当前位置:文档之家› 人民法院综合业务大数据平台项目功能需求分析20170923V1.5

人民法院综合业务大数据平台项目功能需求分析20170923V1.5

人民法院综合业务大数据平台项目功能需求分析20170923V1.5
人民法院综合业务大数据平台项目功能需求分析20170923V1.5

人民法院综合业务大数据平台项目

功能需求分析

目录

1 建设内容清单 (3)

1.1微信立案后台管理子系统: (3)

1.2讼宝: (3)

1.3自助立案服务(自助服务区) (3)

1.4大数据平台 (3)

1.5移动微信端(企业号) (3)

1.6后台管理服务类系统 (4)

1.7统一门户平台 (4)

1.8大屏展示 (4)

1.9审判大楼导航系统 (4)

1.10法院内部系统接口 (4)

1.11基础管理 (4)

1.12项目配套硬件 (5)

2 建设内容功能要求 (5)

2.1微信立案后台管理子系统: (5)

2.2讼宝: (7)

2.3自助立案服务: (8)

2.4大数据平台: (9)

2.5移动微信端: (10)

2.6后台管理服务类系统: (11)

2.7统一门户平台: (12)

2.8大屏展示系统: (13)

2.9楼宇导航系统: (14)

2.10法院内部系统接口: (14)

2.11基础管理系统: (15)

2.12项目配套硬件: (15)

3 其他服务要求 (16)

3.1系统架构体系 (16)

3.2系统安全需求 (16)

3.3系统部署要求 (16)

3.4系统运行环境 (16)

3.5系统整合集成要求 (16)

3.6本项目与其他系统接口要求 (17)

1建设内容清单

1.1微信立案后台管理子系统:

建设与微信立案对应的微信立案后台管理子系统,提供网上各类业务引导、业务远程办理等,最大程度为当事人、律师等提供便利。

1.2讼宝:

微信版诉讼服务中心,包括首页、自助立案、在线缴退诉讼费、材料递交、文书送达、案件查询、进度查询、电子阅卷、判后答疑、联系法官、诉讼文书、网上信访、诉讼费用计算器等。

1.3自助立案服务(自助服务区)

二维码扫描,身份验证,登记立案,信息查询,退缴诉讼费,诉前联调,联系法官,收转送达,投诉建议,回执打印,大屏展示,统计分析。

1.4大数据平台

基于大数据采集,处理,分析,归类,存储为基础的平台,通过对大量数据的机器学习,语义分析,搜索引擎,数据归类,信息处理等相关技术为支撑的平台,包含:数据采集,数据存储,数据分析,数据归类,数据检索,数据可视化等6个方面。

1.5移动微信端(企业号)

提供派车出车,包括派车申请、派车审批、出车评价、生成使用回执、我的待办、通知信息等;提供物品申领,包括物品申请、申领审批等。

1.6后台管理服务类系统

提供司机管理,包括司机的增删改查、司机出车状况、司机排班、出车申请、出车审批、评价管理等;提供车库管理,包括车位的增删改查、车库使用状况等;提供车辆管理,包括车辆的增删改查、车辆使用情况等;提供物品管理,包括物品初始化、物品入库、物品出库、物品盘点、物品申请、物品审批、物品库存等;提供统计分析报表,包括车库使用情况统计、司机出车统计、车辆使用统计、物品使用情况统计等。

1.7统一门户平台

用户管理,权限管理,系统控制室,资源管理,组织机构,认证服务等。

1.8大屏展示

在大屏幕的显示屏上,实时动态的展示案件相关信息,诉讼相关信息,和统计信息等。

1.9审判大楼导航系统

通过自助终端,为当事人提供审判大楼各楼层引导、各楼层法庭、区域分布等信息等。

1.10法院内部系统接口

停车场车牌识别系统接口,退缴费银行接口,官方网站系统接口,审判系统接口等。

1.11基础管理

基础管理是系统的公共模块,提供基础的服务包括:登录注册、通知公告、个人中心等。

大数据分析平台技术要求

大数据平台技术要求 1.技术构架需求 采用平台化策略,全面建立先进、安全、可靠、灵活、方便扩展、便于部署、操作简单、易于维护、互联互通、信息共享的软件。 技术构架的基本要求: ?采用多层体系结构,应用软件系统具有相对的独立性,不依赖任何特定的操作系统、特定的数据库系统、特定的中间件应用服务器和特定的硬 件环境,便于系统今后的在不同的系统平台、不同的硬件环境下安装、 部署、升级移植,保证系统具有一定的可伸缩性和可扩展性。 ?实现B(浏览器)/A(应用服务器)/D(数据库服务器)应用模式。 ?采用平台化和构件化技术,实现系统能够根据需要方便地进行扩展。2. 功能指标需求 2.1基础平台 本项目的基础平台包括:元数据管理平台、数据交换平台、应用支撑平台。按照SOA的体系架构,实现对我校数据资源中心的服务化、构件化、定制化管理。 2.1.1元数据管理平台 根据我校的业务需求,制定统一的技术元数据和业务元数据标准,覆盖多种来源统计数据采集、加工、清洗、加载、多维生成、分析利用、发布、归档等各个环节,建立相应的管理维护机制,梳理并加载各种元数据。 具体实施内容包括: ●根据业务特点,制定元数据标准,要满足元数据在口径、分类等方面的 历史变化。 ●支持对元数据的管理,包括:定义、添加、删除、查询和修改等操作,

支持对派生元数据的管理,如派生指标、代码重新组合等,对元数据管 理实行权限控制。 ●通过元数据,实现对各类业务数据的统一管理和利用,包括: ?基础数据管理:建立各类业务数据与元数据的映射关系,实现统一的 数据查询、处理、报表管理。 ?ETL:通过元数据获取ETL规则的描述信息,包括字段映射、数据转 换、数据转换、数据清洗、数据加载规则以及错误处理等。 ?数据仓库:利用元数据实现对数据仓库结构的描述,包括仓库模式、 视图、维、层次结构维度描述、多维查询的描述、立方体(CUBE)的 结构等。 ●元数据版本控制及追溯、操作日志管理。 2.1.2数据交换平台 结合元数据管理模块并完成二次开发,构建统一的数据交换平台。实现统计数据从一套表采集平台,通过数据抽取、清洗和转换等操作,最终加载到数据仓库中,完成整个数据交换过程的配置、管理和监控功能。 具体要求包括: ●支持多种数据格式的数据交换,如关系型数据库:MS-SQLServer、MYSQL、 Oracle、DB2等;文件格式:DBF、Excel、Txt、Cvs等。 ●支持数据交换规则的描述,包括字段映射、数据转换、数据转换、数据 清洗、数据加载规则以及错误处理等。 ●支持数据交换任务的发布与执行监控,如任务的执行计划制定、定期执 行、人工执行、结果反馈、异常监控。 ●支持增量抽取的处理方式,增量加载的处理方式; ●支持元数据的管理,能提供动态的影响分析,能与前端报表系统结合, 分析报表到业务系统的血缘分析关系; ●具有灵活的可编程性、模块化的设计能力,数据处理流程,客户自定义 脚本和函数等具备可重用性; ●支持断点续传及异常数据审核、回滚等交换机制。

大数据分析的六大工具介绍

大数据分析的六大工具介绍 2016年12月 一、概述 来自传感器、购买交易记录、网络日志等的大量数据,通常是万亿或EB的大小,如此庞大的数据,寻找一个合适处理工具非常必要,今天我们为大家分学在大数据处理分析过程中六大最好用的工具。 我们的数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设il?的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章。大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。大数据分析是在研究大量的数据的过程中寻找模式, 相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。 二.第一种工具:Hadoop Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是 以一种可黑、高效、可伸缩的方式进行处理的。Hadoop是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地 在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下儿个优点: ,高可黑性。Hadoop按位存储和处理数据的能力值得人们信赖。,高扩展性。Hadoop是 在可用的计?算机集簇间分配数据并完成讣算任务 的,这些集簇可以方便地扩展到数以千计的节点中。 ,高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动 态平衡,因此处理速度非常快。 ,高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败 的任务重新分配。 ,Hadoop带有用Java语言编写的框架,因此运行在Linux生产平台上是非 常理想的。Hadoop上的应用程序也可以使用其他语言编写,比如C++。 第二种工具:HPCC HPCC, High Performance Computing and Communications(高性能计?算与通信)的缩写° 1993年,山美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项 U:高性能计算与通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项U ,其U的是通过加强研究与开发解决一批重要的科学与技术挑战 问题。HPCC是美国实施信息高速公路而上实施的计?划,该计划的实施将耗资百亿 美元,其主要U标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络 传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。

大数据可视化分析平台介绍

大数据可视化分析平台 一、背景与目标 基于邳州市电子政务建设的基础支撑环境,以基础信息资源库(人口库、法人库、宏观经济、地理库)为基础,建设融合业务展示系统,提供综合信息查询展示、信息简报呈现、数据分析、数据开放等资源服务应用。实现市府领导及相关委办的融合数据资源视角,实现数据信息资源融合服务与创新服务,通过系统达到及时了解本市发展的综合情况,及时掌握发展动态,为政策拟定提供依据。 充分运用云计算、大数据等信息技术,建设融合分析平台、展示平台,整合现有数据资源,结合政务大数据的分析能力与业务编排展示能力,以人口、法人、地理,人口与地理,法人与地理,实现基础展示与分析,融合公安、交通、工业、教育、旅游等重点行业的数据综合分析,为城市管理、产业升级、民生保障提供有效支撑。 二、政务大数据平台 1、数据采集和交换需求:通过对各个委办局的指定业务数据进行汇聚,将分散的数据进行物理集中和整合管理,为实现对数据的分析提供数据支撑。将为跨机构的各类业务系统之间的业务协同,提供统一和集中的数据交互共享服务。包括数据交换、共享和ETL 等功能。 2、海量数据存储管理需求:大数据平台从各个委办局的业务系统里抽取的数据量巨大,数据类型繁杂,数据需要持久化的存储和访问。不论是结构化数据、半结构化数据,还是非结构化数据,经过数据存储引擎进行建模后,持久化保存在存储系统上。存储系统要具备高可靠性、快速查询能力。 3、数据计算分析需求:包括海量数据的离线计算能力、高效即

席数据查询需求和低时延的实时计算能力。随着数据量的不断增加,需要数据平台具备线性扩展能力和强大的分析能力,支撑不断增长的数据量,满足未来政务各类业务工作的发展需要,确保业务系统的不间断且有效地工作。 4、数据关联集中需求:对集中存储在数据管理平台的数据,通过正确的技术手段将这些离散的数据进行数据关联,即:通过分析数据间的业务关系,建立关键数据之间的关联关系,将离散的数据串联起来形成能表达更多含义信息集合,以形成基础库、业务库、知识库等数据集。 5、应用开发需求:依靠集中数据集,快速开发创新应用,支撑实际分析业务需要。 6、大数据分析挖掘需求:通过对海量的政务业务大数据进行分析与挖掘,辅助政务决策,提供资源配置分析优化等辅助决策功能,促进民生的发展。

基于大数据的能力开放平台解决实施方案

基于大数据的能力开放平台解决方案

————————————————————————————————作者:————————————————————————————————日期:

基于大数据的能力开放平台解决方案 1 摘要 关键字:大数据经分统一调度能力开放 运营商经过多年的系统建设和演进,内部系统间存在一些壁垒,通过在运营商的各个内部系统,如经分、VGOP、大数据平台、集团集市等中构建基于ESB 的能力开放平台,解决了系统间调度、封闭式开发、数据孤岛等系统问题,使得运营商营销能力和效率大大提高。 2 问题分析 2.1 背景分析 随着市场发展,传统的开发模式已经无法满足业务开发敏捷性的要求。2014 年以来,某省运营商经营分析需求量激增,开发时限要求缩短,业务迭代优化需求频繁,原有的“工单-开发”模式平均开发周期为4.5 天,支撑负荷已达到极限。能力开放使业务人员可以更便捷的接触和使用到数据,释放业务部门的开发能力。 由于历史原因,业务支撑系统存在经分、VGOP、大数据平台、集团集市等多套独立的运维系统,缺乏统一的运维管理,造成系统与系统之间的数据交付复杂,无法最大化 的利用系统资源。统一调度的出现能够充分整合现有调度系统,减少运维工作量,提升维护质量。 驱动力一:程序调度管理混乱,系统资源使用不充分

经分、大数据平台、VGOP、集团集市平台各自拥有独立的调度管理,平台内程序基本是串行执行,以经分日处理为例,每日运行时间为20 个小时,已经严重影响到了指标的汇总展示。 驱动力二:传统开发模式响应慢,不能满足敏捷开发需求 大数据平台已成为一个数据宝库,已有趋势表明,只依赖集成商与业务支撑人员的传统开发模式已经无法快速响应业务部门需求,提升数据价值。 驱动力三:大数据平台丰富了经分的数据源,业务部门急待数据开放 某省运营商建立了面向企业内部所有部门的大数据平台,大数据平台整合了接入B域、O 域、互联网域数据,近100 余个数据接口,共计820T 的数据逐步投入生产。大数据平台增强了传统经分的数据处理的能力,成为公司重要的资产,但是传统经分数据仓库的用户主要面向业支内部人员,限制了数据的使用人员范围和数据的使用频度,已经无法满足公司日益发展的业务需求,数据的开放迫在眉睫。 2.2 问题详解 基于背景情况分析,我们认为主要问题有三个: 1、缺乏统一的调度管理,维护效率低下 目前经分系统的日处理一般是使用SHELL 脚本开发的,按照串行调度的思路执行。进行能力开放后,目前的系统架构无法满足开发者提交的大量程序执行调度的运维需求。如果采用统一调度的设计思路则基于任务的数据表依赖进行任务解耦及调度,将大大简化调度配置工作和提高系统的

大数据分析平台的需求报告模板

大数据分析平台的需求报告 提供统一的数据导入工具,数据可视化工具、数据校验工具、数据导出工具和公共的数据查询接口服务管理工具是建立大数据分析平台的方向。 一、项目范围的界定 没有明确项目边界的项目是一个不可控的项目。基于大数据分析平台的需求,需要考虑的问题主要包括下面几个方面: (1)业务边界:有哪些业务系统的数据需要接入到大数据分析平台。 (2)数据边界:有哪些业务数据需要接入大数据分析平台,具体的包括哪些表,表结构如何,表间关系如何(区别于传统模式)。 (3)功能边界:提供哪些功能,不提供哪些功能,必须明确界定,该部分详见需求分析; 二、关键业务流程分析 业务流程主要考虑包括系统间数据交互的流程、传输模式和针对大数据平台本身涉及相关数据处理的流程两大部分。系统间的数据交互流程和模式,决定了大数据平台的架构和设计,因此必须进行专项分析。大数据平台本身需要考虑的问题包括以下几个方面: 2.1 历史数据导入流程 2.2 增量数据导入流程 2.3 数据完整性校验流程

2.4 数据批量导出流程 2.5 数据批量查询流程 三、功能性需求分析 3.1.历史数据导入3.1.1 XX系统数据3.1.1.1 数据清单 (3) 3.1.1.2 关联规则 (3) 3.1.1.3 界面 (3) 3.1.1.4 输入输出 (3) 3.1.1.5 处理逻辑 (3) 3.1.1.6 异常处理 (3) 3.2 增量数据导入3.3 数据校验 3.4 数据导出 3.5 数据查询 四、非功能性需求 4.1 性能

4.2 安全性 4.3 可用性 … 五、接口需求 5.1 数据查询接口 5.2 批量任务管理接口 5.3 数据导出接口 六、集群需求 大数据平台的技术特点,决定项目的实施必须考虑单独的开发环境和生产环境,否则在后续的项目实施过程中,必将面临测试不充分和性能无法测试的窘境,因此前期需求分析阶段,必须根据数据规模和性能需求,构建单独的开发环境和生产环境。 6.1开发环境 6.1.1 查询服务器 6.1.2 命名服务器 6.1.3 数据服务器 6.2 生产环境 6.2.1 查询服务器

工程大数据分析平台

工程大数据分析平台 随着大数据时代来临、无人驾驶和车联网的快速发展,汽车研发部门需要处理的数据量激增、数据类型不断扩展。相关数据涵盖车内高频CAN 数据和车外ADAS 视频非结构化数据、位置地理空间数据、车辆运营数据、用户CRM 数据、WEB 数据、APP 数据、和MES 数据等。 在此背景下,整车厂研发部门关心的是:如何将企业内部的研发、实验、测试、生产数据,社会用户的用车数据,互联网第三方数据等结合起来,将异构数据和同构数据整合到一起,并在此基础上,实现业务系统、分析系统和服务系统的一体化;怎样利用深度的驾驶员行为感知、智能的车辆预防性维护、与实时的环境状态交互,通过大数据与机器学习技术,建立面向业务服务与产品持续优化的车联网智能分析;最终利用数据来为产品研发、生产、销售、售后提供精准的智能决策支撑。这些都是整车厂在大数据时代下亟待解决的问题。 针对这一需求,恒润科技探索出以EXCEEDDATA 大数据分析平台为核心的汽车工程大数据整体解决方案。借助EXCEEDDATA 大数据分析平台,企业可以集成、处理、分析、以及可视化海量级别的数据,可实现对原始数据的高效利用,并将原始数据转化成产品所需的智能,从而改进业务流程、实现智慧决策的产业升级。 产品介绍: ●先进的技术架构 EXCEEDDATA 采用分布式架构、包含集成处理(ETL)与分析挖掘两大产品功能体系,共支持超过20 多个企业常见传统数据库和大数据源系统,超过50 多个分析处理算法、以及超过丰富的可视化智能展现库。用户可以自主的、灵活的将各种来源的原始数据与分析处

理串联应用,建立科学的数据模型,得出预测结果并配以互动的可视化智能,快速高效的将大数据智能实现至业务应用中。 平台包括分布式大数据分析引擎、智能终端展示、以及API。大数据分析引擎为MPP 架构,建立在开源的Apache Hadoop 与Apache Spark 之上,可简易的scale-out 扩展。在分析引擎的基础上包含数据源库、数据转换匹配器、数据处理操作库、机器学习算法库、可视化图形库等子模块。智能终端展示为行业通用的B/S 架构,用户通过支持跨操作系统和浏览器的HTML5/JS 界面与API 来与平台互动。

智慧社区大数据分析平台项目建设方案

智慧社区大数据平台建设方案

目录 1.智慧城市介绍 (8) 1.1智慧城市建设背景 (8) 1.2建设目标 (8) 1.3参考资料 (9) 2.项目需求分析 (11) 第2章 (11) 2.1智慧城市服务信息化业务需求分析 (11) 2.2智慧城市建设要求分析 (13) 2.2.1功能需求分析 (14) 2.2.2性能需求分析 (20) 2.2.3项目建设难点和对策分析 (21) 3.项目总体架构设计 (22) 第3章 (22) 3.1总体设计思路 (22) 3.1.1开放平台及应用整合 (22) 3.1.2安全与隐私 (23) 3.1.3可控的技术体系 (23) 3.1.4整合资源提供便民服务 (23) 3.1.5面向运营的推广思路 (24) 3.2建设原则 (24) 3.3总体架构 (26) 3.3.1软硬件基础设施 (26) 3.3.2数据资源 (27) 3.3.3应用支撑 (27) 3.3.4社区业务开发运行平台 (28) 3.3.5业务应用 (29) 3.3.6系统门户(访问渠道) (30) 3.3.7支撑体系(信息安全与标准规范体系) (30) 3.4技术架构 (30) 3.4.1基础服务 (31) 3.4.2平台服务 (31) 3.4.3数据服务 (32) 3.4.4访问服务 (32) 3.4.5应用开发框架 (32) 3.4.6安全体系 (33) 3.5信息资源架构 (35) 3.5.1建设原则 (35) 3.5.2架构体系 (35) 3.6集成架构 (64) 3.6.1应用集成平台 (65) 3.6.2系统集成整合 (69) 3.7网络拓扑结构 (73) 3.8运维体系 (73) 4.社区人房关系验证和接口系统 (75) 第4章 (75) 4.1系统概述 (75) 4.2系统架构 (75)

大数据分析平台技术要求

大数据平台技术要求 1. 技术构架需求 采用平台化策略,全面建立先进、安全、可靠、灵活、方便扩展、便于部署、操作简单、易于维护、互联互通、信息共享的软件。 技术构架的基本要求: 采用多层体系结构,应用软件系统具有相对的独立性,不依赖任何特定的操作系统、特定的数据库系统、特定的中间件应用服务器和特定的硬 件环境,便于系统今后的在不同的系统平台、不同的硬件环境下安装、 部署、升级移植,保证系统具有一定的可伸缩性和可扩展性。 实现B(浏览器)/A(应用服务器)/D(数据库服务器)应用模式。 采用平台化和构件化技术,实现系统能够根据需要方便地进行扩展。2. 功能指标需求 2.1基础平台 本项目的基础平台包括:元数据管理平台、数据交换平台、应用支撑平台。按照SOA的体系架构,实现对我校数据资源中心的服务化、构件化、定制化管理。 2.1.1元数据管理平台 根据我校的业务需求,制定统一的技术元数据和业务元数据标准,覆盖多种来源统计数据采集、加工、清洗、加载、多维生成、分析利用、发布、归档等各个环节,建立相应的管理维护机制,梳理并加载各种元数据。 具体实施内容包括: ●根据业务特点,制定元数据标准,要满足元数据在口径、分类等方面的 历史变化。 ●支持对元数据的管理,包括:定义、添加、删除、查询和修改等操作,

支持对派生元数据的管理,如派生指标、代码重新组合等,对元数据管 理实行权限控制。 ●通过元数据,实现对各类业务数据的统一管理和利用,包括: ?基础数据管理:建立各类业务数据与元数据的映射关系,实现统一 的数据查询、处理、报表管理。 ?ETL:通过元数据获取ETL规则的描述信息,包括字段映射、数据转 换、数据转换、数据清洗、数据加载规则以及错误处理等。 ?数据仓库:利用元数据实现对数据仓库结构的描述,包括仓库模式、 视图、维、层次结构维度描述、多维查询的描述、立方体(CUBE) 的结构等。 ●元数据版本控制及追溯、操作日志管理。 2.1.2数据交换平台 结合元数据管理模块并完成二次开发,构建统一的数据交换平台。实现统计数据从一套表采集平台,通过数据抽取、清洗和转换等操作,最终加载到数据仓库中,完成整个数据交换过程的配置、管理和监控功能。 具体要求包括: ●支持多种数据格式的数据交换,如关系型数据库:MS-SQLServer、MYSQL、 Oracle、DB2等;文件格式:DBF、Excel、Txt、Cvs等。 ●支持数据交换规则的描述,包括字段映射、数据转换、数据转换、数据 清洗、数据加载规则以及错误处理等。 ●支持数据交换任务的发布与执行监控,如任务的执行计划制定、定期执 行、人工执行、结果反馈、异常监控。 ●支持增量抽取的处理方式,增量加载的处理方式; ●支持元数据的管理,能提供动态的影响分析,能与前端报表系统结合, 分析报表到业务系统的血缘分析关系; ●具有灵活的可编程性、模块化的设计能力,数据处理流程,客户自定义 脚本和函数等具备可重用性; ●支持断点续传及异常数据审核、回滚等交换机制。

教你如何快速搭建一个大数据分析平台

一般的大数据平台从平台搭建到数据分析大概包括以下几个步骤: 1、Linux系统安装 一般使用开源版的Redhat系统--CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。比如,可以选择给HDFS的namenode做RAID2以提高其稳定性,将数据存储与操作系统分别放置在不同硬盘上,以确保操作系统的正常运行。 2、分布式计算平台/组件安装 当前分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等。 使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方);2)开源组件一般免费,学习和维护相对方便;3)开源组件一般会持续更新;4)因为代码开源,如果出现bug可自由对源码作修改维护。

常用的分布式数据数据仓库有Hive、Hbase。Hive可以用SQL查询,Hbase 可以快速读取行。外部数据库导入导出需要用到Sqoop。Sqoop将数据从Oracle、MySQL等传统数据库导入Hive或Hbase。Zookeeper是提供数据同步服务,Impala是对hive的一个补充,可以实现高效的SQL查询 3、数据导入 前面提到,数据导入的工具是Sqoop。它可以将数据从文件或者传统数据库导入到分布式平台。

4、数据分析 数据分析一般包括两个阶段:数据预处理和数据建模分析。 数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。这个过程可能会用到Hive SQL,Spark QL和Impala。 数据建模分析是针对预处理提取的特征/数据建模,得到想要的结果。如前面所提到的,这一块最好用的是Spark。常用的机器学习算法,如朴素贝叶斯、逻辑回归、决策树、神经网络、TFIDF、协同过滤等,都已经在ML lib里面,调用比较方便。

大数据分析平台系统开发

大数据分析平台系统开发 1、搭建大数据平台离不开BI。在大数据之前,BI就已经存在很久了,简单把大数据等同于BI,明显就是不恰当的。但两者又就是紧密关联的,相辅相成的。BI就是达成业务管理的应用工具,没有BI,大数据就没有了价值转化的工具,就无法把数据的价值呈现给用户,也就无法有效地支撑企业经营管理决策;大数据则就是基础,没有大数据,BI就失去了存在的基础,没有办法快速、实时、高效地处理数据,支撑应用。所以,数据的价值发挥,大数据平台的建设,必然就是囊括了大数据处理与BI应用分析建设的。 2、大数据拥有价值。来瞧瞧数据使用金字塔模型,从数据的使用角度来瞧,数据基本有以下使用方式: 自上而下,可以瞧到,对数据的要求就是不一样的: ?数据量越来越大,维度越来越多。 ?交互难度越来越大。 ?技术难度越来越大。 ?以人为主,逐步向机器为主。 ?用户专业程度逐步提升,门槛越来越高。

企业对数据、效率要求的逐步提高,也给大数据提供了展现能力的平台。企业构建大数据平台,归根到底就是构建企业的数据资产运营中心,发挥数据的价值,支撑企业的发展。 整体方案思路如下: 建设企业的基础数据中心,构建企业统一的数据存储体系,统一进行数据建模,为数据的价值呈现奠定基础。同时数据处理能力下沉,建设集中的数据处理中心,提供强大的数据处理能力;通过统一的数据管理监控体系,保障系统的稳定运行。有了数据基础,构建统一的BI应用中心,满足业务需求,体现数据价值。 提到大数据就会提到hadoop。大数据并不等同于hadoop,但hadoop的确就是最热门的大数据技术。下面以最常用的混搭架构,来瞧一下大数据平台可以怎么 通过Kafka作为统一采集平台的消息管理层,灵活的对接、适配各种数据源采集(如集成flume),提供灵活、可配置的数据采集能力。 利用spark与hadoop技术,构建大数据平台最为核心的基础数据的存储、处理能力中心,提供强大的数据处理能力,满足数据的交互需求。同时通过sparkstreaming,可以有效满足企业实时数据的要求,构建企业发展的实时指标体系。 同时为了更好的满足的数据获取需求,通过RDBMS,提供企业高度汇总的统计数据,满足企业常规的统计报表需求,降低使用门槛。对大数据明细查询需求,则通过构建HBase集群,提供大数据快速查询能力,满足对大数据的查询获取需求。 一般的大数据平台从平台搭建到数据分析大概包括以下几个步骤:

大数据分析标准功能点简介.doc

大数据报表标准功能点简介

U8分析报表包含两个工具,分别为分析报表工具和业务模型设计器,其中分析报表工具包括分析报表系统管理、分析报表门户、数据仓库管理、数据整合平台。 一、分析报表工具 1.分析报表系统管理 分析报表系统管理包含基础设置、数据配置、数据抽取、权限管理四个功能。 a)基础设置 在基础设置中有两个地方需要设置,企业目录和加密服务器设置。企业目录功能是确立企业实际分析管理的数据范围。 加密服务器设置的功能是通过设置加密服务器IP地址或机器名,将加密监听程序指向加密服务器,以读取加密点。 b)数据配置 报表项目用于设置进行财务报表分析的报表项目。 图2-1 U8分析报表项目页面 自定义分类提供按照存货、客户、供应商档案进行自定义分类定义,对任何档案用户可以按照不同业务需要设置自定义分类。系统自动带入企业目录账套最新年度的档案分类,可修改。 分类维护:可对当前自定义分类下的分类明细进行新增、修改、删除操作。

档案归类:可对当前自定义分类下的分类明细所对应的档案明细提供个别编辑操作。 点击分类维护栏中的编辑,进入分类管理页面;同样点击档案归类栏下的编辑可进入档案归类页面。 c)数据抽取 数据抽取用于同步数据源数据到ODS数据仓库,抽取的结果形成ODS数据仓库,供企业查询及决策。数据抽取的方式有两种:手动抽取与自动抽取。自动抽取可以设置抽取计划,选择在业务系统空闲时完成数据抽取。抽取日志提供了数据抽取完成的情况的查看。 d)权限管理 角色用户功能可以进行角色、用户的增加、删除、修改操作,用户密码的修改操作,以及用户与角色的所属关系等维护工作。 权限管理,可对用户或角色授予新建报表权限、语义层权限、目录结构权限。目录结构的权限方式分为浏览、修改、完全控制(删除),可根据实际业务需要授予适合的权限。 2.U8分析报表门户 U8分析报表门户的核心对象即为报表,是基于业务模型做查询,并通过查询生成报表的平台;是一种兼分析报表设计和前端展示的平台。在U8分析报表中,我们根据财务、供应链业务模型预置了一些报表(包括财务,营销、库存、采购等主题),对于用户的个性化报表需求,可以单独定制。 对于已经设计好的报表,可以进行查看、分析、导出、定位查找等操作。 分析报表门户针对财务、营销、库存、采购设定了四个分析主题,点击分析主题button打开分析首页。如图所示,点击财务分析主题按钮,财务首页报表则打开。

大数据分析平台

一、数据分析平台层次解析 大数据分析处理架构图 数据源:除该种方法之外,还可以分为离线数据、近似实时数据和实时数据。按照图中的分类其实就是说明了数据存储的结构,而特别要说的是流数据,它的核心就是数据的连续性和快速分析性; 计算层:内存计算中的Spark是UC Berkeley的最新作品,思路是利用集群中的所有内存将要处理的数据加载其中,省掉很多I/O开销和硬盘拖累,从而加快计算。而Impala思想来源于Google Dremel,充分利用分布式的集群和高效存储方式来加快大数据集上的查询速度,这也就是我上面说到的近似实时查询;底层的文件系统当然是HDFS独大,也就是Hadoop的底层存储,现在大数据的技术除了微软系的意外,基本都是HDFS作为底层的存储技术。上层的YARN就是MapReduce的第二版,和在一起就是Hadoop最新版本。基于之上的应用有Hive,Pig Latin,这两个是利用了SQL的思想来查询Hadoop上的数据。 关键:利用大数据做决策支持。R可以帮你在大数据上做统计分析,利用R语言和框架可以实现很专业的统计分析功能,并且能利用图形的方式展现;而Mahout就是一个集数据挖掘、决策支持等算法于一身的工具,其中包含的都是

基于Hadoop来实现的经典算法,拿这个作为数据分析的核心算法集来参考还是很好的。 如此一个决策支持系统要怎么展现呢?其实这个和数据挖掘过程中的展现一样,无非就是通过表格和图标图形来进行展示,其实一份分类详细、颜色艳丽、数据权威的数据图标报告就是呈现给客户的最好方式!至于用什么工具来实现,有两个是最好的数据展现工具,Tableau和Pentaho,利用他们最为数据展现层绝对是最好的选择。 二、规划的数据平台产品AE(Accelerate Engine) 支持下一代企业计算关键技术的大数据处理平台:包括计算引擎、开发工具、管理工具及数据服务。计算引擎是AE的核心部分,提供支持从多数据源的异构数据进行实时数据集成、提供分布式环境下的消息总线、通过Service Gateway能够与第三方系统进行服务整合访问;设计了一个分布式计算框架,可以处理结构化和非结构化数据,并提供内存计算、规划计算、数据挖掘、流计算等各种企业计算服务。Data Studio包括了数据建模、开发、测试等集成开发环境。管理工具包括了实施、客户化及系统管理类工具。AE平台还可以通过UAP开发者社区提供丰富的数据服务。 AE架构图

大数据分析系统项目方案

大数据分析系统 方案

目录 第1章项目概述 (5) 1.1项目背景 (5) 1.2项目必要性 (5) 1.3建设目标 (6) 第2章需求分析 (8) 2.1功能及性能需求 (8) 2.2系统集成需求 (9) 2.3运行环境 (10) 2.4安全需求 (10) 第3章总体设计 (12) 3.1总体设计原则 (12) 3.2总体目标 (13) 3.3系统总体结构 (13) 3.4系统逻辑结构 (15) 第4章详细设计方案 (16) 4.1信息资源规划和数据库设计 (16) 4.1.1数据模型概述 (16) 4.1.2数据建模方法论 (17) 4.1.3数据建模基本原则 (18) 4.1.4数据库架构设计 (19) 4.2数据应用支撑系统设计 (21) 4.2.1大数据平台关键技术 (21) 4.2.2云平台数据共享功能 (26) 4.3数据服务层计 (33) 4.3.1模型的应用 (33) 4.3.2平台基础应用 (33) 4.4数据处理和存储系统设计 (34) 4.4.1大数据处理核心技术 (35) 4.4.2数据存储采用MPP与hadoop融合架构 (35) 4.5网络系统设计 (35) 4.6安全系统设计 (36) 4.6.1系统安全满足情况 (36) 4.6.2系统安全配置管理功能 (37) 4.6.3系统无安全漏洞保障 (40) 4.6.4软件自身安全 (43) 4.6.5性能和可靠性 (44) 4.7运行维护系统设计 (46)

4.7.2网络设备管理 (46) 4.7.3进程管理 (46) 4.7.4服务管理 (46) 4.7.5数据库管理 (46) 4.7.6中间管理 (46) 4.7.7集群管理 (47) 4.7.8故障管理 (47) 4.7.9性能管理 (47) 4.7.10配置文件管理 (47) 4.7.11SYSLOG管理 (47) 4.8其他系统设计 (47) 4.9系统配置及软硬件选型原则 (48) 4.9.1软硬件部署 (48) 4.9.2数据要求 (48) 4.9.3技术要求 (49) 4.10系统软硬件物理部署方案 (49) 第5章项目建设与运行管理 (51) 5.1项目领导机构 (51) 5.2项目管理机构 (51) 5.3项目承建机构 (53) 5.4运行维护机构 (53) 5.5相关管理制度 (54) 5.6项目测试 (55) 5.6.1单元测试 (55) 5.6.2集成测试 (55) 5.6.3系统测试 (56) 5.6.4性能测试 (56) 5.6.5验收测试 (57) 5.6.6安装测试 (57) 5.7安全性测试 (58) 5.7.1功能验证 (58) 5.7.2漏洞扫描 (58) 5.7.3模拟攻击实验 (58) 5.8项目验收 (60) 5.8.1项目验收要求 (60) 5.8.2项目验收的目的和原则 (61) 5.8.3项目验收的组织和实施 (61) 5.8.4项目验收的步骤和程序 (61) 5.8.5项目验收的测试方案 (61) 5.8.6项目验收的文档清单 (61) 第6章项目培训计划 (62) 6.1培训对象和培训目标 (62)

最新石油行业大数据分析平台方案

石油行业大数据分析 平 台 方 案

目录 一数据管理的现状 (1) 二石油行业大数据分析的概述 (2) (一)石油行业大数据分析概念 (2) (二)石油行业大数据分析目标 (3) 三石油行业大数据分析体系 (3) 四石油行业大数据分析核心领域 (4) (一)数据模型 (4) (二)数据生命周期 (5) (三)数据标准 (6) (四)主数据 (8) (五)数据质量 (9) (六)数据服务............................................................................................ 1 1 (七)数据安全............................................................................................ 1 2 五石油行业大数据分析保障机制 (13) (一)制度章程............................................................................................ 1 3 (1) 规章制度............................................................................................ 1 3 (2) 管控办法............................................................................................ 1 3 (3) 考核机制............................................................................................ 1 3 (二)石油行业大数据分析组织....................................................................... 1 5

大数据平台开发与案例分析

关于举办“Hadoop与Spark大数据平台开发与案例分析”高级工程师 实战培训班的通知 地点北京上海 时间12月20-22 01月09-12 一、课程介绍 1.需求理解 Hadoop 设计之初的目标就定位于高可靠性、高可拓展性、高容错性和高效性,正是这些设计上与生俱来的优点,才使得Hadoop 一出现就受到众多大公司的青睐,同时也引起了研究界的普遍关注。 对电信运营商而言,用户上网日志包含了大量用户个性化需求、喜好信息,对其进行分析和挖掘,能更好地了解客户需求。传统经营分析系统小型机加关系型数据库的架构无法满足对海量非结构化数据的处理需求,搭建基于X86的Hadoop 平台,引入大数据处理技术的方式,实现高效率、低成本、易扩展的经营分析系统混搭架构成为电信运营商最为倾向的选择。本课程将全面介绍Hadoop平台开发和运维的各项技术,对学员使用该项技术具有很高的应用价值。2.培训课程架构与设计思路 (1)培训架构: 本课程分为三个主要部分: 第一部分:重点讲述大数据技术在的应用,使学员对大数据技术的广泛应用有清晰的认识,在这环节当中会重点介绍Hadoop技术在整个大数据技术应用中的重要地位和应用情况。 第二部分:具体对hadoop技术进行模块化分拆,从大数据文件存储系统技术和分布式文件系统平台及其应用谈起,介绍Hadoop技术各主要应用工具和方法,以及在运维维护当中的主流做法,使学员全面了解和掌握Hadoop技术的精华。 第三部分:重点剖析大数据的应用案例,使学员在案例当中对该项技术有更深入的感观印象 (2)设计思路:

本课程采用模块化教学方法,以案例分析为主线,由浅入深、循序渐进、由理论到实践操作进行设计。 (3)与企业的贴合点: 本课程结合企业转型发展及大数据发展战略,围绕企业大数据业务及行业应用市场拓展发展目标,重点讲授Hadoop的应用技术,提升企业IT技术人员的开发和运维能力,有很强的贴合度。 二、培训对象 各地企事业单位大数据产业相关人员,运营商 IT信息化和运维工程师相关人员,金融业信息化相关人员,或对大数据感兴趣的相关人员。 三、培训目标 掌握大数据处理平台(Hadoop、Spark、Storm)技术架构、以及平台的安装部署、运维配置、应用开发;掌握主流大数据Hadoop平台和Spark实时处理平台的技术架构和实际应用;利用Hadoop+Spark对行业大数据进行存储管理和分析挖掘的技术应用;讲解Hadoop生态系统组件,包括Storm,HDFS,MapReduce,HIVE,HBase,Spark,GraphX,MLib,Shark,ElasticSearch等大数据存储管理、分布式数据库、大型数据仓库、大数据查询与搜索、大数据分析挖掘与分布式处理技术 四、培训大纲 (1)课程框架 时间培训内容教学方式 第一天上午 第一部分:移动互联网、大数据、云计算相 关技术介绍 第二部分:大数据的挑战和发展方向 理论讲授+案例分 析 下午 第三部分:大数据文件存储系统技术和分布 式文件系统平台及其应用 第四部分:Hadoop文件系统HDFS最佳实战 理论讲授+案例分 析+小组讨论 第二天上午第五部分:Hadoop运维管理与性能调优 第六部分:NOSQL数据库Hbase与Redis 理论讲授+案例分 析+实战演练

国内哪些做大数据决策分析平台或公司比较有优势

国内哪些做大数据决策分析平台或公司比较有优势? 大数据类的公司1、大数据决策平台,帆软。帆软是商业智能和数据分析平台提供商,从报表工具到商业智能BI,有十多年的数据应用的底子,在这个领域很成熟,但是很低调。像帆软的FineBI,可以部署自带的FineIndex(类cube,数据仓库),有数据缓存机制,可实现定量更新,定时更新,减少了数据仓库的建设维护。还有FineDirect(直连)可直接连接数据仓库或数据库,主要针对Hadoop一类的大数据平台和实时数据分析的需求。2、数据库,大数据平台类,星环,做Hadoop生态系列的大数据底层平台公司。Hadoop 是开源的,星环主要做的是把Hadoop不稳定的部分优化,功能细化,为企业提供Hadoop大数据引擎及数据库工具。 3、云计算,云端大数据类,阿里巴巴,明星产品-阿里云,与亚马逊AWS抗衡,做公有云、私有云、混合云。实力不差,符合阿里巴巴的气质,很有野心。 4、大数据存储硬件类,浪潮,很老牌的IT公司,国资委控股,研究大数据方面的存储,在国内比较领先。BI Hadoop的案例Hadoop是个很流行的分布式计算解决方案,是Apache的一个开源项目名称,核心部分包括HDFS及MapReduce。其中,HDFS 是分布式文件系统,MapReduce是分布式计算引擎。时至今日,Hadoop在技术上已经得到验证、认可甚至到了成熟

期,同时也衍生出了一个庞大的生态圈,比较知名的包括HBase、Hive、Spark等。HBase是基于HDFS的分布式列式数据库,HIVE是一个基于HBase数据仓库系统。Impala 为存储在HDFS和HBase中的数据提供了实时SQL查询功能,基于HIVE服务,并可共享HIVE的元数据。Spark是一个类似MapReduce的并行计算框架,也提供了类似的HIVE的Spark SQL查询接口,Hive是基于hadoop的数据分析工具。很多企业比如银行流水作业很多,数据都是实时更新且数据量很大。会采用hadoop作为底层数据库,借由中间商处理底层数据,然后通过BI系统去连接这些中间数据处理厂商的中间表,接入处理数据,尤其以星环、华为这类hadoop大数据平台商居多,使用也较为广泛。以星环大数据帆软大数据BI工具FineBI的结合为例。由于星环也是处理hadoop下的hive数据库,其本质都是差不多的,可以使用Hive提供的jdbc驱动,这个驱动同样可以让FineBI连接星环的数据库并进行一些类关系型数据库的sql语句查询等操作。将这些驱动拷贝到BI工程下面,然后重启BI服务器。重启后可以建立与星环数据库的数据连接,最后通过连接进行数据查询。关于FineBI的FineIndex和FineDirect功能hadoop是底层,hive是数据库,上述案例采用的是FineIndex (cube连)连接,用的是hiveserver的方式进行数据连接的;数据连接成功之后,将hive数据库中的表添加到业务包

大数据分析工具开发平台汇总

大数据分析工具开发平台汇总 大数据工具可以帮助大数据工作人员进行日常的大数据工作,以下是大数据工作中常用的工具: 1. Hivemall Hivemall结合了面向Hive的多种机器学习算法。它包括诸多高度扩展性算法,可用于数据分类、递归、推荐、k最近邻、异常检测和特征哈希。 支持的操作系统:与操作系统无关。 2. Mahout Mahout 是 Apache Software Foundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用 Apache Hadoop 库,Mahout 可以有效地扩展到云中。 3. MapReduce MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 4. Oozie Oozie是一种Java Web应用程序,它运行在Java servlet容器——即Tomcat ——中,并使用数据库来存储以下内容:

工作流定义 当前运行的工作流实例,包括实例的状态和变量 5. Pig Pig是一种数据流语言和运行环境,用于检索非常大的数据集。为大型数据集的处理提供了一个更高层次的抽象。Pig包括两部分:一是用于描述数据流的语言,称为Pig Latin;二是用于运行Pig Latin程序的执行环境。 6. Sqoop Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如: MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。 7. Spark Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。 8. Tez Tez建立在Apache Hadoop YARN的基础上,这是“一种应用程序框架,允许为任务构建一种复杂的有向无环图,以便处理数据。”它让Hive和Pig可以简化复杂的任务,而这些任务原本需要多个步骤才能完成。 9. Zookeeper ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是

相关主题
文本预览
相关文档 最新文档