当前位置:文档之家› 轴心压杆弯扭屈曲分析和对比

轴心压杆弯扭屈曲分析和对比

轴心压杆弯扭屈曲分析和对比
轴心压杆弯扭屈曲分析和对比

对于轴心受压杆件,其屈曲形式通常有三种:弯曲屈曲、扭转屈曲、弯扭屈曲。对于只有一个对称轴的截面,当剪心与形心不重合,杆件绕对称轴弯曲时,产生的剪力不经过截面剪心,必然导致扭转。因此,当截面绕对称轴弯曲刚度较小,抗扭转刚度也不大时,扭屈曲就成为这种杆件承载力的极限状态。

《钢结构设计规范》(GBJ 17—88)没有特别提出关于轴心压杆弯扭屈曲计算条文,这样处理有计算简单的优点,即按照弯曲屈曲来计算,但也有不利的一面,即设计者可能忽略弯扭屈曲的特点,从而在某些必须考虑扭转的情况下造成疏忽。

下面以单角钢杆件为例:单角钢截面尺寸为L100 6,长2.4m ,两端铰支,其中点设一支撑,则有λy = 61.5 ,λx = 60 (y轴为对称轴), 即绕强轴y 屈曲对承载力起控制作用。更因强轴是对称轴,扭转的不利作用不能忽视,这一作用根据本文的方法进行换算, λy = 61.5×1.5=92.3,如果忽略扭转影响, 直接以λ

y=61.5计算,则稳定系数偏大15 %。这样处理杆件的实际承载力超出了其计算的承载力,势必存在潜在的危险。有鉴于此,本文就弯扭屈曲问题进行了初步研究,给出了具体计算方法,同时将国外规范与国内规范进行了对比计算和分析。

1、稳定系数

由于轴心受压构件有初弯曲、初偏心、残余应力等缺陷的影响,其承载力大大降低,因此在具体计算时必须用特定条件加以限制。到目前为止,世界各国钢结构设计规范中的处理方法可概括为四种:

(1)按理想轴心受压构件计算,在弹性阶段采用欧拉公式,在弹塑性阶段采用试验曲线,初偏心、初弯曲、残余应力不利影响用特殊安全系数来考虑。

(2)按理想轴心受压构件计算,在弹性阶段采用欧拉临界应力,在弹塑性阶段采用切线模量临界应力,各种不利影响因素用特殊安全系数来考虑。

(3)把初弯曲、初偏心、残余应力等各种缺陷综合考虑成一等效的与长细比有关的初弯曲或初偏心率,利用边缘纤维屈服准则的佩利公式,导出边缘纤维的截面平均应力作为临界应力。

(4)考虑初弯曲、初偏心、残余应力缺陷,采用极限承载力理论进行计算。“规范”(GBJ 17—88)规定采用第4 种方法,采用一个与长细比λ有关的系数,

以多条柱子曲线表达,给出λ--φ曲线。“规范”(GBJ 17--88)共计算了96 条曲线,按同类截面的平均值划分为三组a 、b 、c ,其值与欧洲规范ECCS 的a 、

b 、

c 非常接近。不同之处在于以下三点:(1)我国的φ曲线没有λ~从0~0.2的水

平段。(2)ECCS 规定当板件厚度超过40 mm 时型钢截面增加了一条更低的d 曲线;对于屈服强度f y =430 MPa 的钢材,规定了一条比a 高的a 0曲线。(3)《民用建筑钢结构技术规程》(JGJ99 –98)建议d 曲线,它适用于翼缘厚度大于40 mm 且具有轧制边的焊接工型截面绕弱轴弯曲和厚度大于80 mm 且b/h ≥0.8的热轧H 型钢。为了方便,φ曲线采用Perry-Robertson 公式:

()[]()[]2020/14/112//11λελεφ-++-++= (1)

式中, λ为相对长细比,按以下方法计算:把弹性扭转屈曲应力A P /ωωσ=与弹性弯曲屈曲应力ωωλπσ/2E =二者进行等效,导出换算长细比ωωσπλE =与相对长细比E f y

πλλω

=。0ε为等效偏心率。按照不同国家钢结构规范计算出轴心

受压构件的等效偏心率如表1所示。

表1 轴心受压杆件的等效偏心率

2、轴心受压构件稳定计算

轴心受压构件稳定计算公式: P/ (φA ) ≤ f 0。弯扭屈曲首先计算出换算长细比为λω ,而后按照长细比为λω 的轴心受压构件按弯曲屈曲验算稳定性。表2

给出了三个国家不同钢结构规范的轴心受压构件稳定计算公式,以供参考。

表 2 不同规范的轴心受压构件稳定计算公式

3、计算实例

图1 截面尺寸及残余应力 已知杆件截面残余应力的峰值为y σ3.0 ,如图1 所示。构件两端简支,长5 m ,G = 0.79×105 MPa ,y σ = 235 MPa ,f y = 235 MPa , E = 2.06 ×105 MPa ,计算杆件的轴力设计值。

首先计算截面的几何性质:

A = 32 cm 2 , y 0 = -4.25 cm ,I K = 10.67cm 4 ,

02τ= 57.46 cm 2 ,x τ = 5.36 cm ,λx = 93.3,

y τ= 3.2cm ,λy = 156 ,I x = 919.3cm 4

杆件的强度计算公式资料讲解

杆件的强度、刚度和稳定性计算 1.构件的承载能力,指的是什么? 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 2.什么是应力、正应力、切应力?应力的单位如何表示? 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 应力的单位为Pa。 1 Pa=1 N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1 MPa=106Pa 1 GPa=109Pa 3.应力和内力的关系是什么? 答:内力在一点处的集度称为应力。 4.应变和变形有什么不同? 答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 5.什么是线应变?什么是横向应变?什么是泊松比? 答:(1)线应变 单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l? = ε (4-2) 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 (2)横向应变 拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a,变形后为a1,则横向变形为 a a a- = ? 1 横向应变ε/为

拉压杆模型在桥梁工程中的应用

拉压杆模型在桥梁工程中的应用 摘要:拉压杆模型法对于D区的受力分析和配筋设计有较大的优势,本文介绍了拉压杆模型的构成,以桥梁结构中的锚固区、托臂、承台等常见的结构D 区为例,介绍了拉压杆模型在桥梁结构中的应用实例,对拉压杆模型的研究进行了展望并指出了拉压杆模型法存在的不足。 关键词:拉压杆模型锚固区托臂承台 0 引言 混凝土结构计算中,按照是否符合平截面假定,分为B区与D区,B区(Beam 或Bernoulli)指截面应变分布基本符合平截面假定的区域,截面应力状态可以通过内力得出,在未开裂时,截面应力可借助于截面性质(如面积、惯矩等)来计算。开裂后,则可应用桁架模型来分析。D区(Discontinuity或Disturbance)则指截面应变分布呈明显的非线性的结构区域,这些部位具有几何构造上的不连续或力流受挠动的特点,从弹性阶段开始平截面应变假定在这些区域就已不再成立,随着荷载的增加,梁截面的抗弯塑性发展模型不能够揭示其破坏机理[1]。D区位于受集中荷载作用、几何不连续、支座处等。 我国桥梁绝大多数是混凝土桥梁,对于混凝土结构国内现行的规范依然用截面分析法和经验法以确定结构的内力和配筋设计,采用平截面假定计算B区能满足工程精度的要求,D区则精度较差,可能导致一系列的工程问题,如开裂、局部破坏等。拉压杆模型方法是一种以力学原理为基础的方法,可适用于D区。拉压杆模型是一种与结构或构件实际受力较符合的设计方法,尤其在处理如锚固区、托臂、深梁、桥墩、承台等常见的D区受力时具有较大的优势。美国、加拿大、新西兰、德国等国家已将拉压杆模型作为D区的设计方法列入规范中,说明拉压杆方法已正式进入实用阶段。 1拉压杆模型的构成 拉压杆模型源于桁架模型,由拉杆、压杆和节点区构成来反应结构构件中力流的传递过程,拉杆作为受拉构件,压杆作为受压构件,节点区有效的将拉杆与压杆连接起来共同受力,能够把结构中所受到的荷载传递到支座或相邻的B区。根据结构受力的特点,可将节点区分为CCC、CCT、CTT、TTT。其中,T为拉杆和C为压杆,如图1所示。常见的压杆由甁形压杆、扇形压杆及棱柱形压杆,如图2所示。 图 1 节点区分类

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

压杆-拉杆模型在混凝土结构设计中的应用

压杆-拉杆模型在混凝土结构设计中的应用在现今工程结构设计中,压杆-拉杆方式组件得到了较多的应用,其不仅是对结构修复、 评估的重要工具,也能够在对承载能力进行评估的同时实现加固方案的制定。对此,即需要 能够做好该技术重点的把握,将其更好的应用到工程建设当中。 2 加固工程中压杆-拉杆模型应用 在混凝土构件分析中,压杆-拉杆的应用方式有以下方面:第一,对结构扰乱区域边界 进行确定,并对其边界区域应力进行分析;第二,将扰乱区域结构理想化为铰接桁架,对于 该结构来说,其需要具有混凝土压杆工作开展中对于钢筋布置、尺寸以及细节等方面的规定;第三,对模型进行分析,以此对该模型中不同杆件的力进行确定;第四,在获得分析结果的 基础上对模型中不同杆件的承载能力进行校核;第五,对钢筋细节以及节点区进行设计,以 此保证钢筋具有足够的细节以及锚固长度,避免碎裂情况发生。 在很多工程中,其都通过对压杆-拉杆模型的应用对反复迭代的过程进行设计,其具体 情况为:在对钢筋结构进行评估,使其拥挤程度以及钢筋用量都处于最小值时,迭代可以说 是必须的一项内容,对于压杆-拉杆模型来说,其在实际进行分析处理时是按照单个荷载情况 进行的。对此,在实际对程序进行设计时,就需要先做好其荷载控制情况的设计。对于上述 方式来说,在对新结构赶紧进行处理时较为适当,而在修复以及加固工作中,应用方式则相 对来说更为复杂,在很多情况下,我们可以按照新设计的方式对该类工程进行分析,但需要 了解的是,修复同加固工程相比还具有着较多的不同之处。复杂性方面,在加固工程中对压 杆-拉杆模型机型应用主要在结构承载能力评估方面存在一定的难度,而对于该种评估来说, 在对加固数量进行确定时可以说是十分必要的,即在对实际结构强度进行评估的基础上包括 有材料截面以及强度的几何尺寸确认。在很多情况下,在分析时也需要对由于腐蚀损害而引 起的承载力损失进行充分估计,其中包括有混凝土截面以及钢筋截面损失等,可以说,对现 有强度进行精确估计在对加固费用的降低方面具有十分积极的意义。 在对现有结构强度评估工作完成之后,则需要对加固同原有结构间力的分配进行计算, 在这部分结构件对作用力传递设施进行设置的同时保证加固完成后结构能够具有较好的整体性。对于这部分传力作用来说,可以通过适当机械传力部件的设置进行完成,并保证不同结 构间在位移方面能够具有良好的相容性。这对于结构组合性能的获得具有十分积极的意义, 而在部分应用中,结构镶裹对组合性能进行获得也可以说是必需的一项内容。而如果原结构 具有较为严重的腐蚀情况,在对修复方案进行制定时则需要将腐蚀情况的减少作为一项重点 问题进行考虑,此时可以对下述措施进行考虑:第一,对受到氯离子污染的混凝土进行清除,并将暴露钢筋修饰物进行清除;第二,通过防腐剂的施加对继续发生的腐蚀情况进行减少; 第三,做好细节方面设计,避免腐蚀介质进入到修复完成的区域当中;第四,对水源进行清除,如排水管道以及伸缩缝的渗漏等。 3 应用实例 某城市桥梁,为早期混凝土结构的代表工程,通过非结构性就地灌注拱方式的应用同附 近的一座拱桥进行匹配。端部方面具有缺口,支承在端部进行搭接,并同阶段悬臂梁实现衔接,以此使结构由于在长期处于氯化物以及水分环境当中而出现了较为明显的腐蚀现象。通 过腐蚀试验发现,无论是后张力锚固还是软钢筋都出现了严重的局部腐蚀情况。在后张力筋 部件受到腐蚀影响的情况下,对结构整体性方面也具有了一定的担忧,并通过挠曲模型的应 用对托臂强度进行评估,通过这部分验算可以了解到,其不存在立即被破坏的危险,但根据 其情况依然需要进行加固处理。在托壁区域,不能够对后张力及整体性进行评估,对于该种 状态无法评估的情况来说,很可能因托壁截面近乎正方形导致的,并排除了以冲击回波方式 对其空隙位置进行测定的需求。而在托壁以外的区域,也通过冲击回波试验方式的应用对管 道压浆方式存在的缺点进行了探析,通过试验方式的应用,对管道空隙位置进行确定及重新

压杆稳定性最新计算

停车库的受力分析计算 一、停车状态如下图所示 二、分析立柱受力并校核 已知:立柱截面为环形,令钢管厚度﹩=(D-d)/2为20mm 即D-d=0.02,材料选为45#, 屈服强度s σ≥355Mpa,安全系数n 取为1.5,弹性模量取为210Gpa ,泊松比取为0.26。 解:简化模型如图1所示,显然Mx>My,故按照Mx 情况进行校核。板自重m1=500Kg ,小车自重为m2=2000Kg 。分析立柱受力知其受压力和弯矩(包含风载), 故:需校核其强度 即,[]σσ≤ 1、起升载荷Q 的确定 起升载荷包括允许起升的最大汽车重量、以及载车板,因起 升高度<50米,故钢丝绳质量不计。 因起升速度≤R v 0.2m/s,故起升载荷动载系数2?05.1min ==? 故,()2221m ???+=?=g m Q F 2、 风载荷W P 的确定 qA CK P W h = C ——风力系数,用以考虑受风结构物体型、尺寸等因素对风压的影响 h K ——风力高度变化系数 q ——计算风压() 2/m N A ——立柱垂直于风向的迎风面积() 2m 正视图左视图

1) 计算风压q 风压计算公式为 2613.0q v = 风压按照沿海地区工作状态风压计算v=20m/s,故q=245.22 m /N 风压按照工作状态下的最大计算风压计算,此时q 取2502m /N ,故最终q 取250 2m /N 。 2) 风力系数C 因为离地面高度≤10m,按照海上及海岛2 .010?? ? ??h ,风压高度变化系数h K 取1.00 因为是圆管结构且10q 2≈d (q 为计算风压,d 为圆管直径),故C 取0.9 3) 迎风面积A t A A ψ= ψ——结构的充实率,t A A = ψ,钢管桁架结构ψ值取0.2-0.4,故0.3 t A ——结构或物品外形轮廓面积在垂直于风向平面上的投影() 2m h D A t =() 2m D ——立柱外径;h ——立柱高度 D D qA CK P W 675 325000.19.0h =????== 3、 强度校核1 []n s σσσ= ≤ 即[]σσ≤+= W M A F max cmax 令W M A F + = σ 2??=Q F ;()g m m Q 21+= () 22 4 d D A -= π 21M M M += M1——由重力引起的弯矩;M2——由风载引起的弯矩 ()3.121m 1?+=g m M ;h P M W *=2 1 2

立杆稳定性计算

立杆的稳定性计算: 1.不考虑风荷载时,立杆的稳定性计算 其中N ——立杆的轴心压力设计值,N=14.35kN; ——轴心受压立杆的稳定系数,由长细比l0/i 的结果查表得到0.26; i ——计算立杆的截面回转半径,i=1.58cm; l0 ——计算长度(m),由公式l0 = kuh 确定,l0=2.60m; k ——计算长度附加系数,取1.155; 1)对受弯构件: 不组合风荷载 上列式中S Gk、S Qk——永久荷载与可变荷载的标准值分别产生的内力和。对受弯构件内力为弯矩、剪力,对轴心受压构件为轴力; S Wk——风荷载标准值产生的内力; f——钢材强度设计值; f k——钢材强度的标准值; W——杆件的截面模量; φ——轴心压杆的稳定系数; A——杆件的截面面积; 0.9,1.2,1.4,0.85——分别为结构重要性系数,恒荷载分项系数,活荷载分项系数,荷载效应组合系数;

u ——计算长度系数,由脚手架的高度确定,u=1.50; 表5.3.3 脚手架立杆的计算长度系数μ

A ——立杆净截面面积,A=4.89cm2; W ——立杆净截面模量(抵抗矩),W=5.08cm3; ——钢管立杆受压强度计算值(N/mm2);经计算得到= 111.83 [f] ——钢管立杆抗压强度设计值,[f] = 205.00N/mm2; 不考虑风荷载时,立杆的稳定性计算< [f],满足要求! 2.考虑风荷载时,立杆的稳定性计算 其中N ——立杆的轴心压力设计值,N=13.56kN; ——轴心受压立杆的稳定系数,由长细比λ=l0/i 的结果查表得到0.26;λ值根据规范表进行查表得出,如下图:

混凝土结构的拉-压杆模型设计方法

2017年第1期西南公路 混凝土结构的拉-压杆模型设计方法 陶齐宇1张义志2 (1.四川省交通运输厅公路规划勘察设计研究院四川成都610041; 2.四川公路工程咨询监理公司四川成都610041 ) 【摘要】本文回顾了拉-压杆模型设计方法的发展历程,论述了拉-压杆模型设计方法的基本原理、建模方法和设计流程。拉-压杆模型设计方法是对空间问题的简化分析,既能解决空间效应问题,又易 于工程应用,具有广阔的应用前景。 【关键词】拉-压杆模型;发展历程;建模方法;设计流程 【中图分类号】TU375 【文献标识码】A 〇引言 拉-压杆模型(Stmt-and-TieModel,艮PSTM)设计方法根据自受力处至支承处在结构内部产生的应 力迹线,应用混凝土抗压、钢筋抗拉的概念,把结 构离散成由只受拉的拉杆、只受压的压杆和结点组 成的类似于桁架的简化模型来分析结构的强度并进 行配筋设计。这一方法直接抓住了结构的受力本质,而且模型内力和配筋计算也十分简便;同时,国外的研究与工程实践[1]表明:拉-压杆模型设计方 法用于计算平截面假定不成立的区域具有足够的工 程精度。 1拉-压杆模型设计方法发展概况拉-压杆模型由压杆(Strut)、拉杆(Tie )和 结点(Node)组成。压杆是拉-压杆模型中承受压 应力的构件,代表同一方向上主要承受压应力的混 凝土区域,其中心为压应力的合力中心;拉杆是拉- 压杆模型中承受拉应力的构件,代表同一方向上主 要承受拉应力的区域;而结点是用来模拟拉杆、压 杆交汇区域的,处于多向应力状态。1.1拉-压杆模型设计方法的发展历程 拉-压杆模型是由桁架模型发展而来的,桁架模 型大体经历了以下四个发展阶段: Ritter ( 1899 )和M tech ( 1902 )最先提出平 面桁架模型,将构件模拟为平行弦桁架,用于分析 受弯剪作用的钢筋混凝土梁;这一模拟促进了横向 钢筋的使用,通过这一途径增大了梁的抗剪能力。Rausch ( 1929 )将平面桁架模型推广到空间桁架模 型,视构件为由一系列抗剪平面桁架组成的空间桁 架,初步揭示了钢筋混凝土梁的抗扭机理。Ritter、M6rsch和Rausch所提出的模型为“原始桁架模 型”,模型的建立没有坚实的理论支撑,凭的是他 们的科学素养和直觉。 直到上世纪60年代后期,Nielson ( 1967 )、Lampert和Thurlimann ( 1968 )根据塑性理论,推 导出桁架模型的三个基本剪切平衡方程式,首次从 理论上X#桁架模型进行了研究。Elfgren ( 1972 )又 进一步研究了钢筋混凝土梁受扭矩、弯矩和剪力共 同作用的情况。由于这些理论的前提是钢筋的屈 服,都是基于塑性理论,因此,这个阶段的桁架模 型称为“塑性桁架模型”。 【收稿曰期】2016-05-23 【作者简介】陶齐宇(1971-),男,山东巨野人,博士研究生,高级工程师,主要从事大跨度桥梁设计研究工作。 35

!第八章压杆稳定性

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)? 解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。 15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。 解:(a) 柔度: 230 1500.4 λ?= = 相当长度:20.30.6l m μ=?= (b) 柔度: 150 1250.4 λ?== 相当长度:10.50.5l m μ=?= (c) 柔度: 0.770 122.50.4 λ?= = 相当长度:0.70.70.49l m μ=?= (d) 柔度: 0.590 112.50.4 λ?= = 相当长度:0.50.90.45l m μ=?= (e) 柔度: 145 112.50.4 λ?== 相当长度:10.450.45l m μ=?= 由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。即:() 22 cr EJ P l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为: () 2948 2 2 2 320010 1.610640.617.6410cr EJ P l N π ππμ-??? ??= ==?

() 2948 2 2 2 320010 1.610640.4531.3010cr EJ P l N π ππμ-??? ??= ==? 15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。 解: 92.6 33827452.5 p s s a λπσλ===--=== 15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr P 。若实际作用于挺杆的最大压缩力P =2.33kN ,规定稳定安全系数W n =2~5。试校核此挺杆的稳定性。 解:(1)

立杆稳定性计算

立杆得稳定性计算: 1、不考虑风荷载时,立杆得稳定性计算 其中N ——立杆得轴心压力设计值,N=14、35kN; ——轴心受压立杆得稳定系数,由长细比 l0/i得结果查表得到0、26; i ——计算立杆得截面回转半径,i=1.58cm; l0 ——计算长度(m),由公式 l0 = kuh 确定,l0=2。60m; k ——计算长度附加系数,取1、155; 1)对受弯构件: 不组合风荷载 上列式中SGk、S Qk—-永久荷载与可变荷载得标准值分别产生得内力与.对受弯构件内力为弯矩、剪力,对轴心受压构件为轴力; S Wk—-风荷载标准值产生得内力; f——钢材强度设计值;?fk——钢材强度得标准值;?W——杆件得截面模量; φ——轴心压杆得稳定系数; A——杆件得截面面积; 0、9,1、2,1、4,0、85——分别为结构重要性系数,恒荷载分项系数,活荷载分项系数,荷载效应组合系数;

u——计算长度系数,由脚手架得高度确定,u=1、50; 表5.3。3 脚手架立杆得计算长度系数μ

A --立杆净截面面积,A=4.89cm2; W ——立杆净截面模量(抵抗矩),W=5。08cm3; ——钢管立杆受压强度计算值 (N/mm2);经计算得到= 111、83 [f] ——钢管立杆抗压强度设计值,[f] = 205、00N/mm2; 不考虑风荷载时,立杆得稳定性计算〈[f],满足要求! 2、考虑风荷载时,立杆得稳定性计算 其中N——立杆得轴心压力设计值,N=13、56kN; ——轴心受压立杆得稳定系数,由长细比λ=l0/i得结果查表得到0、26;λ值根据规范表进行查表得出,如下图:

(整理)压杆稳定计算.

第16 章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F 由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F 达到屈服强度载荷F s (或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a 所示的同样粗细而比较长的杆件(图16-1b),当压力F 比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F 逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图 16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的 稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的 O 点处于平衡状态,如图 16-5a 所示。先用外加干 扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。 因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的 O 点处于平衡状态,如图 16-5c 所示。当用外加干 扰力使其偏离原有的平衡位置后, 小球将继续下滚, 不再回到原来的平衡位置。 因此, 小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的 O 点处于平衡状态,如图 16-5b 所示,当用外加干 扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置 O 1 再次处于平 衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡 状态为随遇平衡。 图 16-5 图 16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏 离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于 图 16-3

轴心受压构件的稳定性计算

轴心受压构件的稳定性计算 7.2.1 除可考虑屈服后强度的实腹式构件外,轴心受压构件的稳定性计算应符合下式要求: 式中:φ——轴心受压构件的稳定系数(取截面两主轴稳定系数中的较小者),根据构件的长细比(或换算长细比)、钢材屈服强度和表7.2.1-1、表7.2.1-2的截面分类,按本标准附录D采用。 表7.2.1-1 轴心受压构件的截面分类(板厚t<40mm)

注:1 a*类含义为Q235钢取b类,Q345、Q390、Q420和Q460钢取a类;b*类含义为Q235钢取c类,Q345、Q390、Q420和Q460钢取b类; 2 无对称轴且剪心和形心不重合的截面,其截面分类可按有对称轴的类似

截面确定,如不等边角钢采用等边角钢的类别;当无类似截面时,可取c类。 表7.2.1-2 轴心受压构件的截面分类(板厚t≥40mm) 7.2.2 实腹式构件的长细比λ应根据其失稳模式,由下列公式确定: 1 截面形心与剪心重合的构件: 1) 当计算弯曲屈曲时,长细比按下列公式计算:

式中:l0x、l0y——分别为构件对截面主轴x和y的计算长度,根据本标准第 7.4节的规定采用(mm); i x、i y——分别为构件截面对主轴x和y的回转半径(mm)。 2) 当计算扭转屈曲时,长细比应按下式计算,双轴对称十字形截面板件宽厚比不超过15εk者,可不计算扭转屈曲。 式中:I0、I t、I w——分别为构件毛截面对剪心的极惯性矩(m m4)、自由扭转常数(m m4)和扇性惯性矩(m m6),对十字形截面可近似取I w=0; I w——扭转屈曲的计算长度,两端铰支且端截面可自由翘曲者,取几何长度l;两端嵌固且端部截面的翘曲完全受到约束者,取0.5l(mm)。 2 截面为单轴对称的构件: 1) 计算绕非对称主轴的弯曲屈曲时,长细比应由式(7.2.2-1)、式(7.2.2-2)计算确定。计算绕对称主轴的弯扭屈曲时,长细比应按下式计算确定: 式中:y s——截面形心至剪心的距离(mm); i0——截面对剪心的极回转半径,单轴对称截面i20=y2s+i2x+i2y(mm);

第三节 轴向拉、压杆的强度计算——公开课

第三节 轴向拉(压)杆的强度计算 教学目的: 1、学习材料在轴向作用力下拉伸、压缩状态下的正应力; 2、理解不同材料的工作应力、极限应力和许用应力值的概念。 3懂得应用轴向拉(压)杆的强度条件进行简单的计算 教学重点难点: 1、理解材料在拉伸、压缩状态下的正应力的计算,理解许用应力的含义,理解轴向拉(压)杆的强度条件内涵。 2、运用轴向拉(压)杆的强度条件计算一般工程力学问题(三种情况下的计算) 学情分析:建筑专业学生由于之前物理和数学知识的不足,再加上学生的学习兴趣不高,对本门学科较为理论性的学习接受能力差,因此教学中多采取实例和实物模型辅助教学的方法,提高本节课的教学成效。 教学教具:粗、细的木杆和钢杆;细绳、细铁丝、粗的铁丝。 教学过程: 新课引入:上节课我们学习了轴向拉、压杆横截面积上的正应力A F N =σ,大家知道不同材料其能承受的最大应力值不一样也反应材料的强度的不同,比如这根细绳和铁丝,那么怎样在工程中选用合适的材料做的杆件或者要对已确定材料的杆件进行校核其强度,才不致于出现安全事故呢? 举例说明,展示实物,麻绳、细钢丝、粗钢丝。起重机起吊重物你会选择选择什么样绳子呢?是麻绳还是钢丝?是用细的钢丝还是粗一点的钢丝呢?为什吗呢? 引导回答:同种截面的不同材质的绳子,其能承受的最大拉力是不一样的,即最大的应力值也是不同的,因此能起吊的重量也是不同的,应怎样选择呢?这就是我们今天这节的主要内容。 新课教学: 一、应力的基本概念: 工作应力:杆件在荷载作用下产生的实际应力值,它随杆件荷载的改变的而改变,但随荷载的增加,工作应力跟着增加,但应力的增加是用限度的,当应力超过一定限度,材料就会发生破坏。发生破坏的应力限度就称极限应力,也叫危险应力,用不同材料的 值是不同的,比如麻绳和钢丝; 许用应力:为了能使杆件在安全范围内工作,不仅不能使工作应力达到极限值,还要留用一定安全储备,我们把极限应力值处于大于1的N 作限度为工作应力的最高值,用][σ表示,][σ=N 而N>1的系数 二、轴向拉(压)杆的强度条件和强度计算

压杆稳定

1、( )材料相同的压杆,柔度越大,稳定性越差,故它所能承受的外压力就越小。 1、( )压杆的临界应力是压杆处于临界状态维持直线平衡形式时横截面上的正应力。 2、( )材料相同,柔度相等的压杆,空心杆比实心杆的稳定性好,即空心杆所能承受的压力大。 3、对于压杆稳定,下面错误的伦述是( )。 A 、压杆的临界压力是保持稳定直线平衡的最大载荷。 B 、压杆的柔度越大,压杆越不稳定。 C 、大柔度压杆可以使用欧拉公式计算临界压力。 D 、矩形截面细长压杆,已知Iz>Ir ,计算临界载荷时,应取值Iz 为妥。 5、临界应力是压杆失稳时横截面上的应力( ) 6、示Q235钢压杆,截面为矩形,面积为3.2*103mm 2, 已知E=200GPA ,σs =235MPA ,λp=100,λs=61.6,试计算其临界载荷。(15分) 7、( )压杆的稳定性主要与压杆的截面大小和压杆的长度有关。 一、是非判断题 9.1 所有受力构件都存在失稳的可能性。 ( × ) 9.2 在临界载荷作用下,压杆既可以在直线状态保持平衡,也可以在微弯状态下保持平衡。 ( × ) 9.3 引起压杆失稳的主要原因是外界的干扰力。 ( × ) 9.4 所有两端受集中轴向力作用的压杆都可以采用欧拉公式计算其临界压力。 ( × ) 9.5 两根压杆,只要其材料和柔度都相同,则他们的临界力和临界应力也相同。 ( × ) 9.6 临界压力是压杆丧失稳定平衡时的最小压力值。 ( ∨ ) 9.7 用同一材料制成的压杆,其柔度(长细比)愈大,就愈容易失稳。 ( ∨ ) 9.8 只有在压杆横截面上的工作应力不超过材料比例极限的前提下,才能用欧拉公式计算其 临界压力。 ( × ) 9.9 满足强度条件的压杆不一定满足稳定性条件;满足稳定性条件的压杆也不一定满足强度 条件。 ( ∨ ) 9.10 低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成 的细长压杆的临界压力。 ( × ) 二、填空题 9.1 压杆的柔度λ综合地反映了压杆的 对临界应力的影响。 长度(l ),约束(μ),横截 面的形状和大小(i ) 有应力集中时

拉压杆的强度计算

拉压杆的强大计算 1、极限应力、许用应力和安全系数 通过对材料力学性能的分析可知,任何工程材料能承受的应力都是有限的,一般把使材料丧失正常工作能力时的应力称为极限应力。对于脆性材料,当正应力达到抗拉强度b σ或强度bc σ时,会引起断裂破坏;对于塑性材料,当正应力达到材料的屈服点s σ(或屈服强度2.0σ)时,将产生显著的塑性变形。构件工作时发生断裂是不允许的;发生屈服或出现显著的塑性变形也是不允许的。所以,从强度方面考虑,断裂时构件是失效的一种形式;同样,发生屈服或出现显著的塑性变形也是构件失效的一种形式。这些失效现象都是强度不足造成的,因此,塑性材料的屈服点s σ(或屈服强度2.0σ)与脆性材料的抗拉强度b σ(或抗拉强度bc σ)都是材料的极限应力。 由于工程构件的受载难以精确估计,以及构件材质的均匀程度、计算方法的近似性等诸多因素,为确保构件安全,应使其有适当的强度储备,特别对于因失效将带来严重后果的构件,更应具备较大的强度储备。因此,工程中一般把极限应力除以大于1的系数n 作为工作应力的最大允许值,称为许用应力,用[]σ表示,即 塑性材料 []s s n σσ= 脆性材料 []b b n σσ= 式中,b s n n 、是与屈服点或抗拉强度对应的安全系数。 安全系数的选取是一个比较复杂的工程问题,如果安全系数取得过小,许用应力就会偏大,设计出的构件截面尺寸将偏小,虽能节省材料,但安全可靠性会降低;如果安全系数取得过大,许用应力就会偏小,设计出的构件截面积尺寸将偏大,虽构件能偏于安全,但需要多用材料而造成浪费。因此,安全系数的选取是否恰当当关系到构件的安全性和经济性。工程上一般在静载作用下,塑性材料的安全系数取5.2~5.1=s n 之间;脆性材料的安全系数取5.3~0.2=b n 之间。工程中对不同的构件选取安全系数,可查阅有关的设计手册。 2、;拉压杆的强度条件 为了保证拉压杆安全可靠地工作看,必须使杆内的最大工作应力不超过材料的拉压许用应力,即 []σσ≤=A F N max 式中,F N 和A 分别为危险截面的轴力和横截面面积。该式称为拉压杆的强度条件。 根据强度条件,可以解决下列三类强度计算问题: ⑴校核强度 若已知杆件的尺寸、所受的载荷及材料的许用应力,可用式(2-9)验算杆件

拉压杆件连接部分强度计算.

§3—7 拉(压)杆连接部分的强度计算 实际工程中的部件、构件之间,往往用连接件相互连接。例如螺栓连接中的螺栓(图3-21a )钢结构中广泛应用的铆钉连接中的铆钉(3-21b )。连接件对整个结构的牢固和安全起着重要作用,对其强度分析应予以足够重视。 图3-21a 连接件受力与变形的主要特点,用图3-22所示螺栓受力示意图来说明(图中用合力P 代替了侧面上的分布力):杆件受到一对大小相等、方向相反、作用线相距很近并且垂直杆轴的力作用,两力间的横截面将沿力的方向发生相对错动。这种变形就是剪切变形。两力之间的截面称剪切面,当力P 足够大时,杆件将沿剪切面剪断。 图3-22 连接件在受剪切的同时,两构件接触面上,因为互相压紧会产生局部受压,称挤压。如图3-23a 所示的螺栓连接中,作用在钢板上的拉力P ,通过钢板与螺栓的接触面传递给螺栓,接触面上就产生挤压。两构件的接触面称挤压面,以j A 表示;作用于接触面的压力称挤压力,以j P 表示;挤压面上的压应力称挤压应力,以j 表示。当挤压力过大时,孔壁边缘将受压变形,螺杆局部压扁,使圆孔变成椭圆,连接松动(图3-23b ),这就是挤压破坏。 图3-23a t t 图3-23b

挤压面 t d 图3-23c 下面就来研究连接件的强度计算。 一、剪切的实用计算 剪切实用计算的基本点是:假定剪切面的切应力是均匀分布的。切应力的计算式为 A Q =τ (3-13) 式中:Q —剪切面上的剪力; A —剪切面的面积。 由此得出剪切强度条件为: []ττ≤= A Q (3-14) 许用切应力[]τ由剪切实验测定。 实践表明,这种计算方法是可靠的,可以满足工程需要。 二、挤压的实用计算 挤压的实用计算是假定挤压应力j σ在挤压面j A 上均匀分布。所以挤压应力为 j j j A P = σ (3-15) 式中j A 为挤压面的计算面积。当接触面为平面时,接触面的面积就是计算挤压面积;当接触面为半圆柱面时,取圆柱体的直径平面作为计算挤压面面积(图3-23c )。这样计算所得的挤压应力和实际最大挤压应力值十分接近。由此可建立挤压强度条件: [] j j j j A P σσ≤= (3-16) 式中 []j σ为材料的许用挤压应力,由实验测得。 例3-9 用四个铆钉搭接两块钢板,如图3-24a 所示。已知拉力kN P 110=,铆钉直径mm d 16=,钢板宽度mm b 90=,厚mm t 10=。钢板与铆钉材料相同,[]MPa 140=τ, []MPa j 320=σ,[]MPa 160=σ。试校核此连接件的强度。

压杆稳定性计算

第16章压杆稳定 16、1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但就是,实践与理论证明,这个结论仅对短粗的压杆才就是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不就是因为强度不够,而就是由于出现了与强度问题截然不同的另一种破坏形式,这就就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但就是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲与绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性就是指杆件保持原有直线平衡形式的能力。实际上它就是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态就是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态就是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。当轴向压力F 由小变大的过程中,可以观察到: 1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。所以,该杆原有直线平衡状态就是稳定平衡。 2)当压力值F2超过其一限度F cr时,平衡状态的性质发生了质变。这时,只要有一轻微的横向干扰,压杆就会继续弯曲,不再恢复原状,如图16-6d所示。因此,该杆原有直线平衡状态就是不稳定平衡。

相关主题
文本预览
相关文档 最新文档