当前位置:文档之家› 偏微分方程理论学习-USTC

偏微分方程理论学习-USTC

偏微分方程理论学习-USTC
偏微分方程理论学习-USTC

偏微分方程理论学习

一. 偏微分方程发展简介

1. 常微分方程

十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。

2. 偏微分方程

偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。

J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。

十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程

其中k 是一个参数,其值依赖于物体的质料。傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程

???

????<<=>==??=??,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x ,

其中后面两项分别是边界条件和初始条件。傅里叶为解这个方程用了分离变量法,他得到满足方程和边界条件的级数解为

为了满足初始条件,必须有

这就促使傅里叶不得不考虑任给一个函数,能否将它表示成三角级数的问题。傅里叶得出的结论是:每个函数都可以表示成

这样,每个n b 可由上式乘以,...)2,1(sin =n nx ,再从0到π积分而得到。他还指出这个程序可以应用于表达式

接着,他考虑了任何函数)(x f 在区间),(ππ-的表达式,利用对称区间上的任何函数可以表示成一个奇函数和一个偶函数之和这一事实,傅里叶可以将区间),(ππ-上的任何函数)(x f 表示为

其系数由

确定,这就是我们通常所称的傅里叶级数。

为了处理无穷区域上的热传导问题,傅里叶同时还导出了现在所谓的“傅里叶积分”:

需要指出的是,傅里叶从没有对“任意”函数可以展成傅里叶级数这一断言给出过任何完全的证明,它也没有说出一个函数可以展开为三角级数必须满足的条件。然而傅里叶本人对此充满信心,因为他的信念有几何上的根据。傅里叶的工作不仅发展了偏微分方程的理论,而且使函数概念得以改进,同时也标志着人们从解析函数或可展成泰勒级数的函数中解放出来。傅里叶的前辈都曾坚持一个函数必须是可用单个式子表示的,而傅里叶级数却可以表示那些在区间),0(π或),(ππ-的不同部分有不同解析式的函数,不论这些表示式相互是否连续地接合着。特别是,一个傅里叶级数是在一整段区间上表示一个函数的,而一个泰勒级数仅在函数的解析点附近表示该函数。

事实上,傅里叶的主要思想早在1807年他提交巴黎科学院的一篇关于热传

导的论文中就出现了,但是这篇论文在拉格朗日等人评审后遭到拒绝。1811年,他又提交了经过修改的论文,以争取科学院为热传导问题所设立的高额奖金。这次他虽然获了奖,但仍因受到缺乏严格性的批评而未能将论文发表在当时科学院的《报告》里。1824年,傅里叶成为科学院的秘书,这回他终于能够把他1811年的论文原封不动地发表在《报告》里,而这已经是在他的名著《热的解析理论》出版两年以后的事情了。

十九世纪偏微分方程的另一个重要发展是围绕着位势方程来进行的,这方面的代表人物格林(G .. Green)是一位磨坊工出身、自学成才的英国数学家。位势方程也称拉普拉斯方程:

拉普拉斯曾采用球面调和函数法解这个方程,不过他得到一个错误的结论,认为这个方程当被吸引的点(x,y,z)位于物体内部时也成立。这个错误由泊松加以更正。泊松指出,如果点(x,y,z)在吸引体内部,则满足方程πρ4V -=?,其中ρ是吸引体密度,它也是x,y,z 的一个函数。拉普拉斯和泊松的方法都只适用于特殊的几何体,格林则认识到函数V 的重要性,并赋予它“位势”(potential)的名称,与前人不同的是,格林发展了函数V 的一般理论。他求解位势方程的方法与用特殊函数的级数方法相反,称为奇异点方法。他在1828年私人印刷出版的小册子《关于数学分析应用于电磁学理论的一篇论文》中,建立了许多推动位势论的进一步发展极为关键的定理与概念,其中以格林公式

???????-??=?-?σd n

U V n V U dv U V V U )()( (n 为物体表面指向外部的法向,dv 是体积元,d σ是面积元)和作为一种带奇异性的特殊位势的格林函数概念影响最为深远。

格林是剑桥数学物理学派的开山祖师,他的工作培育了汤姆逊(W.Thomson)、斯托克斯(G.Stokes)、麦克斯韦(J.C.Maxwell)等强有力的后继者,他们是十九世纪典型的数学物理学家。他们的主要目标,是发展求解重要物理问题的一般数学方法,而他们手中的主要武器就是偏微分方程,以至于在十九世纪,偏微分方程几乎变成了数学物理的同义词。

剑桥数学物理学派的贡献使经历了一个多世纪沉寂后英国数学在十九世纪得以复兴,麦克斯韦1864年导出的电磁场方程

,)(1rot t

E c H ??=ε ,)(1rot t

H c E ??-=μ ,)(ρε=E div

0)(=H div μ

是十九世纪数学物理最壮观的胜利,正是根据对这组方程的研究,麦克斯韦预言了电磁波的存在,不仅给科学和技术带来巨大的冲击,同时也是偏微分方程威名大振。爱因斯坦在一次纪念麦克斯韦的演讲中说:“偏微分方程进入理论物理学

时是婢女,但逐渐变成了主妇,”他认为这是从十九世纪开始的,而剑桥数学物理学派尤其是麦克斯韦在这一转变中起了重要的作用。

除了麦克斯韦方程,十九世纪导出的著名偏微分方程组还有粘性流体运动的纳维(C.L.M.H. Navier)-斯托克斯和弹性介质的柯西方程等。所有这些方程都不存在普遍解法。不过,十九世纪的数学家们已经逐渐认识到在偏微分方程的情形,无论是单个方程还是方程组,通解实际上不如初始条件和边界条件已给出的特殊问题的解有用。因此他们在求解定结问题方面作了大量工作。

对18、19世纪建立起来类型众多的微分方程,数学家们求显式解的努力往往归于失败,这种情况促使他们转而证明解的存在性。最先考虑微分方程解的存在性问题的数学家是柯西。他指出:在求显式解无效的场合常常可以证明解的存

在性。他在19世纪20年代对形如y)

y' 的常微分方程给出了第一个存在性

f(x,

定理,这方面的工作被德国数学家李普希茨(R. Lipschitz)、法国数学家刘维尔(J.Liouville)和皮卡(C.E. Picard)等追随。柯西也是讨论偏微分方程解的存在性的第一人,他在1848年的一系列论文中论述了如何将任意阶数大于1的偏微分方程化为偏微分方程组,然后讨论了偏微分方程组解的存在性并提出了证明存在性的强函数方法。柯西的工作后来被俄国女数学家柯瓦列夫斯卡娅(C.B. Ковалевская)独立地发展为包括拟线性方程和高阶组在内非常一般的形式。有关偏微分方程解的存在唯一性定理在现代文献中就称为“柯西-柯瓦列夫斯卡娅定理”。

柯瓦列夫斯卡娅是历史上为数不多的杰出女数学家之一。她出生于莫斯科一个贵族家庭,17岁时就在彼得堡一位海军学校教师指导下掌握了微积分。然而当时俄国的大学拒收女生,为了求学深造,他只好出走德国,先在海德堡大学学习一年,后来慕名到柏林求见威尔斯特拉斯。初次见面,威尔斯特拉斯出了一堆难题考她,估计她多半做不出来,但一周以后,当柯瓦列夫斯卡娅如期带着完满的答卷回来见他时,这位名重一时的数学家对她的数学才能不再怀疑。当时的柏林大学跟俄国的大学一样不收女生,威尔斯特拉斯决定为柯瓦列夫斯卡娅单独授课,每星期日下午一次,四年不曾中断。在这四年时间里,柯瓦列夫斯卡娅不仅学完了大学的全部数学课程,而且还写出了三篇重要论文,其中一篇就是前面提到的关于偏微分方程解存在性的研究。这些工作是那么出色,以至于哥廷根大学在没有经过考试和答辩的情况下破格授予她博士学位,使她成为历史上第一位女数学博士。

由于18世纪的大量开发,常微分方程的求解在19世纪反而局限于用分离变量法解偏微分方程时所得到的那些方程,并且多半使用级数解,这引导出一串特殊函数,如贝塞尔(Bessel)函数、高斯(Gauss)超几何函数等等。在十九世纪后半叶,对常微分方程研究的理论方面变得突出,并且在常微分方程解析理论和定性理论两个大的方向上开拓了常微分研究的新局面,其中重大发展都与庞加莱(H. Poincare)的名字联系着。

庞加莱从27岁起任巴黎大学教授,直到他去世。他是欧拉、柯西之后最多产的数学家,并且在研究领域的广泛方面很少有人能与他相比。每年他在巴黎大学讲授一门不同的科目,而在每一门科目中,他都留着他自己的创造印记。

庞加莱、克莱因和希尔伯特,是在19和20世纪数学交界线上高耸着的三个巨大身影。他们放射着19世纪数学的光辉,同时照耀着通往20世纪数学的道路。在19世纪末,数学发展呈现出一派生机勃勃的景象,这与18世纪形成了鲜明的

对比。无论从内部需要还是外部应用看,数学家们似乎都有做不完的问题。1900年8月5日,庞加莱宣布巴黎国际数学家大会开幕,正是在这次会议期间,希尔伯特充满信心地走上讲台,以他著名的23个问题揭开了20世纪数学的序幕。

当研究在解决物理问题的过程中出现的具体微分方程时,往往会产生一些极具普遍性、起初并没有严格的数学根据而应用于范围广泛物理问题的方法。例如,傅里叶方法、里茨(Ritz)方法、伽辽金(Галёркин)方法、摄动理论方法等就是这一类方法。这些方法应用的有效性成为试图对它们进行严格论证的原因之一。这就导致新的数学理论、新的研究方向的建立(傅里叶积分理论、本证函数展开理论和广义函数论等等)。

二、偏微分方程理论的两个特点

1. 偏微分方程理论与应用、与物理问题的直接联系

偏微分方程理论产生于那些归结为考察某些具体偏微分方程的具体物理问题的研究,这些方程便得到数学物理方程的称谓。

数学在物理中应用的历史较长,18世纪是数学与经典力学相结合的黄金时期,19世纪数学应用的重点转移到电学与电磁学,并且由于剑桥学派的努力而形成了数学物理分支。进入20世纪以后,随着物理科学的发展,数学相继在应用于相对论、量子力学以及基本粒子理论等方面取得了一个又一个突破,极大地丰富了数学物理的内容,同时也反过来刺激了数学自身的进步。

在20世纪初狭义相对论和广义相对论的创立过程中,数学都建有奇功。1907年,德国数学家闵可夫斯基(Minkowski)提出了“闵可夫斯基空间”,即将时间与

空间融合在一起的四维时空13

R,。闵可夫斯基几何为爱因斯坦狭义相对论提供了

适合的数学模型。有了闵可夫斯基时空模型后,爱因斯坦又进一步研究引力场理论以建立广义相对论。1912年夏他已经概括出新的引力理论的基本物理原理,但为了实现广义相对论的目标,还必须寻求理论的数学结构,爱因斯坦为此花费了3年的时间,最后在数学家格罗斯曼(Grossmann)介绍下掌握了发展相对论引力学说所必需的数学工具-----以黎曼几何为基础的绝对微分学,亦即爱因斯坦后来所称的张量分析。在1915年11月25日发表的一篇论文中,爱因斯坦终于导出了广义协变的引力场方程

g就是黎曼度量张量。爱因斯坦指出:“由于这组方程,广义相对论作为一种μν

逻辑结构终于大功告成!”

根据爱因斯坦的理论,时空整体是不均匀的,只是在微小的区域内可以近似地看作均匀。在数学上,广义相对论的时空可以理解为一种黎曼空间,非均匀时空连续区可借助于现成的黎曼度量来描述。这样,广义相对的数学表述第一次揭示了非欧几何的现实意义,成为历史上数学应用最伟大的例子之一。

20世纪数学物理的另一项经典成果是量子力学数学基础的确立。20世纪初,普朗克(M. Planck)、爱因斯坦、玻尔(N. Bohr)等创立了量子力学,但是到1925年为止,还没有一种量子理论能以统一的结构来概括这一领域已经积累的知识,

当时的量子力学可以说是本质上相互独立的、有时甚至相互矛盾部分的混合体。1925年有了重要进展,由海森堡(W. Heisenberg)建立的矩阵力学和由薛定谔发展的波动力学形成了两大量子理论,而进一步将这两大理论融合为统一的体系,便成为当时科学界的当务之急。恰恰在这时,数学又起了意想不到的但却是决定性的作用。1927年,希尔伯特和冯·诺依曼、诺德海姆(L. Nordheim)合作发表了论文《论量子力学基础》,开始了用积分方程等分析工具使量子力学统一化的努力。在随后两年中,冯·诺依曼又进一步利用他从希尔伯特关于积分方程的工作中提炼出来的抽象希尔伯特空间理论,去解决量子力学的特征值问题,并最终将希尔伯特的谱理论推广到量子力学中经常出现的无界算子情形,从而奠定了量子力学的严格数学基础。1932年,冯·诺依曼发表了总结性著作《量子力学的数学基础》,完成了量子力学的公理化。

抽象的数学成果最终成为其他科学新理论的仿佛是量身定做的工具,在20世纪下半叶又演出了精彩的一幕,这就是大范围微分几何在统一场论中的应用。广义相对论的发展,逐渐促使科学家们去寻求电磁场与引力场的统一表述,这方面第一个大胆的尝试是数学家外尔(H. Weyl)在1918年提出的规范场理论,外尔自己称之为“规范不变几何”。统一场论的探索后来又扩展到基本粒子间的强相互作用和弱相互作用。1954年,物理学家杨振宁和米尔斯(R. L. Mills)提出的“杨-米尔斯理论”,揭示了规范不变性可能是所有四种(电磁、引力、强、弱)相互作用的共性,开辟了用规范场论来统一自然界这4中相互作用的新途径。数学家们很快就注意到杨-米尔斯理论所需要的数学工具早已存在,物理规范势实际上就是微分几何中纤维丛上的联络,20世纪30、40年代以来已经得到深入的研究。不仅如此,人们还发现规范场的杨-米尔斯方程是一组在数学上有重要意义的非线性偏微分方程。1975年以来,对杨-米尔斯方程的研究取得了许多重要成果,展示了统一场论的诱人前景,同时也推动了数学自身的发展。

数学不仅在物理、化学等传统学科中有着广泛而重要的应用,数学在生物学中应用自20世纪初以来得到了很大发展。1926年,意大利数学家伏尔泰拉(V. V olterra)提出著名的伏尔泰拉方程。从此微分方程又成为建立各种生物模型的重要工具。用微分方程建立生物模型在20世纪50年代曾获得轰动性成果,这就是描述神经脉冲传导过程的数学模型霍奇金(Hodgkin)-哈斯利(Huxley)方程(1972)和描述视觉系统侧抑制作用的哈特莱茵(Hartline)-拉特利夫(Ratliff)方程(1958),它们都是复杂的非线性方程组,引起了数学家和生物学家的浓厚兴趣。这两项工作分别获得1963年和1967年度诺贝尔医学生理学奖。

与物理、化学和生物、甚至于经济领域现象有关的数学问题提出,导致现象的数学理想化,或者换句话说,导致建立描述所研究的各类现象基本规律的数学模型。对于一系列现象的数学模型的建立在于归结为以基本物理、经济规律为基础的方程,这些模型仅仅考虑到现象的本质特点而忽略一系列次要的特点。例如,动量守恒、能量守恒、质量守恒等就是这样的规律。用这种方法可以得到在电动力学、声学、弹性力学、流体动力学以及其他连续介质力学的分支所研究的物理现象的方程。用数学方法研究数学模型不仅可以得到物理现象的定量特征,以给定的精度计算实际过程,还可能洞察物理现象的本质,有时还可以预言新的效果。

3. 偏微分方程理论与其他数学分支如泛函分析、函数论、拓扑学、代数、复分析的紧密联系。

偏微分方程理论广泛应用数学这些领域中的基本概念、基础思想和基本方法,并且它本身也给这些学科分支的研究问题的范围与方向以影响。弦振动的研究就是这种相互影响的经典范例。弦振动是达朗贝尔于1747年建立的,它还得到了表达这个方程通解的公式。欧拉得出弦振动方程柯西(Cauchy )问题解的公式:这个公式今天称为达朗贝尔公式。D.伯努利断言:弦振动方程的任何解均可表示为三角级数。欧拉同达朗贝尔、D.伯努利关于弦振动方程解的性质的争论,对数学物理、分析学,特别是三角级数理论的发展具有重要意义。

J .傅里叶在1822年进一步研究了用三角级数表示函数的问题,这是与热传到问题有关的。随后在L.狄利克雷(Dirichlet )(1805-1859)的工作中最先指出了把函数展开成三角级数的充分条件。最先出现在数学物理问题中的把函数表示成三角级数的问题在很大程度上促成了现代的集论与函数论的建立。

偏微分方程在几何上的应用产生了微分几何,古典微分几何多是局部性即小范围的。黎曼几何在空间每一点附近建立局部的二次微分型式

∑=.d 2j i ij dx dx g s

19世纪末,意大利数学家里奇(C.G .Ricci )发展了黎曼关于微分型式不变量的研究,开创了所谓“绝对微分学”,即现在的张量分析,系统地研究里面度量在坐标变换之下的不变性。1917年,里奇的学生列维(T. Levi)-奇维塔(Civita)引进“列维-奇维塔平移”,将欧氏空间的平行概念推广到弯曲空间,是黎曼几何具有了明显的几何意义。后来外尔发现平行性与空间的度量性质无关,从而建立所谓仿射联络(1918),摆脱度量定义平移与曲率,从而建立更广泛的几何理论。1920年以后嘉当(E. Cartan)发展了一般的联络理论与活动标架法。嘉当联络是纤维丛概念的先声,但在20世纪30年代以前,黎曼几何的研究,包括嘉当的工作,主要是小范围的。1925年,霍普夫(Hopf)注意到黎曼空间的微分几何结构与拓扑结构的关系,微分几何开始经历从局部到整体的转移。

整体微分几何以研究微分几何(小范围)性质与大范围性质之间的联系为目标。由于纤维丛的概念反映了流形的固有的图片性质,它提供了从局部研究想整体研究过渡的合适机制。因此整体微分几何的研究与微分拓扑学便有不解之缘,纤维丛与示性类的引入,使整体微分几何的研究出现了突破,陈省身在这方面有奠基性的贡献。

微分几何本来就是分析在几何中的应用,整体微分几何则表现出与现代分析更深刻的联系,特别是非线性偏微分方程理论的运用,引出了整体微分几何的重大成果。典型的例子是丘成桐1976年解决了微分几何领域里著名的“卡拉比猜想”。这是给定里奇曲率求黎曼度量的问题,其中需要求解高难度的非线性偏微分方程。丘成桐还解决了一系列与非线性偏微分方程有关的其他几何问题,并证明了广义相对论中的正质量猜想等等。由于这些工作,1982年丘成桐荣获菲尔兹奖。

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

河北工业大学_计算方法_期末考试试卷_C卷

2012 年(秋)季学期 课程名称:计算方法 C卷(闭卷)

2012 年(秋)季学期

2012 年(秋)季学期

2012 年(秋)季学期

2012 年 秋 季 (计算方法) (C) 卷标准答案及评分细则 一、 填空题 (每题2分,共20分) 1、 截断 舍入 ; 2、则 ()0n k k l x =∑= 1 ,()0 n k j k k x l x =∑= j x , 4、 12 。 4、 2.5 。 5、10 次。 6、A 的各阶顺序主子式均不为零。 7 、1A ρ=+() ,则6 A ∞ =。 二、综合题(共80分) 1. (本题10分)已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1,5)的近似值,取五位小数。 解: )12)(12() 1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+? --+-+?+------? =x x x x x x x L (6分) )1)(1(34 )2)(1(23)2)(1(32-+--+---= x x x x x x (2分) 04167.024 1 )5.1()5.1(2≈= ≈L f (2分) 2. (本题10分)用复化Simpson 公式计算积分()?=1 0sin dx x x I 的近似值,要求误差限为5105.0-?。 ()()0.9461458812140611=???? ??+??? ??+= f f f S (3分) ()()0.94608693143421241401212=???? ??+??? ??+??? ??+??? ??+= f f f f f S (4分) 5-12210933.0151 ?=-≈ -S S S I 94608693.02=≈S I (3分) 或利用余项:()() -+-+-==!9!7!5!31sin 8 642x x x x x x x f () -?+?-=!49!275142) 4(x x x f ()51 )4(≤ x f

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

编译原理试题

中间语言与语法制导翻译 重点与难点 重点:语法制导翻译的基本思想,属性文法,翻译模式,说明语句的翻译方案。 三地址码,各种语句的目标代码结构、属性文法与翻译模式。 难点:属性的意义,对综合属性,继承属性,固有属性的理解,属性计算,怎么通过属性来表达翻译。布尔表达式的翻译,对各种语句的目标代码结构、属性文法与翻译模式的理解。 基本要求 掌握语法制导翻译的基本思想,属性文法,综合属性,继承属性,固有属性,属性计算,S_属性文法,L_属性文法,说明语句的翻译方案,翻译模式、属性文法的实现掌握中间语言与语义分析的基本概念;熟练掌握语法(结构)树、三地址代码、赋值与控制语句的翻译、说明语句的翻译;掌握组合数据说明的翻译、过程调用翻译。 例题解析 例1 给定文法 E --> T { R.i := T.p } R { E.p := R.s } R --> addop T { R1.i := mknode( addop.val, R.i, T.p ) } R { R.s := R1.s } R --> { R.s := R1.s } T --> ( E ) { T.p := E.p } T --> id { T.p := mkleaf( id, id.entry ) } T --> num { T.p := mkleaf( num, num.val ) } (1) 指出文法中的各非终结符具有哪些综合属性和哪些继承属性 ⑵画出按本翻译模式处理表达式 a + 20 + ( b - 10 ) 时所生成的语法树 【解】 (1)E的综合属性 p,R的继承属性i,综合属性s;T的综合属性p (2) 处理表达式 a + 20 + ( b - 10 ) 时所生成的语法树如下 + (NUM, 20) - ( ID, b) (NUM, 10) 例2 定义一个计算器的属性文法,完成一个输入表达式值的计算和显示, 【解】计算器的文法 L → E

信号与系统实验2

实验报告 实验二连续时间系统的时域分析 一、实验目的: 1、掌握用Matlab进行卷积运算的数值方法和解析方法,加深对卷积积分的理解。 2、学习利用Matlab实现LTI系统的冲激响应、阶跃响应和零状态响应。 二、实验内容及步骤 实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

1、 编写程序Q2_1,完成)(1t f 与)(2t f 两函数的卷积运算。 2、 编写程序Q2_2,完成)(1t f 与)(2t f 两函数的卷积运算。 3、编写程序Q2_3。利用程序Q2_1,验证卷积的相关性质。 (a) 验证性质:)()(*)(t x t t x =δ (b) 验证性质: )()(*)(00t t x t t t x -=-δ 4、编写程序Q2_4。某线性时不变系统的方程为 )(8)(2)(6)(5)(t f t f t y t y t y +'=+'+'', (a)系统的冲激响应和阶跃响应。 (b)输入()()t f t e u t -=,求系统的零状态响应)(t y zs 。 三. 实验结果 一: dt=0.01 t1=0:dt:2 f1=0.5*t1 t2=0:dt:2 f2=0.5*t2 f=dt*conv(f1,f2) t=0:0.01:4 plot(t,f);axis([-1 5 0 0.8])

二: dt=0.01 t=-3:dt:3 t1=-6:dt:6 ft1=2*rectpuls(t,2) ft2=rectpuls(t,4) y=dt*conv(ft1,ft2) plot(t1,y) axis([-4 4 0 5]) 以上两题出现错误点:(1)最开始模仿例1的写法用function [f,k]=sconv,总提示出现 错误 (2)t0+t2 ≤ t ≤ t1+t3 不大能理解的运用个特点,在编写的时候总是被忽略。导致t和t1设置的长度总出错。 三: (a) dt=0.01 t=0:dt:2 t0=0 t1=0:dt:2t2=0:dt:2

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

编译原理考试试卷

一、填空题(每空 2 分,共 30 分) 1、编译程序的整个过程可以从逻辑上划分为词法分析、语法分析、语义分析、中间代码生成、代码优化和目标代码生成等几个阶段,另外还有两个重要的工 作是表格管理和出错处理 2、规范规约中的可归约串是句柄,算符优先分析中的可归约串是最左素短语。 3、语法分析方法主要可分为自顶向下和自底向上两大类。 4、 LR ( 0)文法的项目集中不会出现移进 -归约冲突和归约 -归约冲突。 5、数据空间的动存态储分配方式可分为栈式和堆式两种。 6、编译程序是指能将源语言程序翻译成目标语言程序的程序。 7、确定有穷自动机DFA 是NFA的一个特例。 8、表达式 (a+b)*c的逆波兰表示为ab+c*。 二、选择题(每题 2 分,共 20 分) 1、 L R 语法分析栈中存放的状态是识别B的 DFA 状态。 A 、前缀B、可归前缀C、项目 D 、句柄 2、D不可能是目标代码。 A 、汇编指令代码 B 、可重定位指令代码 C、绝对机器指令代码 D 、中间代码 3、一个控制流程图就是具有C的有向图 A 、唯一入口结点B、唯一出口结点C、唯一首结点 D 、唯一尾结点 4、设有文法G[S] : S→ b|bB B → bS ,则该文法所描述的语言是C。 A 、 L ( G)={b i|i≥ 0}B、 L (G) ={b 2i |i≥0} C、 L ( G)={b 2i+1|i≥ 0} D 、 L ( G)={b 2i+1|i ≥1} 5、把汇编语言程序翻译成机器可执行的目标程序的工作是由 B完成的。 A 、编译器 B 、汇编器C、解释器D、预处理器6、在目标代码生成阶段,符号表用于D。 A 、目标代码生成 B 、语义检查C、语法检查D、预处理器地址分配0 7、规范归约是指B。 A 、最左推导的逆过程 B 、最右推导的逆过程C、规范推导D、最左归约逆过程 8、使用A可以定义一个程序的意义。 A 、语义规则B、词法规则C、语法规则D、左结合规则 9、经过编译所得到的目标程序是D。 A 、三元式序列B、四元式序列C、间接三元式 D 、机器语言程序或汇编语言程序 10、在一个基本块内进行的代码优化是B。 A 、全局优化B、局部优化C、循环优化D、代码外提 三、简答题( 3 小题,共 30 分) 1、已知文法G[S]:S→Ac|aB A→ ab B→ bc 证明该文法具有二义性(本题 6 分) 证明:因为该文法的句型abc 存在如下两棵语法树: 所以,该文法具有二义性 一、填空题(每空 1分,共 20分) 1.编译过程一般分为、、中间代码生成、 和目标代码生成五个阶段。 2.语法分析最常用的两类方法是和分析法。 3.确定的有穷自动机是一个,通常表示为。

信号与系统实验四

信号与系统实验实验四:周期信号的傅里叶级数 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、掌握用傅里叶级数进行谐波分析的方法。 4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。 二、预习内容 1、周期信号的傅里叶级数分解及其物理意义。 2、典型信号傅里叶级数计算方法。 三、实验原理 1. 信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压)(t u 和电流)(t i 等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。 无论是信号的时间特性还是频率特性都包含了信号的全部信息量。 2. 信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间),(11T t t +内表示为 ()∑∞ =Ω+Ω+=10sin cos )(n n n t n b t n a a t f 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 A 0t A n 0A 0t (a)(b) Ω(c)ωΩ 5Ω3Ω Ω3Ω5 3. 信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。 4. 信号频谱的测量 在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

编译原理试题

1997年编译原理试题 1.(10分)某操作系统下合法的文件名为 device:name.extension 其中第一部分(device:)和第三部分(.extension)可缺省,若device, name和extension都是字母串,长度不限,但至少为1,画出识别这种文件名的确定有限自动机。 2.(20分) a. 下面的二义文法描述命题演算公式,为它写一个等价的非二义文法。 S—> S and S | S or S | not S | p | q | (S) b. 下面文法是否为LL(1)文法?说明理由。 S—> A B | P Q x A—> x y B—> b c P—> d P | εQ—> a Q | ε 3.(10分)某些语言允许给出名字表的一个属性表,也允许声明嵌在另一个声明里面,下面文法抽象这个问题。 D —> attrlist namelist | attrlist (D) namelist —> id, namelist | id attrlist —> A attrlist | A A —> decimal | fixed | float | real D —> attrlist namelist的含义是:在namelist中的任何名字有attrlist 中给出的所有属性。D—> attrlist (D) 的含义是:在括号中的声明提到的所有名字有attrlist 中给出的所有属性,而不管声明嵌套多少层。写一个翻译方案,它将每个名字的属性个数填入符号表。为简单起见,若属性重复出现,则重复计数。4.(10分)把表达式 -(a+b)*(c+d)+(a+b+c) 翻译成四元式。 5.(10分)由于文法二义引起的LR(1)分析动作冲突,可以依据消除二义的规则而得到LR(1)分析表,根据此表可以正确识别输入串是否为相应语言的句子。对于非二义非LR(1)文法引起的LR(1)分析动作的冲突,是否也可以依据什么规则来消除LR(1)分析动作的冲突而得到LR(1)分析表,并且根据此表识别相应语言的句子?若可以,你是否可以给出这样的规则? 6.(5分)UNIX 下的C编译命令cc的选择项g和O的解释如下,其中dbx 的解释是“dbx is an utility for source-level debugging and execution of programs written in C”。试说明为什么用了选择项g后,选择项O便被忽略。 -g Produce additional symbol table information for dbx(1) and dbxtool(1) and pass -lg option to ld(1) (so as to include the g library, that is:

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

编译原理考试

编译原理考试

————————————————————————————————作者:————————————————————————————————日期:

一、判断对错:(对√;错 ;每小问2分共24分) <1>算符优先分析法是一种规范归约分析法。( ) <2>若文法Gs中不含形如T→…BD…的产生式,T、B、D∈V N,则称Gs为算符文法。(√) <3>若一个语言是有穷集合,则定义该语言的文法一定是递归的。( ) <4>若两个正规式所表示的正规集相同,则认为二者是等价的。(√) <5>LR分析法是一种规范归约分析法。(√) <6>一个LR(0)项目集I={B →α.bβ, P →aA.},则说I中含有“移进—归约”冲突。(√) <7>SLR(1)文法是无二义性文法。(√) <8>消除左递归后的文法一定是LL(1)文法。( ) <9>对任何编译程序而言,代码优化是必不可少的。( ) <10>编译程序与具体的机器无关。( ) <11>在自动机的概念中,终态与非终态是可区别的。(√) <12>逆波兰式ab+cd+*所代表的中缀表达式是:(a+b)*(c+d)(√) 1. 一个语言有文法是不惟一的。(√) 2. 若一个语言是无穷集合,则定义该语言的文法一定是递归的。(√) 3. 紧跟在条件转移语句后面的语句是基本块的入口语句。(√) 4. 算符优先分析法是一种规范归约分析法。( ) 5. 自下而上语法自导翻译的特点:当栈顶形成句柄时,在归约的同时执行其语义动作。(√) 6. LR(0)文法、SLR(1)文法都是无二义性文法。(√) 7.K、∑分别表示有限状态集和有穷字母表, DFA M的转换函数f是一个从K ?∑到K的单值映射。(√) 8. 对任何编译程序而言,代码优化是必不可少的。( ) 9. 直接短语是某规则的右部,它对应简单子树叶结点从左到右排列形成的符号串。(√) 10. 两个有穷自动机等价是指它们的状态数和有向弧数相等。( ) 11. 一个LR(0)项目集为:I={A→α.bβ, D→β.},则说I中含有“移进--归约”冲突。 (√) 12. 若两个正规式所表示的正规集相同,则认为二者是等价的。(√) 13. 无左递归的文法是LL(1)文法。( ) 14. 逆波兰式abcde/+*+所代表的中缀表达式是:a+b*(c+d/e)(√) 15. 编译程序结构中,中间代码优化及目标代码生成两个阶段与具体的机器有关。( ) 16. LALR分析法中,同心集的合并不会产生“移进--归约”冲突。(√)

北京理工大学信号与系统实验实验报告

实验1 信号的时域描述与运算 一、实验目的 1. 掌握信号的MATLAB表示及其可视化方法。 2. 掌握信号基本时域运算的MA TLAB实现方法。 3. 利用MA TLAB分析常用信号,加深对信号时域特性的理解。 二、实验原理与方法 1. 连续时间信号的MATLAB表示 连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。 从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。例如一个正弦信号可以表示如下: >> t=0:0.01:10; >> x=sin(t); 利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。 如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。例如对于上述正弦信号,可以用符号对象表示如下: >> x=sin(t); >> ezplot(X); 利用ezplot(x)命令可以绘制上述信号的时域波形 Time(seconds) 图1 利用向量表示连续时间信号

t 图 2 利用符号对象表示连续时间信号 sin(t) 2.连续时间信号的时域运算 对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。 1)相加和相乘 信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。 2)微分和积分 对于向量表示法表示的连续时间信号,可以通过数值计算的方法计算信号的微分和积分。这里微分使用差分来近似求取的,由时间向量[N t t t ,,,21?]和采样值向量[N x x x ,,,21?]表示的连续时间信号,其微分可以通过下式求得 1,,2,1,|)('1-?=?-≈ +=N k t x x t x k k t t k 其中t ?表示采样间隔。MA TLAB 中用diff 函数来计算差分 k k x x -+1。 连续时间信号的定积分可以由MATLAB 的qud 函数实现,调用格式为 quad ('function_name',a,b) 其中,function_name 为被积函数名,a 、b 为积分区间。

数值计算方法期末复习答案终结版

一、 名词解释 1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。 2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。如果近似值*x 的误差限是1 102 n -?,则称*x 准确到小数点后n 位, 并从第一个不是零的数字到这一位的所有数字均称为有效数字。 3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。 4. 向量范数:设对任意向量n x R ∈r r ,按一定的规则有一实数与之对应,记为||||x r ,若||||x r 满足 (1)||||0x ≥r ,且||||0x =r 当且仅当0x =r ; (2)对任意实数α,都有||||||x αα=r ||||x r ; (3)对任意,n x y R ∈r r r ,都有||||||||||||x y x y +≤+r r r r 则称||||x r 为向量x r 的范数。 5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段 线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ?作为()f x 的近似的方法。 6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值* x 的相对误 差,记为* ()r e x ,即** () ()r e x e x x = 7. 矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A 。若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ; (3)对任意两个n 阶方阵A,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B 称||||A 为矩阵A 的范数。 8. 算子范数:设A 为n 阶方阵,||||?是n R r 中的向量范数,则0 |||| ||||||||max x Ax A x ≠=r r 是一种矩 阵范数,称其为由向量范数||||?诱导出的矩阵范数,也称算子范数。

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

编译原理考试试卷

南京工业大学继续教育学院编译原理期末考试试卷 (2012-2013学年) A卷 一、选择题(每题2分,共20分) 得分 1. 一个上下文无关文法G包括四个组成部分:一组终结符,一组非终结符,一个_____,以及一组产生式。 A.字符串 B.运算符号 C.开始符号 D.文法 2.程序的基本块是指_____。 A.一个子程序 B.一个仅有一个入口和一个出口的语句 C.一个没有嵌套的程序段 D.一组顺序执行的程序段,仅有一个入口和一 个出口 3. 高级语言编译程序常用的语法分析方法中,递归下降分析法属于_____分析方法。 A.自左向右 B.自顶向下 C.自底向上 D.自右向左 4.经过编译所得到的目标程序是_____。 A.四元式序列 B.间接三元式序列 C.二元式序列 D.机器语言程序或汇编语言程序 5.运行阶段的存储组织与管理的目的是_____。 ①提高编译程序的运行速度②节省编译程序的存储空间 ③提高目标程序的运行速度④为运行阶段的存储分配做准备 A. ①② B. ②③ C. ③④ D. ④②6.词法分析器的输出结果是_____。 A.( ) 单词的种别编码B.( ) 单词在符号表中的位置C.( ) 单词的种别编码和自身值D.( ) 单词自身值 7.正规式M 1 和M 2 等价是指_____。

A.( ) M1和M2的状态数相等B.( ) M1和M2的有向边条数相等 C.( ) M1和M2所识别的语言集相等D.( ) M1和M2状态数和有向边条数相等 8.文法G:S→xSx|y所识别的语言是_____。 A.( ) xyx B.( ) (xyx)* C.( ) xnyxn(n≥0) D.( ) x*yx* 9.语言是_____。 A.句子的集合B.产生式的集合 C.符号串的集合D.句型的集合 10.编译程序前三个阶段完成的工作是 A.词法分析、语法分析和代码优化 B.代码生成、代码优化和词法分析 C.词法分析、语法分析、语义分析和中间代码生成 D.词法分析、语法分析和代码优化 二、名词解释(每题2分,共20分) 得分 1.最左推导: 2.语法: 3.文法: 4.基本块: 5.语法制导翻译: 6.短语: 7.规范句型:

信号与系统实验(新)

信号与系统实验 实验1 阶跃响应与冲激响应 一、实验目的 1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并 研究其电路元件参数变化对响应状态的影响; 2、掌握有关信号时域的测量方法。 二、实验原理说明 实验如图1-1所示RLC串联电路的阶跃响应与冲激响应的电路连接图,图1

用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。 三、实验内容 1、阶跃响应波形观察与参数测量 设激励信号为方波,其幅度为1.5V 峰峰值,频率为500Hz 。 实验电路连接图如图1-1(a )所示。 ① 连接如图1-1所示 ② 调整激励源信号为方波,调节频率旋钮,使f=500Hz ,调节幅度旋钮, 使信号幅度为1.5V 。(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节) ③ 示波器CH1接于TP909,调节滑动变阻器,使电路分别工作于欠阻尼、 临界和过阻尼三种状态,并将实验数据填入表格1-1中。 ④ TP908为输入信号波形的测量点,可把示波器的CH ·接于TP908上,便 于波形比较。 表1-1 注:描绘波形要使三状态的X 轴坐标(扫描时间)一致。 2、冲激响应的波形观察 冲激信号是由阶跃信号经过微分电路而得到。 实验电路如图1—1(b )所示。 参数测量 波形观察 欠阻尼状态 临界状态 过阻尼状态 状态 参数测量 R< Tr= Ts= δ= R= Tr= R>

①将信号输入接于P905。(频率与幅度不变); ②将示波器的CH1接于TP906,观察经微分后响应波形(等效为冲激激 励信号); ③连接如图1-1(b)所示 ④将示波器的CH2接于TP909,调整滑动变阻器,使电路分别工作于欠 阻尼、临界和过阻尼三种状态 ④观察TP909端三种状态波形,并填于表1-2中。 表1-2 表中的激励波形为在测量点TP906观察到的波形(冲激激励信号)。 四、实验报告要求 1、描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时, 要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。 2、分析实验结果,说明电路参数变化对状态的影响。 五、实验设备 双踪示波器 1 台 信号系统实验箱 1台 上升时间t r :y(t)从0.1到第一次达到0.9所需时间。 峰值时间t p :y(t)从0上升y max 所需的时间。 调节时间t s :y(t)的振荡包络线进入到稳态值的% 5 误差范围所需的时间。 激励波形 响应波形 欠阻尼状态临界状态过阻尼状态

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111 l x = C .() 00l x =1,()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 已知函数21 1y x = +的一组 数据: 求分段线性插值函数, 并计算 () 1.5f 的近似值. 计算题1.答案

编译原理试卷

一、填空题(每题3分,共15分) 1.编译原理是一种翻译程序,它将高级语言编写的源程序翻译成等价的机器语言或汇编 语言的目标程序 2.整个编译过程可以分为五个阶段,分别是:词法分析、语法分析、语义分析及中 间代码生成、代码优化和目标代码的生成。 3.设X是符号串,符号串的幂运算X0= ε 4.乔姆斯基把文法分为四种类型,即0型、1型、2型、3型文法。2型文法也称为 上下文无关文法 5.采用递归下降分析法进行语法分析,要求文法是文法。 二、选择题(每题3分,共15分) 1.若文法G定义的语言是无限集,则文法必然是(D)。 A.上下文无关文法 B.正规文法 C.二义性文法 D.递归文法 2.文法G产生的()的集合是该文法的描述语言。 A.句型 B.终结符集 C.非终结符集 D.句子 3.通常程序设计语言的词法规则可用正规式描述,词法分析器可用(B)来实现。 A.语法树 B.有穷自动机 C.栈 D.数组 4.设有文法G[S]:S→Bb│b,B→bS,该文法所描述的语言是(C) A. b n,n≥0 B.b2n,n≥0 C.b2n+1,n≥0 D.b2n+1,n≥1 5.用1代表字母,d代表数字,则定义标识符单词的正规式是(C) A.1d* B.11* C.1(1│d)* D.11*│d* 三、判断题(每小题2分,共10分) ()给定一个文法,就能从结构上唯一地确定其语言,给定一种语言,就能唯一地确定其文法。 ()用二义性文法定义的语言也是二义性的。 ()正规式、正规文法、有穷自动机都是描述正规集的工具,它们的描述能力是等价的,它们之间是可以相互转换的。 ()采用自下而上分析法进行语法分析需要消除文法的递归性。 ()算符优先文法中,任何两个终结符对(a,b)在·>,<·和=·这三种关系中只有一种关系成立。

相关主题
文本预览