间的关系为 d M P ?+-=21εε (4) 式中:M 为摩尔质量,d 为密度。 上式是假定分子间无相互作用而推导出的,只适用于温度不太低的气相体系。但测定气相介电常数和密度在实验上困难较大,所以提出溶液法来解决这一问题。溶液法的基本思想是:在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞ 2P 就可看作为上式中的P ,即:

相关主题
文本预览
相关文档 最新文档