当前位置:文档之家› 川师大学物理第十一章 恒定电流的磁场习题解

川师大学物理第十一章 恒定电流的磁场习题解

川师大学物理第十一章 恒定电流的磁场习题解
川师大学物理第十一章 恒定电流的磁场习题解

第十一章 恒定电流的磁场

11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。

(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。

(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。

解:(1)如图11-2所示,中心O 点到每一边的距离

为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应

强度的大小为

012(cos cos )4πBC I

B d

μββ=-

0(cos30cos150)4π/3

I

h μ??=

-=

方向垂直于纸面向外。

另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即

3BC B B === 方向垂直于纸面向外。

(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。由载流直导线的磁感强度一般公式

012(cos cos )4πI

B d

μββ=-

可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为

01(cos0cos30)4cos60)

I

B R μ=

?-?

π(0(12πI R μ=-

031(cos150cos180)4πcos60I

B B R μ?

==

?-

?0(12πI R μ=

I B 图11–2

图11–1

(a )

E

(b )

方向垂直纸面向里。

半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为

04πI B R

μα=

圆弧bcd 占圆的1

3

,所以它在圆心O 处产生的磁感强度B 2的大小为

00022π34π4π6I I I B R R R μμαμ==

= 方向垂直纸面向里。

因此整个导线在O 处产生的总磁感强度大小为

0000123(1(10.212π2π6I I I I B B B B R R R R

μμμμ=++=-++=

方向垂直纸面向里。

11–2 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求点O 的磁感强度B 。 图(a )中,B o = 。 图(b )中,B o = 。 图(c )中,B o = 。

解:载流圆弧导线在圆心O 处激发的磁感强度大小为04πI B R

μα

=,式中α为载流圆弧导线所

张的圆心角,R 为圆弧的半径,I 为所载电流强度。半无限长载流导线在圆心O 处激发的磁

感强度大小为04πI

B R

μ=,磁感强度的方向依照右手定则确定。图11–3(a )中O 处的磁感应

强度B O 可视为由两段半无限长载流导线及载流半圆弧激发的磁场在空间点O 的叠加,根据磁场的叠加原理,对于在图(a ),有

000004π44π42πo I I I I I B R R R R R

μμμμμ=---=--j k j k j

同样的方法可得

对于图(b ),有

000001

(1)4π44π4π4πo I I I I I B R R R R R

μμμμμ=---=-+-j k k k j

对于图(c ),有

00034π84πo I I I B R R R

μμμ=---j k i

图11–

3

(a )

(b )

(c )

11–3 已知磁感应强度B =2.0Wb/m 2的均匀磁场,方向沿x 轴正向,如图11-4所示,则通过abcd 面的磁通量为 ,通过befc 面的磁通量为 ,通过aefd 面的磁通量为 。

解:匀强磁场B 对S 的磁通量为

d c o s BS

Φθ=

?=??S B S ,设各平面S 的法线向外,则

通过abcd 面的磁通量为

cos π 2.00.40.3abcd BS BS Φ==-=-??Wb

= -0.24Wb

通过befc 面的磁通量为

π

cos 02

befc BS Φ==

通过aefd 面的磁通量为

4

cos 2.00.50.35

aefd BS Φθ==???Wb= 0.24Wb

11–4 磁场中某点处的磁感应强度B =0.40i -0.20j (T ),一电子以速度v =0.50×

106i +1.0×106j (m/s )通过该点,则作用于该电子上的磁场力F = 。 解:电子所受的磁场力为

F = -e (v ×B )=-1.6×10–19×(0.50×106i +1.0×106j )×(0.40i -0.20j )=8?10-14 k (N ) 11–5 如图11-5所示,真空中有两圆形电流I 1 和 I 2 以及三个环路L 1 L 2 L 3,则安培环路定理的表达式为

l B d 1

??L = ,l B d 2

??L = ,

l B d 3

??L = 。

解:由安培环路定理可得

1

01d L I μ?-?B l = ;

2012d ()L I I μ?+?B l = ;3d 0L ??B l = 。

11–6 一通有电流I 的导线,弯成如图11-6所示的形状,放在磁感应强度为B 的均匀磁场中,B 的方向垂直纸面向里,则此导线受到的安培力

大小为 ,方向为 。

解:建立如图11-7所示坐标系,导线可看成两段直导线和一段圆弧三部分组成,两段直导线所受安培力大小相等,方向相反,两力的矢量和叠加后为零。在半圆弧导线上任取一

图11– 5

I 1

I 2

L 1

L 2

L 3 L 2

图11–

7

I

1x

图11–4

图11–6

I

电流元I d l ,所受安培力大小d =d d sin90d I I lB IB l ?=?=F l B ,方向沿半圆的半径向外。将d F 分解为d F ⊥(垂直于x 轴)和d F //(平行于x 轴),由对称性可知,半圆弧导线所受安培力的水平分量相互抵消为零,即

////d 0F F ==?

其垂直分量

π

d d sin d sin sin d 2F F F IB l BIR BIR θθθθ⊥⊥=====????

方向沿y 轴正方向。因此,整段导线所受安培力2F =F BIR ⊥=。方向沿y 轴正方向。

11–7 图11-8中为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B =μ0H 的关系,说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:

a 代表 的B ~H 关系曲线;

b 代表 的B ~H 关系曲线;

c 代表 的B ~H 关系曲线。

答:对各向同性的均匀磁介质,顺磁质或抗磁质有,B =μ0μr H ,B 与H 成正比关系,μr 为常数,因此曲线bc 代表顺磁质或抗磁质。又因为顺磁质的μr >1,抗磁质的μr <1,所以顺磁质的曲线斜率较大,故可进一步判断曲线b 代表顺磁质,曲线c 代表抗磁质,曲线a 中B 与H 成非线性关系,表明该

磁介质的μr 随H 发生变化,不是常数,这是铁磁质的性质,所以曲线a 代表铁磁质。

11–8 一无限长圆柱体均匀通有电流I ,圆柱体周围充满均匀抗磁质,与圆柱体表面相邻的介质表面上的磁化电流大小为I ′,方向与I 的方向相反。沿图11-9中所示闭合回路,则三个线积分的值分别为

d l ?=

? H l ,

d l

?=? B l ,

d l

?=? M l 。

解:由H 的安培环路定理,得d l I ?=? H l 。

由B 的安培环路定理,得0d ()l I I μ'?=-? B l 。

由关系式0

μ=

-B

H M 及上述二式,得

d l

I '?=-? M l 。

11–9 半径为R 1的圆形载流线圈与边长为R 2的正方形载流线圈,通有相同的电流I ,若两线圈中心O 1与O 2的磁感应强度大小相同,则半径R 1与边长R 2之比为[ ]。

A

:8 B .

:4 C

:2 D .1:1

解:设两载流线圈中电流I 的方向均为顺时针方向,半径为R 1的圆形载流线圈在中心O 1点产生的磁感应强度大小为

011

2I

B R μ=

方向垂直纸面向里

边长为R 2的正方形载流线圈在中心O 2点产生的磁感应强度是各边在该点产生的磁感应强度的叠加,由于各段导线产生的磁感应强度方向相同,均为垂直纸面向里,所以O 2

点的

图11–

9

题11–8图

磁感应强度大小是各边在该点产生的磁感应强度大小的代数和,有

0222

(cos 45cos135)44π/2

I

B R μ=

?-??=

由于B 1= B 2,即

001

2

2πI

I

R R μ=

因此

12R R = 因此,正确答案为(A )。

11–10 如图11-10所示,在一磁感应强度为B 的均匀磁场中,有一与B 垂直的半径为R 的圆环,则穿过以该圆环为边界的任意两曲面S 1,S 2的磁通量Φ1,Φ2为[ ]。

A .-πR 2

B ,-πR 2B B .-πR 2B ,πR 2B

C .πR 2B ,-πR 2B

D .πR 2B ,πR 2B 解:半径为R 的圆分别与曲面S 1,S 2构成一闭合曲面1,2,规定曲面外法向为曲面面元的正方向,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,则对闭合曲面1有

2

11d d d πd 0R S R

B ?=?+?=-+

?=????????B S B S B S B S

由此可得

2

11d πR

B Φ=

?=??B S

同理,对闭合曲面2有

2

22d d d πd 0R S R

B ?=?+?=+

?=????????B S B S B S B S

由此可得

222d πR B Φ=

?=-??

B S

因此,正确答案为(C )。

11–11 如图11-11所示,有两根无限长直载流导线平行放置,电流分别为I 1和I 2,L 是空间一闭曲线,I 1在L 内,I 2在L 外,P 是L 上的一点,今将I 2 在L 外向I 1移近时,则有[ ]。

A .l

B d ??L

与B P 同时改变

B .l B d ??

L

与B P 都不改变

C .l B d ??L

不变,B P

改变 D .l B d ??L

改变,B P

不变

解:由真空中的安培环路定理,

?∑=?L I 0d μl B ,∑I 表

示穿过回路的电流的代数和,积分回路外的电流I 2不会影响磁感应强度沿回路的积分,但会改变回路上各点的磁场分布,则B P 改变。因而(C )正确。

11–12 对于介质中的安培环路定理

?∑=?L I l H d ,在下面说法中正确的是[ ]。

I 图11–11

B

图11–10

A .H 只是穿过闭合环路的电流所激发,与环路外的电流无关

B .

∑I 是环路内、外电流的代数和

C .安培环路定律只在具有高度对称的磁场中才成立

D .只有磁场分布具有高度对称性时, 才能用它直接计算磁场强度的大小 解:介质中的安培环路定理

?∑=?L I l H d 在恒定磁场的任何介质中都是成立的,无论

磁场是否具有高度的对称性,只是在磁场有高度对称性时,我们可以选择适当的回路,使得待求场点的磁场强度与回路积分无关,其它的线积分为零或与待求场点相同,被积函数H 可从积分号内提出到积分号外,从而可计算出待求场点的磁场强度。因此

?∑=?L I l H d 用

于求解磁场强度具有高度对称性时的磁场强度,其它情况不能用它来求磁场,但并不表示它不成立。要注意的是,磁场强度和磁场强度环量是两个不同的物理量,式中

∑I 是环路内

电流的代数。定理表示磁场强度的环量等于穿过环路的电流的代数和,即磁场强度的环量只与穿过环路的电流有关,与环外电流无关,并不是磁场强度只与穿过环路的电流有关,空间任一点的磁场是环内和环外电流共同激发的。因此(A )、(B )和(C )都是错误的。答案应选(D )。

11–13 一质量为m ,带电量为q 的粒子在均匀磁场中运动,下列说法正确的是:[ ] A .速度相同,电量分别为+q ,-q 的两个粒子,它们所受磁场力的方向相反,大小相等

B .只要速率相同,所受的洛伦兹力就一定相同

C .该带电粒子,受洛伦兹力的作用,其动能和动量都不变

D .洛伦兹力总是垂直于速度方向,因此带电粒子运动的轨迹必定为一圆形

解:(1)正确。因为带正电粒子所受洛伦兹力F =q v ×B ,带负电粒子所受洛伦兹力F ′= -q v ×B ,所以F = F ′。

(2)错误。带电粒子所受洛伦兹力的大小F =q v B sin θ,它不仅与速度的大小有关,还与速度方向有关;

(3)错误。带电粒子受洛伦兹力的作用,速度的大小不改变,但速度方向要改变,所以其动能不变,但动量要改变。

(4)错误。在均匀磁场中,带电粒子的运动轨迹取决于粒子初速度0v 和B 的夹角θ,当θ=0或θ=π时,带电粒子不受洛伦兹力,其轨迹是直线,当π

2

θ=时,带电粒子作圆周运动,其运动轨迹是圆形,当0v 和B 的夹角θ任意时,带电粒子的运动轨迹是螺旋线。

综上所述,正确答案应选(A )。

11–14 通有电流I 的正方形线圈MNOP ,边长为a (如图11-12),放置在均匀磁场中,已知磁感应强度B 沿z 轴方向,则线圈所受的磁力矩T 为[ ]。

A .I a 2

B ,沿y 负方向 B .I a 2

B/2,沿z 方向 C .I a 2 B ,沿y 方向 D .I a 2 B/2,沿y 方向 解:线圈所受的磁力矩为n NIS =?T e B ,其大小为

图11–12

2

1sin302

T NISB Ia B =?=

,方向沿y 方向。故选(D )

。 11–15 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr <1),则磁介质内的磁化强度为[ ]。

A .r 2πI r μ

B .r (1)2πI r μ-

C .r (1)2πI r μ--

D .r

2π(1)I r μ-

解:在圆柱形无限长载流直导体外,取半径为r (r >R )的同心圆周回路,利用磁介质的安培环路定理先求出磁介质中的磁场强度

d 2πl H r I ?==? H l

,()2πI

H r R r

=

> 则磁介质内的磁化强度为

r r (1)(1)

2πI H r

μμ=-=-M 因此,正确答案为(B )。

11–16 北京正负电子对撞机的储存环是周长为240m 的近似圆形轨道。当环中电子流强度为8mA 时,在整个环中有多少电子在运行?已知电子的速率接近光速。

解:一个电子绕存储环近似以光速运动时,对电流的贡献为/e

I l c

?=,N 个电子对电流的贡献为/Ne

I l c

=

,由此可得 310198

8102404101.610310Il N ec --??===????(个)

11–17 设想在银这样的金属中,导电电子数等于原子数。当1mm 直径的银线中通过30A 的电流时,电子的漂移速率是多大?若银线温度是20oC ,按经典电子气模型,其中自由电子的平均速率是多大?银的摩尔质量取M =0.1kg/mol ,密度ρ=104kg/m 3。

解:银线单位体积的原子数为

A N n M

ρ

=

电流强度为30A 时,银线内电子的漂移速率 d 2

32

23

419

244300.1

ππ(110)610

10 1.610

π()2A A I I IM N D Sne

D N e

e M

ρρ--??=

==

=

???????v

=4×10–3m/s

按经典电子气模型,自由电子的平均速率是

51.60 1.110==?v m/s

11–18 已知导线中的电流按I =t 2–5t +6的规律随时间t 变化,计算在t =1到t =3的时间内通过导线截面的电荷量。

解:由于电流I 随时间t 发生变化,在d t 时间内通过导线截面的电荷量d q =I d t ,在t 1=1到t 2=3内通过的电荷量为

2

1

32

1

d (56)d 18.7t t q I t t t t =

=

-+=??

C 11–19 已知两同心薄金属球壳,内外球壳半径分别为a ,b (a

解:设内球带电+Q ,外球带电-Q ,由于电场分布具有球对称性,可作半径为r (a

2

4r

Q E επ=

(1)

2

11d d 4π4πb

b a a Q

Q

V r a b r ε

ε??

=?==

- ???

??

E r (2) 所以

4π11V

Q a b ε=

??- ???

(3) 将(3)式代入(1)式得

2

()abV E b a r =

- (4)

222

2

2

2

2

22

d 4π4π4π4π()a b V I J r E r kE r k

b a r σ=?====-??S J S 沿径向电流强度减小,沿径向有漏电。

11–20 四条平行的载流无限长直导线,垂直地通过一连长为a 的正方形顶点,每根导线中的电流都是I ,方向如图11-14所示,求正方形中心的磁感应强度B 。

解:正方形中心的磁感应强度B 就是各导线所产生的磁感应强度的矢量叠加,又由右手螺旋定则知,中心处磁场强度为B =B 1+B 2+B 3+B 4=2B 1+2B 2,方向如图11-15所示。其中B 1,B 2的大小为

12B B ==

则磁感应强度B 在水平方向分量为

图11–13

图11–

15

I

I I

3

4

I

图11–14

122sin 452sin 450x B B B ?-?==

竖直方向为

122cos452cos45y B B B ?+?=14cos45B =?

45=?02πI

a

μ=

因此,正方形中心的磁感应强度B 的大小

02πy I

B =B a

μ=

方向竖直向上。

11–21 如图11-16所示,已知地球北极地磁场磁感应强度B 的大小为6.0?10–5

T ,如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?

解:地球赤道圆电流在北极激发的磁感强度为

2

2

2

23/2

2

23/2

22()

()

IR IR B R x R R μμ=

=

++因此赤道上的等效圆电流为

1.2610I =

=

?A=1.72?109 A

由右手螺旋法则可判断赤道圆电流流向由东向西。

11–22 两根导线沿半径方向被引到铁环上A ,D 两点,并与很远处的电源相接,电流方向如图11-17所示,铁环半径为R ,求环中心O 处的磁感应强度。

解:根据叠加原理,点O 的磁感应强度可视作由EF DE FA ,,三段直线以及 1ABD l =, 2ACD l =两段圆弧电流共同激发。由于电源距环较远,0EF =B 。而FA ,DE 两段直线的延长线通过点O ,则d 0I ?l r =,由毕奥–萨伐尔定律知,导线FA ,DE 在O 点的磁感应强度为零,即0FA DE ==B B 。流过圆弧的电流I 1,I 2的方向如图11-18所示,它们在O 点激发的磁感应强度即为所求。

方法一:根据毕奥–萨伐尔定律,圆弧 1ABD l =, 2ACD l =在O 点激发的磁场分别为B 1,B 2,有

10011

11220d 4π4πl I l I l B R R

μμ==?

方向垂直纸面向外。

2

0022

220

d 4π4πl I l I l B R

R

μμ=

=? 方向垂直纸面向里。

由于圆弧 ABD , ACD 构成并联电路,因而有1122I R I R =,又由于圆弧

ABD , ACD 的电阻与其长度成正比,则 B

图11–18

R

I B

地球北极

图11–16

图11–17

12222111

I R l S l I R l S l ρρ=== 即

1122I l I l =

由右手螺旋法则可判断出B 1,B 2方向相反,故点O 的总磁感应强度为

0110221204π4πI l I l

B B B R R μμ-=-==

方法二:一载流圆弧在圆心处产生的磁感强度04πI B R

μα

=,式中α为圆弧载流导线所张的

圆心角,设两段圆弧

ABD , ACD ,对圆心的张角分别为θ和2π-θ,则有 024πABD I

B R

μθ=

01(2π)4πACD I

B R

μθ-=

由右手螺旋法则可判断出B ABD ,B ACD 方向相反,故点O 的总磁感应强度为

0102(2π)4π4πABD ACD I I B B B R R

μθμθ

--=-

= (1) 与方法一相同的步骤得出

1122I l I l =

1221(2π)2πI l R I l R θθ

θθ

===-- 将上式代入(1)式得点O 的总磁感应强度

20

02(2π)

2π04π4πABD ACD I I B B B R R

θ

μθμθθ---=

-==

11–23 一无限长半径为R 的半圆柱金属薄片中,自下而上均匀地有电流I 通过,如图11-19所示。试求半圆柱轴线上任一点P 的磁感应强度B 。

解:载流无限长半圆柱金属薄片可视为许多沿轴线方向无限长载流直导线组成(如图11-20(a ))。其俯视图如图11-20(b )所示,金属薄片在P 点产生的磁感应强度就是这些无限长载流直导线在P 点产生的磁感应强度的矢量叠加。过轴线上所求场点P 做一截面垂直于轴,此截面为半圆,如图11-20(b )所示,截面上长为d d l R θ=范围内的长直载流导线电流d I 为

d d d ππI I

I l R R R

θ=

= 它在P 点产生的磁感应强度为

000d d d d 2π2ππ2πI I I B R R R R R

μμμθ

θ===

方向由右手螺旋关系确定,如图11-20(b )所示。

由于各无限长载流直导线在P 点产生的d B 方向各不相同,于是将d B 分解成两个分量

图11–19

d B x ,d B y

02d d sin sin d 2πx I

B B R

μθθθ

==

0d d cos cos d 2πy I

B B R

μθθθ=-=-

所以

π

00220d sin d 2ππx x I I

B B R R

μμθθ===??

π

020d cos d 02πy y I

B B R

μθθ==-=??

所以该半圆柱在轴线上任一P 点的磁感强度B 的大小为

02πx I

B B R

μ==

方向沿x 轴正方向。

11–24 一个半径为R 的塑料圆盘,表面均匀带电+Q ,如果圆盘绕通过圆心并垂直于盘面的轴线以角速度ω匀速转动,求:(1)圆心O 处的磁感应强度;(2)圆盘的磁矩。

解:(1)圆盘转动时,其上电荷绕轴转动形成电流,在空间激发磁场。圆盘电荷面密度为

2

πQ R

σ=

如图11-21所示,在转动圆盘面内取半径为r ,宽度为d r 的细圆环,环上电流为

d 2πd d d 2πq r r

I r r T σσωω

=

== 细圆环在圆心处产生的磁感应强度大小

000d d d d 222

I r r r

B r r μμσωμσω===

由于所有细圆环在圆心处的磁感应强度d B 的方向都向相同,因此,

0000

d d 2

22πR r

R Q B B R

μσωμσωμω

==

==

?? 方向垂直于盘面向外。

(2)细圆环的磁矩为

23d d πd πd m p S I r r r r r σωσω===

因此,整个圆盘的磁矩为

42

3

0πd πd 44

R

m m R QR p p r r σωωσω====??

11–25 如图11-22所示,长为0.1m 的均匀带电细杆,带电量为1.0?10–10C ,以速率1.0m/s 沿x 轴正方向运动。当细杆运动到与y 轴重合的位置进,细杆的下端到坐标原点O 的距离为l =0.1m ,试求此时杆在原点O 处产生的磁感应强度B 。

解:均匀带电细杆可看成由许多电荷元d q 组成。当均匀带电细杆运动时,相当于许多

图11–20

(a )

(b )

ω

O

r d r

R

图11–21

电荷元运动,每一运动电荷元在空间产生磁场d B ,则空间场点的总磁感应强度B 是所有电荷元产生磁感应强度的矢量叠加。

建立如图所示坐标系,在均匀带电细杆上取电荷元d d q

q y a

=,如图11-23所示。利用运动电荷的磁场公式04π

r

q r

μ?=e B v 可求得d q 在点

O 产生的磁感应强度的大小为

002

2

d sin 90d d 4π

4πq q y

B y

ay μμ?

=

=

v v

方向垂直于纸面向里

因此带电细杆在点O 产生的磁感应强度的大小为

0022d sin 90d d 4π4πq q y B y ay

μμ?==v v

002d 11d 4π4πl a l q q y B =B a l l a ay μμ+??

=

=- ?+??

??

v v 7104π10 1.010 1.0114π0.10.10.10.1--??????

=- ??+??

16105-?=T

11–26 空心长圆柱形导体的内、外半径分别为R 1,R 2均匀流过电流I 。求证导体内部各点(R 1

012221()2π()I r R B R R r

μ-=

-。

解:导体横截面上的电流密度为

2221π()

I

J R R =

-

由于电流和磁场分布具有轴对称性,B 线是以轴线为圆心的同心圆,因此以半径r 作同心圆,如图11-24所示,在圆上任一点B 的量值都相等,方向与圆相切。以此圆为环路,由安培环路定理得

2

2

01d 2π(ππ)B r j r R μ?==-?

B l 22

2

2

010

122222121()(ππ)π()

()

I r R I

r R R R R R μμ-=-=

--

所以

22

012221()2π()

I r R B r R R μ-=

-

11–27 一根很长的半径为R 的铜导线载有电流10A ,在导线内部通过中心线作一平面S (长为1m ,宽为2R ),如图11-25所示。试计算通过S 平面内的磁通量。

图11–

24

图11–22

图11–

23

解:由安培环路定理,可求出圆柱体内、外区域与导体中心轴线相距为r 处的磁感强度的大小

当r R <时,

210

2

d 2πππI B r r R μ?==?

1 B l

012

()2πIr

B r R R

μ=

<

当r R >时,

20d 2πB r I μ?==?2 B l

02()2πI

B r R r

μ=>

在平面S 上,距轴r 处,取宽为d r ,长为l =1m 的面积元d S =l d r =1?d r =d r ,如图11-26

所示,则穿过面积元的磁通量为

d d d d d B S Bl r B r Φ=?===B S

通过整个面积S 的磁通量为

d d d d in ex S S B S B S ΦΦ=

=?=+????B S

200002

d d ln 22π4π2π

2πR

R R Ir

I

I I

r r r R μμμμ=

+

=+??

=1.0?10–6+1.4?10–6=2.4?10–6Wb

11–28 如图11-27所示,线圈均匀密绕在截面为矩形的整个木环上(木环的内外半径分别为R 1,R 2,厚度为h ),共有N 匝,求:(1)通入电流I 后,环内外磁场的分布。(2)通过管截面的磁通量。

解:(1)根据右手螺旋法则,环管内磁感强度的方向与环管中心轴线构成同心圆,取半径为r 的圆为积分环路,在环路上各点B 的大小相等,方向沿环路切向。根据安培环路定理

当1r R <时,有

11d 2π0B r ?==? B l

10B =

当12R r R <<时,有

图11–25

图11–27

图11–26

220d 2B r NI μ?=π=? B l

022πNI

B r

μ=

当2r R >时,有

33d 2π0B r ?==? B l

30B =

可见,在环外B =0,在环内,02πNI

B r

μ=。

(2)在任意半径r 处取宽为d r ,高为h 的条形面积元,如图11-28所示,穿过此面积元的磁能量为

0d d d d d 2πNI

B S Bh r h r r μΦ=?===

B S

则通过环管全部截面的总磁通量为

2

1

002

1

d d ln 2π2πR R NI

NIh R h r r R μμΦΦ==

=?

? 11–29 一无限长直载流导线,通过有电流50A ,在离导线0.05m 处有一电子以速率1.0?107m/s 运动。已知电子电荷的数值为1.6?10–19C ,求下列情况下作用在电子上的洛伦兹力:

(1)设电子的速度v 平行于导线,如图11-29(a ); (2)设v 垂直于导线并指向导线如图11-29(b ); (3)设v 垂直于导线和电子所构成的平面。

解:(1)电子所受的洛伦兹力()e =-?F B v 的大小为 sin90F e B = v 719

7

04π1050

1.610

1.0102π2π0.05

I

=e B =e r

μ--??=?????v v

N=3.2?10–16N

若v 与电流同向时,F 的方向垂直导线并背离导线,如图11-30(a );若v 与电流反向时,F 的方向垂直导线并指向导线。

(2)sin90F e B = v =3.2?10–16N

F 的方向平行于导线,与电流同向,如图11-30(b )。

图11–28

图11–29

(a )

I

v

(b )

I

(3)因为v 与B 夹角为0或π,所以

sin 00e B ==F v 或sin π0e B ==F v

11–30 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹。设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5cm 的圆弧径迹,测得磁感强度为0.20T ,求此质子的动量和动能。

解:由带电粒子回转半径与粒子运动速率的关系

m P

R eB eB

=

=

v 可得

2193.510 1.6100.20P ReB --==????=1.12?10–21kg ?m/s 2212

k (1.1210)22 1.6710p E m -?==

??J=3.76?10–16 J =2.35KeV 11–31 一质子以1.0?107m/s 的速度射入磁感应强度B =1.5T 的均匀磁场中,其速度方向与磁场方向成30?角。计算:(1)质子作螺旋运动的半径;(2)螺距;(3)旋转频率。

解:质子速度在垂直于B 的方向的分量为

sin θ⊥=v v

质子速度在平行于B 的方向的分量为

//cos θ=v v

(1)质子作螺旋运动的半径为

27719sin 1.6710 1.010sin301.610 1.5

m m R eB eB θ-?

⊥-????===??v v m=3.48?10–2 m

(2)螺旋线的螺距为

277//192π2πcos 2 3.14 1.6710 1.010cos301.610 1.5

m m d eB eB θ-?

-??????===??v v m=0.38m

(3)旋转频率为

72

sin 1.010sin 302π2π2 3.14 3.4810f R R θ?

⊥-??===???v v m=2.28?107 m

11–32 如图11-31所示,一铜片厚为d =1.0mm ,放在B =1.5T 的磁场中,磁场方向与铜片表面垂直。已知铜片中自由电子密度为8.4?1022个

3cm ,每个电子的电荷为-e =

图11–30 (a )

I

(b )

v I

-1.6?10–19C ,当铜片中有I =200A 的电流流通时,求:(1)铜片两侧的电势差V aa ′;(2)铜片宽度b 对V aa ′有无影响?为什么?

解:(1)V aa ′即霍尔电势差 226193

200 1.5

8.41010( 1.610) 1.010aa IB V nqd '--?=

=???-???V = -2.23?10–5V

负号表示a ′侧电势高。

(2)铜片宽度b 对V aa ′无影响。这是因为

H H d aa V V E b Bb '===v

和铜片宽度b 成正比,而在电流I 一定的情况下,漂移速度d I

nqbd

=

v 又与宽度b 成反比,因此铜片宽度b 对V aa ′无影响。 11–33 如图11-32所示,任意形状的一段导线AB 中通有从A 到B 的电流I ,导线放在与均匀磁场B 垂直的平面上,设A ,B 间直线距离为l ,试证明导线AB 所受的安培力等于从A 到B 载有同样电流的直导线(长为l )所受的安培力。

证明:方法一:在载流导线上任取一电流元I d l ,该电流元在磁场中受力大小为d F =BI d l ,方向如图11-33所示,设d F 与竖直方向的夹角为θ,它在x ,y 轴上的分量分别为

d d sin d sin d x F F BI l BI y θθ=-=-=-

d d cos d cos d y F F BI l BI x θθ===

于是,整根载流导线AB 所受安培力的x 分量为

d d d 0B

A y x x y F F BI y BI y ==-=-=???

安培力的y 分量为

d d d B

A x l

y y x F F BI x BI x =BIl ===??

?

因此,导线AB 所受安培力的大小为

y F F BIl ==

方向沿y 轴正方向。

若在A ,B 间有一段直导线,同样的电流从A 流到B ,则该直线电流所受安培力F ′的大小等于F ′=BIl ,方向也是沿y 轴正方向。因此

F = F ′

由此得证。

方法二:建立如图11-33所示的坐标系,在载流导线上任取一电流元I d l ,该电流元在磁场中所受安培力为

d d (d d )()(d d )I I x y B IB x y =?+?-=-F l B =i j k j i

整根载流导线在磁场中所受安培力为

0d (d d )d d B

B

l

A

A

IB x y IB x IB y IBl =

-=

-

=????F =

F j i j i j

I

B a

a ′ b

d

图11–31

图11–

33

图11–32

此结果说明,在均匀磁场B 中,一段从A 到B 的任意形状载流导体所受的安培力,与一段从A 到B 长为l 的载流直导线所受的力相同,其大小为

F BIl =

方向沿y 轴正方向。

11–34 有一根质量为m 的倒U 形导线,两端浸没在水银槽中,导线的上段l 处于均匀磁场B 中,如图11-34所示,如果使一个电流脉冲,即电量q =

d t i t ??通过导线,这导线就

会跳起来,假定电流脉冲的持续时间?t 同导线跳起来的时间t 相比为非常小,试由导线所跳高度达h 时,电流脉冲的大小。设B =0.1T ,m =10×10-3kg ,l =0.2m ,h =0.3m 。(提示:利用动量原理求冲量,并找出

d t i t ??与冲量d t F t ??的关系)

解:U 型导线受力F =F m +m g ,其中I =?m F l B 为安培力,方向向上,于是有F =IBl -mg ,方向向上,依冲量定理导线所受安培力的冲量等于其动量的增量(本题中F m >>m g ,m g 可忽略)

0d d d iBl t mg t iBl t Bl i t Blq p m -≈===?=????v d

0Blq

m

=

v 可得

m q Bl

=

v (1) 导线跳起来后,最高达h ,2

012

m mgh =v 得

0v (2)

由(1)、(2)两式得通过导线的电量为

q i t ==

?

d (2)式代入数值,得

0.102010

q ??=0.38C

11–35 如图11-35,在长直导线AB 旁有一矩形线圈CDEF ,导线中通有电流I 1=20A ,线圈中通有电流I 2=10A 。已知d =1cm ,a =9cm ,b =20cm ,求(1)导线AB 的磁场对矩形线圈每边的作用力;(2)矩形线圈所受合力及合力矩。

解:长直导线AB 在空间产生的磁场为

012πI B r

μ=

方向垂直纸面向内。CF 边受到的安培力为

01

0121220

0d d 2π2πb

b I I I b

F BI l I l d d

μμ=

=

=??

图11–34

图11–35

72

2

4π10201020102π110---?????=

??N=8?10–4 N

由右手定则可知,力的方向垂直于CF 边向左,如图11-36所示。 同理,DE 边受到的安培力为

01

2220

0d d 2π()

b

b

I F BI l I l d a μ=

=

+??N

72012224π10201020102π()

2π(110910)

I I b

d a μ----?????=

=

+??+?=8?10–5 N

方向垂直于DE 边向右,如图11-36所示。

由于FE 边上各点B 不同,所以在其上取电流元I 2d l ,则FE 边受到的安培力为

01

012322d d ln

2π2πd a

d a d

d

I I I d a

F BI l I r r d

μμ+++=

=

=?? 722

2

4π102010110910ln 2π110----????+?=?N=9.2?10–5 N

方向垂直于FE 边向下,如图11-36所示。

CD 边受到的安培力

F 4=F 3=9.2?10–5 N

方向垂直于CD 边向上,如图11-36所示。

由此可见,FE 边受到的安培力与CD 边受到的安培力大小相等,方向相反,此二合力为零。

(2)矩形圈所受合力大小为

4512(810810)F F F --=-=?-?N=7.2?10–4 N

由于F >0,可知合力方向向左。矩形线圈所受合力矩为

n 0m IS =??T p B =e B =

11–36 一半径为R =0.1m 的半圆形闭合线圈,载有电流I =10A ,放在均匀磁场中,磁场方向与线圈面平行,如图11-37所示,已知B =0.5T 。求:

(1)在图示位置时线圈的磁矩;

(2)以线圈的直径为转轴,线圈受到的力矩;

(3)当线圈平面从图示位置转到与磁场垂直的位置时,磁力矩所做的功。

解:(1)由线圈的磁矩p m =IS e n ,得磁矩大小为 22

3.140.11022

m R p IS I π?===?A ?m 2=0.157 A ?m 2

p m 的方向与电流流向符合右手螺旋法则,其方向为垂直纸面向外,与磁场B 成90?角。 (2)由线圈受到的力矩公式T =p m ?B ,得磁力矩的大小和方向分别为

sin900.1570.5m T p B ?==?N ?m=7.85?10–2 N ?m

方向向上。

(3)当线圈处于图示位置时,磁通量Φ1=0;当线圈平面与磁场垂直时,Φ2=BS ,因此,转动过程中磁力矩所做的功为

图11–37 图11–36

2

2221ππ()(0)22R R IB W I I BS IB ΦΦ=-=-==23.140.1100.5

2

???=J=7.85?10–2 J

11–37 螺绕环中心周长l =10cm ,环上均匀密绕线圈N =200匝,线圈中通有电流I =100mA 。(1)求管内的磁感应强度B 0和磁场强度H 0;(2)若管内充满相对磁导率μr =4200的磁介质,则管内的B 和H 是多少?(3)磁介质内由导线中电流产生的B 0和由磁化电流产生的B ′各是多少?

解:(1)管内为真空时的磁场强度,由介质的安培环路定理

00d 2πl H r NI ?==? H l

3

02

200100102π1010NI NI H r l --??===

?A ?m –1=200 A ?m –1 磁感应强度为

73

000002

4π10200100101010NI

B H nI l

μμμ---????===

=

?T=2.5?10–4 T

(2)管内充满磁介质时,仍由介质的安培环路定理

d 2πl H r NI ?==? H l

3

2

200100102π1010NI NI H r l --??===

?A ?m –1=200 A ?m –1 磁感应强度为

70r 4π104200200B=H H μμμ-==???T=1.06 T

由于B >>B 0,管内的磁介质是铁磁质。

(3)B 0=2.5?10–4 T

40(1.05 2.510)B B B -'=-=-?T ≈1.05 T

11–38如11-图,一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成。中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料。传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的。求同轴线内外的磁感强度的分布。

解:电流分布和介质分布具有轴对称性,H 的方向沿环绕轴线的同心圆的切线方向,选择以圆柱轴线为圆心,半径为r 的圆周为积分回路l ,由磁介质中的磁场安培环路定理得

d 2πl H r I ?==∑? H l

当1r R <时,有

图11–38

2121

2πππI

H r r R =

磁场强度为

121

2πIr

H R =

磁感应强度

010121

2πIr

B H R μμ==

当12R r R <<时,有

22πH r I =

磁场强度为

22πI H r

=

磁感应强度

222πI

B H r

μμ==

当23R r R <<时,有

222

2

332222232322ππ()π()()

R r I

H r I r R I R R R R -=--=--

磁场强度为

2

23332()2()

I R r H r R R -=

π-

磁感应强度为

2

2033032232()2π()

I R r B H r R R μμ-==

-

当3r R >时,有

42π0H r I I =-=

磁场强度为

40H =

磁感应强度为

40B =

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ =v v ,单位是:安培每平方米(A/m 2) 。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S v 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + = 。 4、一磁场的磁感强度为k c j b i a B ? ???++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大 小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ??v v ?=____μ0I __; 对环路b :d B l ??v v ?=___0____; 对环路c :d B l ??v v ? =__2μ0I __。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B v 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2?r 2B B.??r 2B C. 0 D. 无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. B. C. D. ( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

大学物理学第二版第章习题解答精编

大学物理学 习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2)平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不 变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =及a =你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速 度也一定为零.”这种说法正确吗? (9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解:

大学物理第8章 稳恒磁场 课后习题及答案

第8章 稳恒磁场 习题及答案 6. 如图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R 。若通以电流I ,求O 点的磁感应强度。 解:O 点磁场由AB 、C B 、CD 三部分电流产生,应用磁场叠加原理。 AB 在O 点产生的磁感应强度为 01=B C B 在O 点产生的磁感应强度大小为 θπμR I B 402=R I R I 123400μππμ=?=,方向垂直纸面向里 CD 在O 点产生的磁感应强度大小为 )cos (cos 4210 03θθπμ-=r I B )180cos 150(cos 60cos 40 0??-= R I πμ )2 31(20-=R I πμ,方向垂直纸面向里 故 )6 231(203210π πμ+- =++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。已知圆环的粗细均匀,求环中心O 的磁感应强度。 解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点 产生的磁场为零。且 θ πθ -==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为 )(θππμ-= 241 01R I B ,方向垂直纸面向外 2I 产生的磁感应强度大小为 θπμR I B 4202=,方向垂直纸面向里 所以, 1) 2(21 21=-=θ θπI I B B 环中心O 的磁感应强度为 0210=+=B B B 8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。 解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。 以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。在载流平板上取dx a I dI = ,dI 在P 点产生的磁感应

大学物理(华中科技版)第11章习题解答

第11章习题答案 11-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即a →0), 磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20= 只对理想线电流适用,忽略了导线粗细,当a →0, 导线的 尺寸不能忽略,电流就不能称为线电流,此公式不适用。 11-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μ 得 0=??l d B ,说明圆形环路L 内的电流代数和为零,并不 是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c 上各点的B 是否为零?为什么? 解: ?μ=?a l B 0 8d ? μ=?ba l B 08d ?=?c l B 0d (1)在各条闭合曲线上,各点B 的大小不相等. (2)在闭合曲线C 上各点B 不为零.只是B 的环路积分为零而非每点0=B . 11-4 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 习题11-2图

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ = ,单位是:安培每平方米(A/m 2)。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=0 .若通过S 面上某面元d S 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + =。 4、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ?? =____μ0I__; 对环路b :d B l ?? =___0____; 对环路c :d B l ?? =__2μ0I__。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2πr 2B B. πr 2B C. 0 D.无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. 0.90 B. 1.00 C. 1.11 D.1.22 (D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

大学物理第11章习题解答

习题11 1. 选择题 (1) 一圆形线圈在均匀磁场中作下列运动时, 哪些情况会产生感应电流( ) A. 沿垂直磁场方向平移 B. 以直径为轴转动, 轴跟磁场垂直 C. 沿平行磁场方向平移 D. 以直径为轴转动, 轴跟磁场平行 (2) 尺寸相同的铁环与铜环所包围的面积中, 通以相同变化率的磁通量, 环中( ) A. 感应电动势相同, 感应电流不同. B. 感应电动势相同, 感应电流相同. C. 感应电动势不同, 感应电流相同. D. 感应电动势不同. (3) 对于涡旋电场, 下列说法不正确的是( ) A. 涡旋电场对电荷有作用力. B. 涡旋电场由变化的磁场产生. C. 涡旋电场由电荷激发. D. 涡旋电场的电场线是闭合的. (4) 用线圈的自感系数L 来表示载流线圈磁场能量的公式2 12 m W LI =( ) A. 只适用于单匝圆线圈. B. 只适用于一个匝数很多, 且密绕的螺线环. C. 适用于自感系数L 一定的任意线圈. D. 只适用于无限长密绕螺线管. (5) 有两个长直密绕螺线管, 长度及线圈匝数均相同, 半径分别为1r 和2r . 管内充满均匀介质, 其磁导率分别为1μ和2μ. 设1212r r =, 1221μμ=, 当将两只螺线管串联在电路中通电稳定后, 其自感系数之比12L L 与磁能之比12m m W W 分别为( ) A. 1211L L =, 1211m m W W =. B. 1212L L =, 1211m m W W =. C. 1212L L =, 1212m m W W =. D. 1221L L =, 1221m m W W =. 答案:B A C D C 2. 填空题 (1) 电阻2R =Ω的闭合导体回路置于变化磁场中, 通过回路包围面的磁通量与时间的关系 为23 (582)10()m t t Wb -Φ=+-?, 则在2t s =至3t s =的时间内, 流过回路导体横截面 的感应电荷等于______________C .

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B》稳恒磁场习题解答 一、填空题(每空1分) - dI O 1、电流密度矢量的定义式为:j =—L n ,单位是:安培每平方米(AIm)O dS丄 2、真空中有一载有稳恒电流I的细线圈,则通过包围该线圈的封闭曲面S的磁通量J-=0_?若通过S面上某面元dS 的元磁通为d①,而线圈中的电流增加为2I时,通过同一面元的元磁通为d①/,则族:曲Z=1:2 o 3、一弯曲的载流导线在同一平面内,形状如图1(0点是半径为R i和R2的两个半圆弧的共同圆心,电流自无穷远来 到无穷远去),则0点磁感强度的大小是B o M ’ O 4R1 4R24I R2 4、一磁场的磁感强度为^ai bj Ck (SI),则通过一半径为R,开口向Z轴正方向的半球壳表面的磁通量的大小为ΠcWb 5、如图2所示通有电流I的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a:应B dl = _μp l=; 对环路b: ? B dl = 0 ; 对环路C:、B dl =_2 μg l—o 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是 1 : 4,电荷之比是1 : 2,它们所受 的磁场力之比是 1 : 2 ,运动轨迹半径之比是 1 : 2 o 二、单项选择题(每小题2分) (B ) 1、均匀磁场的磁感强度B垂直于半径为r的圆面?今以该圆周为边线,作一半球面S,则通过S面的磁通量的 大小为 2 2 A. 2町B B. JT B C. 0 D.无法确定的量 (C ) 2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B1 I B2为 A. 0.90 B. 1.00 C. 1.11 D.1.22 (D) 3、如图3所示,电流从a点分两路通过对称的圆环形分路,汇合于b点.若ca、bd都沿环的径向,则在环形分路的环心处的磁感强度 A.方向垂直环形分路所在平面且指向纸内 B.方向垂直环形分路所在平面且指向纸外 C方向在环形分路所在平面内,且指向aD?为零

大学物理第11章习题答案(供参考)

第11章 电磁感应 11.1 基本要求 1理解电动势的概念。 2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。 3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。 4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。 5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。 6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。 7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。 8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。 11.2 基本概念 1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即 W q ε= 2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。 3感生电场k E :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电 场线是闭合的,所以感生电场也称有旋电场。 4感生电动势:仅由磁场变化而产生的感应电动势。 5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。 自感系数L ://m L I N I =ψ=Φ 6自感电动势L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。

7互感系数M :2112 12 M I I ψψ= = 8互感电动势12ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。 9磁场能量m W :贮存在磁场中的能量。 自感贮存磁能:212 m W LI = 磁能密度m w :单位体积中贮存的磁场能量22111 222 m B w μH HB μ=== 10位移电流:D d d I dt Φ= s d t ?=??D S ,位移电流并不表示有真实的电荷在空 间移动。但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。 11位移电流密度:d t ?=?D j 11.3 基本规律 1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。 (1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。楞 次定律是判断感应电流方向的普适定则。 (2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即 m i d dt εΦ=- 2动生电动势:()B B K A A i εd d ==???E l v B l ,若0i ε>,则表示电动势方向由A B →;若 0i ε<,则表示电动势方向B A → 3感生电动势:m K l s i d Φd εd d dt dt = ?=- =-? ?B E l S (对于导体回路) B K A i εd =?E l (对于一段导体) 4自感电动势:L dI εL dt =- 5互感电动势:12212d ΨdI εM dt dt =-=- 6麦克斯韦方程组

大学物理电磁场练习题含答案

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案 1-5 CADBC 6-8 CBC 三、稳恒磁场习题 1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二 者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]

4. 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布, 则空间各处的B 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ] 5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导 线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0. (D) B ≠ 0,因为虽然021 ≠+B B ,但B 3 ≠ 0. [ ]

大学物理练习册-稳恒磁场

九、稳恒磁场 磁感应强度 9-1 如图9-1所示,一条无穷长载流20 A 的直导线在P 点被折成1200的钝角,设d =2cm , 求P 点的磁感应强度。 9-2半径为R 的圆弧形导线与一直导线组成回路,回路中通有电流I ,如图9-2所示,求弧心 O 点的磁感应强度(图中 ? 为已知量)。 9-3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连。如图9-3所示, 求环中心的磁感应强度。 图 9-1

磁矩 9-4一半径为R的薄圆盘,其中半径为r的阴影部分均匀带正电,面电荷密度为+s,其余部分均匀带负电,面电荷密度为-s(见图9-4)。设此盘以角速度为ω绕其轴线匀速转动时,圆盘中心O处的磁感应强度为零,问R和r有什么关系?并求该系统的磁矩。 图9-4 9-5氢原子处在正常态(基态)时,它的电子可看作是在半径为a=0.53×10-8cm的轨道(称为玻尔轨道)上作匀速圆周运动,若电子在轨道中心处产生的磁感应强度大小为12.5T,求(1)电子运动的速度大小?(2)该系统的磁矩。(电子的电荷电量e=1.6×10-19C)。

磁通量 9-6已知一均匀磁场的磁感应强度B=2T,方向沿x轴正方向,如图9-6所示,已知ab=cd =40cm,bc=ad=ef=30cm,be=cf=30cm。求:(1)通过图中abcd面的磁通量;(2)通过图中befc面的磁通量;(3)通过图中aefd面的磁通量。 图9-6 9-7两平行长直导线相距d=40cm,每根导线载有等量同向电流I,如图9-7所示。求:(1)两导线所在平面内,与左导线相距x(x在两导线之间)的一点P处的磁感应强度。(2)若I=20A,通过图中斜线所示面积的磁通量(r1=r3=10cm,l=25cm)。 图9-7

大学物理3第11章习题分析与解答

习 题 解 答 11-1 在双缝干涉实验中,若单色光源S 到两缝21S S 、距离相等,则观察屏上中央明纹位于图中O 处。现将光源S 向下移动到示意图中的S '位置,则( ) (A (B (C (D 解 由S O 处,光程差 0=?,形成明纹,当光源由S 向下移动S '时,由S '到达21S S 、的两束光产生了 光程差,为了保持原中央明纹处的光程差为0,它将上移到图中O '处,使得由S '沿21S S 、传到O '处的两束光的光程差仍为0.而屏上各级明纹位置只是向上平移,因此条纹间距不变。故选B 11-2 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如附图所示,若薄膜厚度为e , 且n 1<n 2,n 3<n 2, λ1为入射光在n 1中的波长,则两束反射光的光程为( ) (A )e n 22 (B )1 1222n e n λ- (C )2 2112λn e n - (D )2 2122λn e n - 习题11-2图 解 由于n 1〈n 2,n 3〈n 2,因此光在表面上的反射光有半波损失,下表面的反射光没有半波损失,所以他们的光程差222λ-=?e n ,这里λ是光在真空中的波 长,与1λ的关系是11λλn =。 故选C 11-3 如图所示,两平面玻璃板构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将发生( )变化 (A )干涉条纹间距增大,并向O 方向移动 (B )干涉条纹间距减小,并向B 方向移动 (C )干涉条纹间距减小,并向O 方向移动 (D )干涉条纹间距增大,并向B 方向移动 3 n A θ B O 习题11-3图 S S ’ O O ’

大学物理(第四版)课后习题及答案-磁场

习 题 题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向 相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。 题10.2:已知地球北极地磁场磁感强度B 的大小为6.0105 T 。如设想此地磁场是由地球赤道 上一圆电流所激发的(如图所示),此电流有多大?流向如何? 题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少? 题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈 覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。 题10.5:实验中常用所谓的亥姆霍兹线圈在局 部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22 x B )

题10.6:如图所示,载流长直导线的电流为I,试求通过矩形面积的磁通量。 题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。 题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。电流在导线横截面上均匀分布。求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。 题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:(1)rR3。画出B-r图线。 题10.10:如图所示。N匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I后,环内外磁场的分布。 题10.11:设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反,如图所示,求:(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。 题10.12:测定离子质量的质谱仪如图所示,离子源S产生质量为m,电荷为q的离子,离子的初速很小,可看作是静止的,经电势差U加速后离子进入磁感强度为B的均匀磁场,并沿一半

大学物理稳恒磁场解读

大学物理稳恒磁场解读 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场 磁力通过磁场传递,磁场是又一个以场的形式存在的物质。 二、磁感强度 磁感强度B的定义:

(1)规定小磁针在磁场中N极的指向为该点磁感强度B的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B垂直的方向运动时,其所受最大磁力F max与电荷电量q和运动速度大小v的乘积的比值,规定为磁场中某点磁感强度的大小。即: 磁感强度B是描写磁场性质的基本物理量。若空间各点B的大小和方向均相等,则该磁场为均匀磁场;若空间各点B的大小和方向均不随时间改变,称该磁场为稳恒磁场。 磁感强度B的单位:特斯拉(T)。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: 电流在空间的磁场可看成是组成电流的所有电流元在空间产生 元磁感强度的矢量和。 式中μ0:真空磁导率,μ0=4π×10-7 NA 2 dB的大小:

d B的方向:d B总是垂直于Id l与r组成的平面,并服从右手定则。 一段有限长电流的磁场: 二、应用 1。一段载流直导线的磁场 说明: (1)导线“无限长”:

大学物理磁场作业解答

11-1 求图中各种情况下O 点处的磁感应强度B 。 解:图a 的电流可以看成是由1、2两个电流合成的。故合场强为 直线电流,和矩形电流产生的磁感应强度的矢量和。 直线电流1在O 点产生的磁感应强度 ) 2/(20a I πμ,方向垂直纸 面向外。 矩形电流2由两条长度为a 、两条长度为b 的直线电流组成在O 点产生的磁感应强度为: )]2/sin()2/[sin() 2/(42 )]2/sin()2/[sin() 2/(42 00ααπμ??πμ--+--b I a I 2 2 02 2 00022)2/sin(2)2/sin(2b a a b I b a b a I b I a I ++ +=+= πμπμαπμ?πμ )(2220b a a b b a I ++= πμ方向垂直纸面向内。 O 点的磁感应强度为:220022002)(2b a ab I a I b a a b b a I a I B +-=++-= πμπμπμπμ 这里利用了载流直导线外的磁感应强度公式: ]sin )[sin 4120ββπμ-= r I B 电流b 由两条直线电流,和一个圆弧组成: )0sin 90(sin 42 360 135 200-?+= R I R I B πμμ R I R I R I 00035.02163μπμμ=+= 电流c 中两条直线电流的延长线都过圆心,由毕-萨定律知道在圆心处产生的磁感应强度为0,圆弧产生的磁感应强度为 R l R I R l R I B πμπμ2222220110-= 由于两端的电压相同有2211I S l I S l V ρρ ==带入上式得到B=0 11-2.如图所示,一扇形薄片,半径为R ,张角为θ,其上均匀分布正电荷,电荷密度为σ,

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案 1-5 CADBC 6-8 CBC 三、稳恒磁场习题 1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中 通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]

4. 无限长载流空心圆柱导体的内外半径分别为 a 、 b ,电流在导体截面上均匀分布, 则空间各处的B ? 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确 的图是 [ ] 5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导 线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ?、2B ? 和3B ?表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0. (D) B ≠ 0,因为虽然021≠+B B ? ?,但B 3 ≠ 0. [ ] 6. 电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆

大学物理稳恒磁场

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场 磁力通过磁场传递,磁场是又一个以场的形式存在的物质。

二、磁感强度 磁感强度B 的定义: (1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。即: qv F B max = 磁感强度B 是描写磁场性质的基本物理量。若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场.... 。 磁感强度B 的单位:特斯拉(T )。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: l Id 电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。

式中μ0:真空磁导率,μ0=4π×10-7NA2 dB的大小: 2 sin 4r Idl dB θ π μ = d B的方向:d B总是垂直于Id l与r组成的平面,并服从右手定则。 一段有限长电流的磁场:? ?? = = l l r r l Id B d B 3 4π μ 二、应用 1。一段载流直导线的磁场 ) cos (cos 42 1 0θ θ π μ - = r I B 说明: (1)导线“无限长”: 2r I B π μ = (2)半“无限长”: 4 2 2 1 r I r I B π μ π μ = =

大学物理真空中的稳恒磁场习题集

第八章 真空中的稳恒磁场 8-1 已知均匀磁场,其磁感强度B = Wb ·m -2, 方向沿x 轴正向,如图所示.试求: (1) 通过图中abOc 面的磁通量; (2) 通过图中bedO 面的磁通量; (3) 通过图中acde 面的磁通量. (答案:-;0 Wb ;) 8-2 如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角??=60°的折线,求角平分线上与导线的垂直距离均为r = cm 的P 点处的磁感强度.(?0 =4?×10-7 H ·m -1) (答案:×10-3 T ,方向垂直纸面向上) 8-3 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧 共面共心.求圆心O 处的磁感强度B 的大小. (答案: ]2sin 2sin [2cos 22 2 111 110R l R l R l R I +-πμ)(42 222110R l R l I -π+μ 方向?.)

8-4 将通有电流I 的导线在同一平面内弯成如图所示的形 状,求D 点的磁感强度B 的大小. (答案: )2 23(40b a I +π πμ) 8-5 已知半径为R 的载流圆线圈与边长为a 的载流正方形线圈的磁矩之比为2∶1,且载流圆线圈在中心O 处产生的磁感应强度为B 0,求在正方形线圈中心O '处的磁感强度的大小. (答案:03)/2(B a R ) 8-6 无限长直导线折成V 形,顶角为??,置于xy 平面内,一个角边与x 轴重合,如图.当导线中有电流I 时,求y 轴上一点P (0,a )处的磁感强度大小. (答案: )cos sin 1(cos 40θθθ μ-+a I π,方向垂直纸面向外) 8-7 在真空中,电流由长直导线1沿垂直于底边 bc 方向经a 点流入一由电阻均匀的导线构成的正三角 形金属线框,再由b 点从三角形框流出,经长直导线2沿cb 延长线方向返回电源(如图).已知长直导线上 的电流强度为I ,三角框的每一边长为l ,求正三角形的中心点O 处的磁 感强度B . (答案: )332(40-πl I μ,方向垂直纸面向里)

大连理工大学大学物理作业10(稳恒磁场四)及答案详解

作业 10 稳恒磁场四 1.载流长直螺线管内充满相对磁导率为r μ的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度H 的关系是[ ]。 A. 0B H μ> B. r B H μ= C. 0B H μ= D. 0B H μ< 答案:【D 】 解:对于非铁磁质,电磁感应强度与磁场强度成正比关系 H B r μμ0= 抗磁质:1≤r μ,所以,0B H μ< 2.在稳恒磁场中,关于磁场强度H →的下列几种说法中正确的是[ ]。 A. H →仅与传导电流有关。 B.若闭合曲线内没有包围传导电流,则曲线上各点的H →必为零。 C.若闭合曲线上各点H →均为零,则该曲线所包围传导电流的代数和为零。 D.以闭合曲线L 为边界的任意曲面的H →通量相等。 答案:【C 】 解:安培环路定理∑?=?0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分只与传导电流有关,并不是说:磁场强度H ρ本身只与传导电流有关。A 错。 闭合曲线内没有包围传导电流,只能得到:磁场强度H ρ的闭合回路的线积分为零。并不能说:磁场强度H ρ本身在曲线上各点必为零。B 错。 高斯定理0=???S S d B ρρ,是说:穿过闭合曲面,场感应强度B ρ的通量为零,或者说,. 以闭合曲线L 为边界的任意曲面的B ρ通量相等。对于磁场强度H ρ,没有这样的高斯定理。不能说,穿过闭合曲面,场感应强度H ρ的通量为零。D 错。 安培环路定理∑?=?0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分等于闭合回路 包围的电流的代数和。C 正确。 3.图11-1种三条曲线分别为顺磁质、抗磁质和铁磁质的B H -曲线,则Oa 表示 ;Ob 表示 ;Oc 表示 。 答案:铁磁质;顺磁质; 抗磁质。 图中Ob (或4.某铁磁质的磁滞回线如图11-2 所示,则'Ob )表示 ;Oc (或'Oc )表示 。 答案:剩磁;矫顽力。

大学物理稳恒磁场

大学物理稳恒磁场 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场

磁力通过磁场传递,磁场是又一个以场的形式存在的物质。 二、磁感强度 磁感强度B 的定义: (1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。即: qv F B max 磁感强度B 是描写磁场性质的基本物理量。若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场.... 。 磁感强度B 的单位:特斯拉(T )。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: l Id 电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。

3 04r r l Id B d ?=πμ 式中μ0:真空磁导率, μ0=4π×10-7 NA 2 dB 的大小: 2 0sin 4r Idl dB θ πμ= d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则。 一段有限长电流的磁场: ???= =l l r r l Id B d B 30 4πμ 二、应用 1。一段载流直导线的磁场 )cos (cos 4210 0θθπμ-= r I B 说明: (1)导线“无限长”: 002r I B πμ=

第七章 稳恒磁场习题及答案大学物理

7章练习题 1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线 方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2 B cos α. 2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构 成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电 流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但 0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . 3、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . 4、磁场由沿空心长圆筒形导体的均匀分布的电 流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲 线表示B -x 的关系? [ ] B x O R (D) B x O R (C) B x O R (E)

《大学物理学》恒定磁场练习题(马)

《大学物理学》恒定磁场部分自主学习材料 要掌握的典型习题: 1. 载流直导线的磁场:已知:真空中I 、1α、2α、x 。 建立坐标系Oxy ,任取电流元I dl ,这里,dl dy = P 点磁感应强度大小:02 sin 4Idy dB r μα π= ; 方向:垂直纸面向里?。 统一积分变量:cot()cot y x x παα=-=-; 有:2 csc dy x d αα=;sin()r x πα=-。 则: 2022sin sin 4sin x d B I x μαααπα =?21 0sin 4I d x ααμααπ=?012(cos cos )4I x μααπ-=。 ①无限长载流直导线:παα==210,,02I B x μπ=;(也可用安培环路定理直接求出) ②半无限长载流直导线:παπα==212,,04I B x μπ=。 2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。 建立坐标系Oxy :任取电流元Idl ,P 点磁感应强度大小: 2 04r Idl dB πμ= ;方向如图。 分析对称性、写出分量式: 0B dB ⊥⊥==?;? ?==2 0sin 4r Idl dB B x x α πμ。 统一积分变量:r R =αsin ∴??==20sin 4r Idl dB B x x απμ?=dl r IR 304πμR r IR ππμ2430?=232220)(2x R IR +=μ。 结论:大小为2 022322032()24I R r IR B R x μμππ??= =+;方向满足右手螺旋法则。 ①当x R >>时,2 2 003 3224IR I R B x x μμππ= = ??; ②当0x =时,(即电流环环心处的磁感应强度):00224I I B R R μμππ= = ?; ③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04I R B μθπ=。 B ? R I dl Idl r O B d R B

相关主题
文本预览
相关文档 最新文档