当前位置:文档之家› 反函数的八个性质及应用

反函数的八个性质及应用

反函数的八个性质及应用
反函数的八个性质及应用

反函数的八个性质及应用

浙江周宇美

反函数是函数一章中的重要内容,在历年的高考数学试题和各地的模拟试题中与反函数有关的问题频频出现,且大多是小巧灵活的客观性试题.许多学生在解答这些问题时小题大作,耗时费力,隐含潜在失分的危险.为便于同学们复习、巩固、解决好这类问题,下面给出由反函数的概念得到的几个性质,再举例分类解析,供参考.

一、反函数的八个性质

⑴原象与象的唯一互对性

设函数f(x)存在反函数1

f-(x),若函数f(x)将定义域A中的元素a映射成值域为C中的元素b,则它的反函数f-1(x)恰好将值域C中的元素b 唯一还原成A中的元素a,即f(a)=b?1

f-(b)=a.

⑵定义域与值域的互换性

若函数f(x)的定义域为A,值域为C,则它的反函数1

f-(x)的定义域为C,值域为A,即反函数的定义域和值域分别是原函数的值域和定义域

⑶图象的对称性

在同一直角坐标系中,互为反函数的两个函数的图象关于直线y=x 对称,反之亦然.

⑷奇偶性

奇函数y=f(x)(x∈A)若存在反函数,则它的反函数y=1

f-(x)(x∈C)也是奇函数.定义域为非单元素集的偶函数不存在反函数.

⑸单调性

若函数y =f (x )(x ∈A )是单调函数,则它的反函数y =1f -(x )(x ∈C )也是单调函数,且它们的单调性相同.

⑹ 对应法则互逆性

即有①1f -[f (x )]=x ,x ∈A ,A 是f (x )的定义域;

②f [1f -(x )]=x ,x ∈C ,C 是f (x )的值域.

⑺ 交点性质

函数y =f (x )与其反函数y =1f -(x )的图象交点,或者在直线y =x 上;或者关于直线y =x 对称.

当函数y =f (x )是单调增函数,则函数y =f (x )与它的反函数y =1f -(x )的图象的交点必定在直线y =x 上.

⑻ 自反函数性质

①函数y =f (x )为自反函数的充要条件是f [f (x )]=x .

②函数y =f (x )为自反函数的充要条件是它自身的图象关于直线y =x 对称.

二、性质的应用举例

例1 函数),1(,11ln

+∞∈-+=x x x y 的反函数( ) (A) ),0(,1

1+∞∈+-=x e e y x x (B) ),0(,11+∞∈-+=x e e y x x (C) )0,(,11-∞∈+-=x e e y x x (D) )0,(,11-∞∈-+=x e e y x x 解析:本题无需利用求反函数的三步曲:反解——互换——表定义域,只要利用互为反函数的定义域和值域互换性即可.由x ∈(1,+∞),得y =ln 11x x +-=ln(1+21

x -)≥0,得反函数的定义域为(0,+∞),排除(C)、(D),且反函数的值域为(1,+∞),故选(B).

例2 若f (x )与其反函数1f -(x )是同一个一次函数y =ax +b ,求a 和b

的值.

解:由f (x )为自反函数,据性质有f [f (x )]=x ,即

a 2

x +ab +b =x ,得210a a b b ?=?+=?,

解得a =1,b =0或a =-1,b ∈R .

例3 已知点(1,2)在函数f (x )

=的图象上,又在它的反函数图象上,求f (x )的解析式.

解:互为反函数的互对性,知点(1,2),(2,1)都在f (x )的图象上,

21

==,解得a =-1,b =7.

∴ f (x )

=x ≤73

). 例4已知f (x )=-31x 2+43

(x ≤0),求函数f (x )与它的反函数1f -(x )的图象的交点.

解:∵ f (x ) =-31x 2+43

在(-∞,0]上是单调增函数,故f (x )与 1f -(x )的图象交点必在y =x 上,即

21433y x y x =???=-+??

,解得(-4,-4). 例5 已知函数f (x )=3x

-1,则它的反函数y =1f -(x )的图象是( 解:综合运用上述性质几乎无需动笔即可完成解答:由原函数易知

(A)(B)(C)(D)

1f -(x )的定义域为R +,从而否定(A)、(B)两项.又∵f (0)=31,∴1f -(31)=0,故选(D).

三角函数和反三角函数图像性质、知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2. 角度制与弧度制 设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°) 角度与弧度的换算 ①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式 l a R = 扇形的面积公式 12 s lR = 3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a ) 所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑??? ?2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y ②:函数)sin(?ω+=x A y 的图像与性质:

反函数的八个性质及应用

反函数的八个性质及应用 浙江周宇美 反函数是函数一章中的重要内容,在历年的高考数学试题和各地的模拟试题中与反函数有关的问题频频出现,且大多是小巧灵活的客观性试题.许多学生在解答这些问题时小题大作,耗时费力,隐含潜在失分的危险.为便于同学们复习、巩固、解决好这类问题,下面给出由反函数的概念得到的几个性质,再举例分类解析,供参考. 一、反函数的八个性质 ⑴原象与象的唯一互对性 设函数f(x)存在反函数1 f-(x),若函数f(x)将定义域A中的元素a映射成值域为C中的元素b,则它的反函数f-1(x)恰好将值域C中的元素b 唯一还原成A中的元素a,即f(a)=b?1 f-(b)=a. ⑵定义域与值域的互换性 若函数f(x)的定义域为A,值域为C,则它的反函数1 f-(x)的定义域为C,值域为A,即反函数的定义域和值域分别是原函数的值域和定义域 ⑶图象的对称性 在同一直角坐标系中,互为反函数的两个函数的图象关于直线y=x 对称,反之亦然. ⑷奇偶性 奇函数y=f(x)(x∈A)若存在反函数,则它的反函数y=1 f-(x)(x∈C)也是奇函数.定义域为非单元素集的偶函数不存在反函数. ⑸单调性

若函数y =f (x )(x ∈A )是单调函数,则它的反函数y =1f -(x )(x ∈C )也是单调函数,且它们的单调性相同. ⑹ 对应法则互逆性 即有①1f -[f (x )]=x ,x ∈A ,A 是f (x )的定义域; ②f [1f -(x )]=x ,x ∈C ,C 是f (x )的值域. ⑺ 交点性质 函数y =f (x )与其反函数y =1f -(x )的图象交点,或者在直线y =x 上;或者关于直线y =x 对称. 当函数y =f (x )是单调增函数,则函数y =f (x )与它的反函数y =1f -(x )的图象的交点必定在直线y =x 上. ⑻ 自反函数性质 ①函数y =f (x )为自反函数的充要条件是f [f (x )]=x . ②函数y =f (x )为自反函数的充要条件是它自身的图象关于直线y =x 对称. 二、性质的应用举例 例1 函数),1(,11ln +∞∈-+=x x x y 的反函数( ) (A) ),0(,1 1+∞∈+-=x e e y x x (B) ),0(,11+∞∈-+=x e e y x x (C) )0,(,11-∞∈+-=x e e y x x (D) )0,(,11-∞∈-+=x e e y x x 解析:本题无需利用求反函数的三步曲:反解——互换——表定义域,只要利用互为反函数的定义域和值域互换性即可.由x ∈(1,+∞),得y =ln 11x x +-=ln(1+21 x -)≥0,得反函数的定义域为(0,+∞),排除(C)、(D),且反函数的值域为(1,+∞),故选(B). 例2 若f (x )与其反函数1f -(x )是同一个一次函数y =ax +b ,求a 和b

第20讲 对数函数的性质及反函数

(一) 教学目标 1.教学知识点 1. 对数函数的单调性;2.同底数对数比较大小;3.不同底数对数比较大小; 4.对数形式的复合函数的定义域、值域; 5.对数形式的复合函数的单调性. 2.能力训练要求 1. 掌握对数函数的单调性;2.掌握同底数对数比较大小的方法; 3.掌握不同底数对数比较大小的方法;4.掌握对数形式的复合函数的定义域、值域; 5.掌握对数形式的复合函数的单调性; 6.培养学生的数学应用意识. 3.众优渗透目标 1.用联系的观点分析问题、解决问题; 2.认识事物之间的相互转化. 教学重点 1.利用对数函数单调性比较同底数对数的大小; 2.求对数形式的复合函数的定义域、值域的方法; 3.求对数形式的复合函数的单调性的方法. 教学难点 1.不同底数的对数比较大小;2.对数形式的复合函数的单调性的讨论. 教学过程 一、 复习引入: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,对数函数x y a log = )10(≠>a a 且的定义域为),0(+∞,值域为),(+∞-∞. 2、

2. 函数y =x +a 与x y a log =的图象可能是__________ 二、新授内容: 例1.比较下列各组中两个值的大小: ⑴6log ,7log 76; ⑵8.0log ,log 23π. (3)6log ,7.0,67.067.0 解:⑴16log 7log 66=> ,17log 6log 77=<,6log 7log 76>∴. ⑵01log log 33=>π ,01log 8.0log 22=<,8.0log log 23>∴π. 小结1:引入中间变量比较大小:例1仍是利用对数函数的增减性比较两个对数的大小,当不能直接比较时,经常在两个对数中间插入1或0等,间接比较两个对数的大小. 练习: 1.比较大小(备用题) ⑴3.0log 7.0log 4.03.0<; ⑵2 1 6.04.3318.0log 7.0log - ?? ? ??<<; ⑶1.0log 1.0log 2.03.0> . 例2.已知x = 4 9 时,不等式 log a (x 2 – x – 2)>log a (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x = 49使原不等式成立. ∴log a [249)49(2--]>log a )34 9 2)49(1[2+?+? 即log a 1613>log a 1639. 而1613<16 39 . 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为??? ? ???++-<-->++->--322032022222x x x x x x x x , 解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5 , 2( 例3.若函数)10(log )( <<=a x x f a 在区间[a ,2a]上的最大值是最小值的3倍, ③

高中数学第二章 反函数性质的应用 教案(北师大版必修1)

反函数性质的应用 只有定义域和值域一一对应的函数才有反函数,反函数是由原函数派生出来的,它的定义域、对应法则、值域完全由原函数决定。因此利用这一关系可以将原函数的问题与反函数的问题相互转化,使问题容易解决。现在看一下反函数性质的应用。 ⒈利用反函数的定义求函数的值域 例1:求函数y= 1 21 x x - +的值域。 分析:这种函数可以利用分离常数法或反函数法求值域,下面利用反函数法来求解。解:由 y= 1 21 x x - +得y(2x+1)=x-1 ∴(2y-1)x=-y-1 ∴x= 1 21 y y -- - ∵x是自变量,是存在的, ∴2y-1≠0,∴y≠1 2。 故函数y= 1 21 x x - +的值域为:{y│y≠ 1 2}。 点评:形如y=ax b cx d + +的函数都可以用反函数法求它的值域。 ⒉原函数与反函数定义域、值域互换的应用 例2:已知f(x)=4x-21x+,求f1-(0)。 分析:要求f1-(0),只需求f(x)=0时自变量x的值。 解:令f(x)=0,得4x-21x+=0,∴2x(2x-2)=0, ∴2x=2或2x=0(舍), ∴x=1。 故f1-(0)=1。 点评:反函数的函数值都可以转化为求与之对应的原函数的自变量之值,反之也成立。 ⒊原函数与反函数的图像关于直线y=x对称的应用

例3:求函数y= 2 1 x x+(x∈(-1,+∞))的图像与其反函数图像的交点。 分析:可以先求反函数,再联立方程组求解;也可以利用原函数与反函数的图像关于直线y=x 对称求解,这里用后一种方法求解。只要原函数与反函数不是同一函数,它们的交点就在直线y=x上。 解:由 2 1 x y x y x ? = ? + ? ?= ?得 x y = ? ? = ?或 1 1 x y = ? ? = ? ∴原函数和反函数图像的交点为(0,0)和(1,1)。 点评:利用利用原函数与反函数的图像关于直线y=x对称的性质,可以简化运算,提高准确率。但要注意原函数与反函数不能是同一函数,它们的交点才在直线y=x上。 ⒋原函数与反函数的单调性相同的应用 例4:已知f(x)=2x+1的反函数为f1-(x),求f1-(x)<0的解集。 分析:因为f(x)=2x+1在R上为增函数,所以f1-(x)在R上也为增函数。又因为原函数与反函数定义域、值域互换,所以f1-(x)中的x的范围就是f(x)的范围。 解:由f(x)=2x+1>1得f1-(x)中的x>1。 又∵f1-(x)<0且f(x)=2x+1在R上为增函数, ∴f 1() f x - ?? ??

函数的性质反函数·函数的单调性

例1下列函数中,属于增函数的是 [ ] 解 D 例2若一次函数y=kx+b(k≠0)在(-∞,+∞)上是单调递减函数,则点(k,b)在直角坐标平面的 [ ] A.上半平 面 B.下半平面 C.左半平 面 D.右半平面 解 C 因为k<0,b∈R. 例3函数f(x)=x2+2(a-1)x+2在区间(-∞,4)上是减函数,则实数a的取值范围是 [ ] A.a≥ 3 B.a≤-3 C.a≤ 5 D.a=-3 解 B 因抛物线开口向上,对称轴方程为x=1-a,所以1-a≥4,即a≤-3. 例4已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x) [ ] A.在区间(-1,0)内是减函数 B.在区间(0,1)内是减函数 C.在区间(-2,0)内是增函数

D.在区间(0,2)内是增函数 解 A g(x)=-(x2-1)2+9.画出草图可知g(x)在(-1,0)上是减函数. +bx在(0,+∞)上是______函数(选填“增”或“减”). 解 [-2,1] 已知函数的定义域是-5≤x≤1.设 u=-x2-4x+5=-(x+2)2+9 可知当x∈[-5,-2]时,随x增大时,u也增大但y值减小;当x∈[-2,1]时,随x增大时,u减小,但y值增大,此时y是x的单调增函数,即 注在求函数单调区间时,应先求函数的定义域. 例7 y=f(x)在定义域上是单调递增函数,且f(x)>0,那么在同 函数;y=[f(x)]2是单调______函数. 解递减;递减;递增. 例8 (1)证明函数f(x)=x2-1在(-∞,0)上是减函数; 解 (1)任取x1<x2<0,则

高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。 补充:反函数定义: 例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: x y b O f (x )=b x y O f (x )=kx +b R

2、与曲线函数的联合运用 反比例函数f(x)= x k (k≠0,k值不相等永不相交;k越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f(x)的图象分别在第一、第三象 限;当k<0时,函数f(x)的图象分别在第二、第四象限; 双曲线型曲线,x轴与y轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定义域:) ,0( )0, (+∞ -∞ 值域:) ,0( )0, (+∞ -∞ 单调性:当k> 0时;当k< 0时周期性:无 奇偶性:奇函数 反函数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x)图像移动比较 3)、f(x)= d cx b ax + + (c≠0且d≠0)(补充一下分离常数) (对比标准反比例函数,总结各项容) 二次函数 一般式:)0 ( ) (2≠ + + =a c bx ax x f 顶点式:)0 ( ) ( ) (2≠ + - =a h k x a x f 两根式:)0 )( )( ( ) ( 2 1 ≠ - - =a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为,顶点坐标为 ②当0 > a时,开口向上,有最低点当0 < a时。。。。。 ③当= >0时,函数图象与x轴有两个交点();当<0时,函数图象与x轴 有一个交点();当=0时,函数图象与x轴没有交点。 ④)0 ( ) (2≠ + + =a c bx ax x f关系)0 ( ) (2≠ =a ax x f 定义域:R值域:当0 > a时,值域为();当0 < a时,值域为() 单调性:当0 > a时;当0 < a时. 奇偶性:b=/≠0 x y O f(x)= d cx b ax + + x y O f(x)=c bx ax+ + 2

高中数学反函数的性质及应用 专题辅导

高中数学反函数的性质及应用 李伟 函数是高中数学中的重要内容,反函数又是函数的重要组成部分,也是同学们学习函数的难点之一。反函数在历年高考中也占有一定的比例。为了帮助同学们更好地掌握反函数相关的内容,对反函数的性质作如下归纳。 性质1 原函数的定义域、值域分别是反函数的值域、定义域 在求原函数的反函数及反函数的定义域、值域的有关问题时,如能充分利用这条性质,将对解题有很大帮助。 例1. 函数()()???<-≥=0x x , 0x x 2y 2的反函数是( )。 A. ()()?????<-≥=0x x ,0x 2x y B. ()() ?????<-≥=0x x ,0x x 2y C. ()()?????<--≥=0x x ,0x 2x y D. ()()?????<--≥=0x x ,0x x 2y 解析:这是一个分段函数,对分段函数求反函数要注意分段求解。由函数解析式可知当0x ≥时,0y ≥;0x <时0y <。由性质1,可知原函数的反函数在0x <时,0y <,则根式前面要有负号,故可排除A 、B 两项,再比较C 、D ,易得答案为C 。 例2. 若函数()x f 1-为函数()()1x g 1x f +=的反函数,则()x f 1-的值域为__________。 解析:常规方法是先求出()x f 的反函数()110x f x 1-=-,再求得()x f 1-的值域为()∞+-,1。 如利用性质1,()x f 1-的值域即()x f 的定义域,可得()x f 1-的值域为()∞+-,1。 性质2 若()x f y 1-=是函数()x f y =的反函数,则有()()a b f b a f 1=?=-。 从整个函数图象来考虑,是指()x f y =与其反函数()x f y 1-=的图象关于直线x y =对称;从图象上的点来说,是指若原函数过点()b ,a ,则其反函数必过点()a ,b 。反函数中的这条性质,别看貌不惊人,在解题中却有着广泛的应用。 例3. 函数()x f y =的反函数()x f y 1-=的图象与y 轴交于点P (0,2),如下图所示,则方程()0x f =在[1,4]上的根是=x ( ) A. 4 B. 3 C. 2 D. 1 解析:利用互为反函数的图象关于直线x y =对称,()x f y 1-=的图象与y 轴交于点P (0,2),可得原函数()x f y =的图象与x 轴交于点(2,0),即()02f =,所以()0x f =的根为2x =,应选C 。

对数函数的图像与性质知识点与习题

对数函数的图像与性质知识点与习题 一、知识回顾: 1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 的图象与性质 2、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 互为反函数,其 图象关于直线x y =对称 二、例题与习题 1.)35lg(lg x x y -+=的定义域为___ __; 2. 已知函数=-=+-=)(,2 1 )(,11lg )(a f a f x x x f 则若 3.04 1 log 2 12≤-x ,则________∈x 4.函数)2(log )(π≤≤=x x x f a 的最大值比最小值大1,则__________∈a

5.若函数m y x +=+-1 2 的图象不经过第一象限,则m 的取值范围是 ( ) (A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m 6.函数x x f a )1(2log )(-=是减函数,则实数a 的取值范围是 . 7.若13 2 log >a ,则a 的取值范围是 8.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g 9.方程lgx -x +1=0的实数解有______个. 10.)2lg(2 x x y +-=的递增区间为___________ ,值域为 . 11.求)1,0() (log ≠>-=a a a a y x a 的定义域。 12.已知3log 1)(x x f +=,2log 2)(x x g =,试比较)(x f 与)(x g 的大小关系。 13.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且, (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|

函数性质与反函数

函数性质与反函数 知识要点: 1.函数的单调性、奇偶性综合 函数的单调性和奇偶性是函数的重要性质,对于函数y=f(x),如果在区间(a,b)上是单调的,则在区间(-b,-a)上也单调。如果奇函数y=f(x)在区间(a,b)上是单调增,则在(-b,-a)上也是单调增;若y=f(x)为偶函数,当其在区间(a,b)上是单调增时,在对称区间(-b,-a)上则是单调减。 可以简单的概括为一句话:奇函数在两个对称区间内的单调性相同,偶函数则相反。 注意:对于函数y=f(x),只能说分别在这两个区间内单调性相同,而不能说在整个区间里单调,更不能说在定义域内单调,在应用时一定要多加留意。 一个很简单的例子就是:奇函数在(0,+∞)上单调减,在(-∞,0)上单调减,但不能说在 (-∞,0)∪(0,+∞)上单调减。 2.反函数 2.1 反函数的概念 设函数y=f(x)(x∈A)的值域为C,如果反解得到的确定了一个从集合C到集合A的映射,则由 这个映射所确定的函数就称为函数y=f(x)(x∈A)的反函数。记为y=f-1(x)(x∈C) 显然,y=f(x)(x∈A)与y=f-1(x)(x∈C)互为反函数。 2.2 反函数的存在性 不是每个函数都有反函数,只有当构成函数的映射是1-1映射时,这个函数才有反函数。这可以借助于逆映射的概念来理解。 结论:如果函数y=f(x)在区间(a,b)上单调,则在(a,b)上存在反函数。 注意: (1)函数单调是函数存在反函数的充分不必要条件,也就是说,一个函数不单调,也有可能存在反函数,比 如说反比例函数上并不单调,但是在定义域(-∞,0)∪(0,+∞)内存在反函数。 (2)奇函数如果存在反函数,则反函数仍然是奇函数;定义域不是{0}的偶函数都不存在反函数。 2.3 互为反函数间的关系 由反函数的概念可知: (1)原函数与反函数的定义域值域互换; (2)对应法则互逆; (3)互为反函数的两个函数图象关于直线y=x对称; (4)f(f-1(x))=x(x∈C),f-1(f(x))=x(x∈A)。 注:函数y=f(x)与函数x=f-1(y)在同一个坐标系中的图象相同。 2.4反函数的求解 反函数求解一般可以按照下面几个步骤进行: (1)求原函数的定义域、值域,以确定反函数的定义域; (2)反解x,即用含y的代数式表示x; (3)互换x、y,并注明反函数的定义域。 注意:步骤(3)是因为我们已经习惯于用x表示自变量,用y表示因变量。关键在于理解反函数的对应法则。 典型例题: 例1设f(x)为定义在R上的偶函数,且f(x)在(-∞,0)上单调增,当f(3a2-2a+2)>f(2a2+a+2)时,判断函数y=8+2a-a2的单调性。

2.2函数的性质与反函数

第二章 函数 二 函数的性质与反函数 【考点阐述】函数的单调性.奇偶性.反函数.互为反函数的函数图像间的关系. 【考试要求】 (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. 【考题分类】 (一)选择题(共21题) 1.(安徽卷理9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线 y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,则m 的值是( ) A .e - B .1 e - C .e D .1e 解:由题知()ln ,()ln(),g x x f x x ==-则1)ln(-=-m ,e m 1 -=选D 。 2.(安徽卷理11)若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()x f x g x e -=,则有( ) A .(2)(3)(0)f f g << B .(0)(3)(2)g f f << C .(2)(0)(3)f g f << D .(0)(2)(3)g f f << 解: 用x -代换x 得: ()(),x f x g x e ----=即()()x f x g x e -+=-,解得: 2 )(,2)(x x x x e e x g e e x f +-=-=-,而)(x f 单调递增且大于等于0,1)0(-=g ,选D 。 3.(安徽卷文6)函数2 ()(1)1(0)f x x x =-+≤的反函数为 A .1 ()11)f x x -=≥ B . 1 ()11)f x x -=+≥ C .1()12)f x x -=≥ D . 1()12)f x x -=≥ 解:由原函数定义域是反函数的值域,1 ()0f x -≤,排除B,D 两个;又原函数x 不能取 1,()f x 不能取1,故反函数定义域不包括1,选C .(直接求解也容易) 4.(北京卷文5)函数2 ()(1)1(1)f x x x =-+<的反函数为( ) A .1 ()11)f x x -=> B .1 ()11)f x x -=->

反函数的存在性及求法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1反函数的定义及其性质 (1) 1.1反函数的定义 (1) 1.2反函数的性质 (2) 1.2.1反函数的简单性质 (2) 1.2.2关于反函数图像的性质 (3) 1.2.3反函数的连续性与可微性 (5) 2反函数存在性的判定 (6) 2.1反函数存在性判定(一) (6) 2.1反函数存在性判定(二) (6) 3反函数的求法 (8) 3.1反函数的一般求法 (8) 3.2几类特殊函数的反函数的求解 (9) 3.2.1周期函数的反函数 (9) 3.2.2分段函数的反函数 (11) 3.2.3复合函数的反函数 (12) 参考文献 (14) 致谢 (14)

函数的反函数的存在性及其求法 数学与应用数学专业薛云 指导老师武秀美 摘要反函数是数学中的一个重要概念,文章分三部分阐述了反函数的概念、存在条件及其求法.首先,文章从不同角度给出了反函数的定义;其次,文章详细阐述了反函数的存在条件,从图像、定义及单调性等多方面加以论述;最后,文章给出了反函数的求法一般的步骤,并在此基础上介绍了一些特殊函数的反函数的求法. 关键词反函数周期函数反函数存在性定理 The Existence and Solution of Inverse Function of Functions Student majoring in Mathematics and applied mathematics Xue Yun Tutor Wu Xiumei Abstract The inverse function is an important concept in mathematics. This article has three parts about the concept of inverse function, the condition of existence of inverse function and the solution of inverse function. First, it gives the definition of inverse function, secondly, it gives the conditions of existence of inverse function and descries this aspects from image, definition and monotonicity. Finally, it gives the method of solution of inverse function and introduces the solution of the inverse function of some special functions. Key words Inverse function Periodic function Existence theorem of inverse function 引言函数是数学中的一个基本概念,对函数的性质、图像及其相关问题的研究自然地引发了对函数的反函数的探讨;同时在生活中,函数的反函数也占有较为重要的地位,但是反函数的定义很抽象,难于理解,中学数学中有一些基本的反函数的知识,在现有的数学分析和高等数学教科书中,也都有对反函数的简要介绍,但都不做重点讲述,这使对反函数的系统理解和应用更加不利.这篇文章在总结前例的基础上,对反函数的定义、性质、图像、存在性、求法等进行了详细地讨论. 1 反函数的定义及其性质 1.1 反函数的定义 定义]1[1一般地,式子) y=表示y是自变量x的函数,设它的定义域为A,值 (x f 域为C.从式子) (x =.如果对于y在C中的任何 (y x? f y=中解出x,得到式子) 一个值,通过式子) =,x在A中都有唯一确定的值和它对应,那么式子 x? (y

正切 余切图像的性质 反三角函数

正切、余切函数图象和性质反三角函数 [知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图 象上三点及两条重要的辅导线——渐近线,来作正切函

数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: 上单减 ,奇函数 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的. 3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数.

反三角函数的概念和性质

反三角函数的概念和性质 . 一.基础知识自测题: 1.函数y=arcsin x的定义域是 [-1, 1] ,值域是. 2.函数y=arccos x的定义域是 [-1, 1] ,值域是 [0, π] . 3.函数y=arctg x的定义域是R,值域是. 4.函数y=arcctg x的定义域是R,值域是 (0, π) . 5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=. 6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=; cos(arcctg)=. 7.若cos x=-, x∈(, π),则x=. 8.若sin x=-, x∈(-, 0),则x=. 9.若3ctg x+1=0, x∈(0, π),则x=. 二.基本要求: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;

2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y= arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- (C)sin[arcsin(-)]=-(D)arctg(tgπ)=π 解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。

反比例函数的图像与性质(1) 教学设计

1.2 反比例函数的图象与性质 第1课时反比例函数的图象与性质(1) 教学目标 【知识与技能】 1.会用描点法画反比例函数图象; 2.理解反比例函数的性质. 【过程与方法】 观察、比较、合作、交流、探索. 【情感态度】 通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质. 【教学重点】 画反比例函数的图象,理解反比例函数的性质. 【教学难点】 理解反比例函数的性质,并能灵活应用. 教学过程 一、情景导入,初步认知 你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢? 【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质. 二、思考探究,获取新知 探究1:反比例函数图象的画法画出反比例函数y=6 x 的图象.分析∶画出函数图象一 般分为列表、描点、连线三个步骤.(用几何画板演示) (1)列表:取自变量x的哪些值? x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值. (2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.

(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象. 思考: (1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律? (2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出 函数y=3 x 的图形,并思考下列问题: (1)函数图形的两个分支分别位于哪些象限? (2)在每一象限内,函数值y随自变量x的变化是如何变化的? 【归纳结论】一般地,当k>0时,反比例函数y=k x 的图象由分别在第一、三象限内的 两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小. 探究3:反比例函数y=-6 x 的图象.可以引导学生采用多种方式进行自主探索活动: (1)可以用画反比例函数y=-6 x 的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数y=6 x 与y=- 6 x 之间的关系,画出y=- 6 x 的图象. 【归纳结论】一般地,当k<0时,反比例函数y=k x 的图象由分别在第二、四象限内的 两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.

函数(定义域、性质、反函数、幂指对三角反三角)

函数(一) 班级 _____________ 姓名 ________________ 一、知识整理 1.函数: (1)定义:如果存在对应法则f ,对于数集D 中______________一个数x ,在数集M 中有____________一个数y 与之对应,并且对于M 中的___________一个数y ,在D 中__________数x ,使x 的对应值是y ,则称M 中的数y 与D 中的数x 之间存在函数关系,f 叫做D 上的函数,x 叫做自变量,y 叫做因变量,D 叫做函数函数f 的定义域,M 叫做值域。对于D 中某个x ,对应值y 叫做这个自变量所对应的函数值,记作:D x x f y ∈=),( (2)一一对应函数: 如果y 是x 的函数,并且对于值域M 中任一y ,在定义域D 中存在_________的 x ,使)(x f y =,则这样的函数叫做一一对应函数。 (3)表示法: ①列表法: 用__________的形式来表示两个变量之间的函数关系的方法。 ②图象法: 用坐标系中的曲线(包括直线)来表示两个变量之间函数关系的方法。 ③解析法: 用含有自变量的式子(或常数)来表示因变量与自变量之间函数关系的方法,叫做函数的解析表示法,含有自变量的那个式子(或常数)叫做函数表达式。 2.函数的定义域考虑的几个方面 (1)分式的分母___________________; (2)偶次根式的被开方数必须___________________; (3)对数式中的真数必须___________________; (4)幂函数、指数函数、对数函数、三角函数、反三角函数考虑各自的定义域; (5)若函数表达式是由几个数学式子组成,则其定义域应取各部分定义域的-_________________; (6)分段函数的定义域是各个定义区间的______________。 3.函数的单调性和单调区间: (1)单调递增:),(,21b a x x ∈?,使21x x <,都有)()(21x f x f <, 图象特征:随着x 的增加,曲线逐渐上升; 单调增加区间:函数在某区间(a,b)上是单调增加的,则区间(a,b)称为函数的单调

高考反函数问题常见类型解析

高考反函数问题常见类型解析 反函数是高中数学中的重要概念之一,也是学生学习的难点之一。在历年高考中占有一定的比例。为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。 一. 条件存在型 例1.函数f x x ax ()=--2 23在区间[ ] 12,上存在反函数的充要条件是( ) A. (]a ∈-∞,1 B. [)a ∈+∞2, C. (][)a ∈-∞+∞,,12 D. [] a ∈12, 解析:因为二次函数f x x ax ()=--2 23不是定义域内的单调函数,但在其定义域的 子区间( ]-∞,a 或[ )a ,+∞上是单调函数。而已知函数f x ()在区间[1,2]上存在反函 数,所以[](]12,,?-∞a 或者[][)12,,?+∞a ,即a ≤1或a ≥2。故选(C ) 点评:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。 二. 式子求解型 例2.函数y x x =-≤23 10()的反函数是( ) A. y x x =+≥-()()113 B. y x x =-+≥-()()113 C. y x x = +≥()()103 D. y x x =-+≥()()103 解析:由x ≤0可得x 23 0≥,故y ≥-1,从y x =-23 1解得x y =±+()13 因x ≤0,所以x y =-+()13即其反函数是y x x =-+≥-()()113 故选(B )。 点评:反函数的定义域即为原函数的值域,所以求反函数时应先求出原函数的值域,不应该直接求反函数的定义域。 三.求定义域值域型 例3.若f x -1 ()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。 解析:通法是先求出f (x )的反函数f x x -=-1 101(),可求得f -1(x )的值域为 ()-+∞1,,而利用反函数的值域就是原函数的定义域这条性质,立即得f -1(x )的值域 为()-+∞1,。 点评:这种类型题目可直接利用原函数的定义域、值域分别是反函数的值域和定义域这一性质求解。 四.性质判断型

高中数学阶段常见函数性质汇总

高中阶段常见函数性质汇总 函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 定 义 域:R 值 域:{b} 单 调 性:没有单调性 奇 偶 性:均为偶函数[当b =0时,函数既是奇函数又是偶函数] 反 函 数:无反函数 周 期 性:无周期性 函 数 名 称:一次函数 解析式 形 式:f (x )=kx +b (k ≠0,b ∈R) 图象及其性质:直线型图象。|k|越大,图象越陡;|k|越小,图象越平缓; 当b =0时,函数f (x )的图象过原点; 当b =0且k =1时,函数f (x )的图象为一、三象限角平分线; 当b =0且k =-1时,函数f (x )的图象为二、四象限角平分线; 定 义 域:R 值 域:R 单 调 性:当k>0时,函数f (x )为R 上的增函数; 当k<0时,函数f (x )为R 上的减函数; 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数。[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周 期 性:无 函 数 名 称:反比例函数 解析式 形 式:f (x )= x k (k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k>0时,函数f (x )的 图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 图象成中心对称图形,对称中心为原点; 图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ; 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数; 当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增函数; b

相关主题
文本预览
相关文档 最新文档