当前位置:文档之家› 亚跨龙乙基纤维素

亚跨龙乙基纤维素

亚跨龙乙基纤维素
亚跨龙乙基纤维素

亚跨龙乙基纤维素——成膜性纤维素醚

亚跨龙乙基纤维素是一类由氯乙烷和碱纤维素反应制成的纤维素醚。反应时,将乙氧基的取代程度控制在45~52%左右(或者2,25~2,77个乙氧基,理论最高取代度为3,0个乙氧基)的商用有效范围。在该范围内,亚跨龙乙基纤维素分成四个不同的乙氧基型号和一系列聚合粘度,便于客户选用。

型号与规格

亚跨龙乙基纤维素的乙氧基型号。测试方法:E80-4b, 4c.

亚跨龙乙基纤维素的粘度规格,mPa.s,测试方法:ASTM D914

1) X22的粘度为18-35 mPa.s

N-型乙基纤维素的典型性状

比重,g/cm3 1,14

粒状形态的容积密度,kg/l 0,38

溶液状态的容积密度,l/kg 0,88

Sward硬度指数,以75微米膜计 52 - 61

流延成膜的折光率 1,47

N-型乙基纤维素(ctd)的典型性状

玻璃化转变温度,°C 120 - 124

软化点,°C 152 - 162

透湿性,以75微米膜计, 890

ASTM E 96-66 Procedure E, g/m2/24 h

吸湿性,80%相对湿度下放置24h, % 2

性状与用途

白色粒状粉末,易于溶解,形成色泽均匀的透明质膜,不受可见光或紫外光影响;能透过几乎所有的可见光谱;在宽泛的温度范围内(-70 ~ 150°C)保持较佳的柔韧性;易燃性低,可赋予阻燃作用。

亚跨龙乙基纤维素各型号均可溶于酯类、芳烃、醇类、酮类、氯化溶剂和低成本复合溶剂,最有用的是70~90%的芳烃加10~30%醇类的混合溶剂。能兼容硝酸纤维,和众多的油类、增塑剂及树脂等用于改良硬度、光泽度、粘结力和抗水性。

亚跨龙乙基纤维素可在多种底物的涂布、热熔和塑性涂布中用作成膜剂,影响澄清度、色泽稳定性和韧性。

* K-型在芳烃中可溶,产生较强的成膜性,常用于凝胶型涂料。

* N-型软化点较低,并与油类、树脂相容,适用于涂料、热熔胶、热熔转移油墨和塑性剥离等用途。

* T-型特别适用于高度耐脂肪烃的用途(出于成本或应用条件的考虑)。

* X-型是所有乙氧基型号中最耐脂肪烃的,用于印刷油墨。

规范行业情况

亚跨龙医药级乙基纤维素符合《美国药典/国家处方集》(USP/NF)现行版本和欧洲医药成分药典。这些型号已在no. 36.002 产品资料书中标明。

美国农业部已宣称亚跨龙乙基纤维素可用于经联邦检验的组织机构中肉类、家禽产品的包装。

包装与贮存

亚跨龙乙基纤维素型号N4,N7,N10,N14,N22,N50,T10,T50 和X22的包装为净重18,14 kgs(40磅)的多层纸袋。

亚跨龙乙基纤维素型号N100,N200,N300,T100,T200,T300 和 X200的包装为净重15,88 kgs(35磅)的多层纸袋。

亚跨龙乙基纤维素是一种不易损坏的产品。推荐采取“先进-先用”的消耗方式。产品应以原始包装贮存于干燥、洁净的条件,远离热源。用户在贮存期间,可由生产日期12个月后再次检测原装产品的标准粘度。

羟乙基纤维素性质

羟乙基纤维素(HEC) 是一种白色或淡黄色,无味、无毒的纤维状或粉末状固体, 由碱性纤维素和环氧乙烷(或氯乙醇) 经醚化反应制备, 属非离子型可溶纤维素醚类。由于HEC 具有良好的增稠、悬浮、分散、乳化、粘合、成膜、保护水分和提供保护胶体等特性, 已被广泛应用在石油开采、涂料、建筑、医药食品、纺织、造纸以及高分子聚合反应等领域。40目过筛率≥99%;软化温度:135-140℃ ;表现密度:0.35-0.61g/ml;分解温度:205-210℃ ;燃烧速度较慢;平衡含温 量:23℃ ;50%rh时6%,84%rh时29%。 化学名称 一、羟乙基纤维素(HEC) 结构式: 二、技术要求 质量标准项目指标 摩尔取代度(M.S) 1.8-2.0 水份(%) ≤10 水不溶物(%)≤0.5 PH值 6.0-8.5 重金属(ug/g)≤20 灰分(%)≤5 粘度(mpa.s)2%20℃水溶液 5-60000 铅(%)≤0.001 编辑本段性状 既溶于凉水溶于热水,一般情况下在大多数有机溶媒中不溶。PH值在2-12范围内粘度变化较小,但超过此范围粘度下降。 编辑本段重要性质 羟乙基纤维素作为一种非离子型的表面活性剂,除具有增稠、悬浮、粘合、浮化、成膜、分散、保水及提供保护胶体作用外,还具有下列性质: 1、 HEC可溶于热水或冷水,高温或煮沸不沉淀,使它具有大范围的溶解性和粘度特性,及非热凝胶性; 2、本身非离子型可与大范围内的其他水溶性聚合物,表面活性剂、盐共存,是含高浓度电解质溶液的一种优良的胶体增稠剂; 3、保水能力比甲基纤维素高出一倍,具有较好的流动调节性,

4、 HEC的分散能力与公认的甲基纤维素和羟丙基甲基纤维素相比分散能力最差,但保护胶体能力最强。 编辑本段羟乙基纤维素使用方法 一.直接在生产时加入 1.于备有高应切搅拌器的大桶中加入净水。 2.开始低速不停地搅拌亦慢慢把羟乙基纤维素均匀筛入溶液中。 3.继续搅拌至所有颗粒物湿透。 4.然后加入防雷剂,碱性添加剂等如颜料、分散助剂、氨水。 5.搅拌至所有羟乙基纤维素完全溶解(溶液粘度明显增加)才加入配方中其他组份,研磨至成 品为止。 二、配备母液候用 此法是先配备浓度较高之母液,然后再加入乳胶漆中。此法优点是有较大的灵活性,可以直接加入漆成品中,但应适当贮存。步骤与方法1中1-4部相似,不同之处是无须高拌至完全溶解成粘稠溶液。 三、配成粥状物候用 由于有机溶剂对羟乙基纤维素来说是不良溶剂,因此可用这些有机溶剂来配备粥状物。最常用之有机溶剂是漆配方中的有机液体如乙二醇、丙二醇和成膜剂(如乙二醇或二乙二醇丁基醋酸脂)。冰水亦是不良溶剂,故冰水亦常与有机液体一起,用于配备粥状物。粥状物之羟乙基纤维素可直接加入漆中,在粥状时羟乙基纤维素已被兖分泡涨。当加入漆中后,便马上溶解,并起增稠作用。加入后仍须不断搅拌直至羟乙基纤维素完全溶解,均匀为止。一般粥状物是用六份有机溶剂或冰水与一份羟乙基纤维素混合成,约6-30分钟后,羟乙基纤维素便水解并明显地发涨。夏季时一般水温度太高,不宜用配备粥状物。 编辑本段注意事项 由于经表面处理的羟乙基纤维素是粉状或纤维素固体,只要注意下列事项,则很容易操作并使之溶于溶水中。 1.在加入羟乙基纤维素前和后,均必须不停地搅拌,直至溶液完全透明澄清为止。

纤维素的结构及性质

一.结构 纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。纤维素的结构确定为β-D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚 体,其结构中没有分支。纤维素的化学式:C 6H 10 O 5 化学结构的实验分子式为 (C 6H 10 O 5 ) n 早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复 单元所组成,也已证明重复单元是纤维二糖。纤维素中碳、氢、氧三种元素的比例是:碳含量为44.44%,氢含量为6.17%,氧含量为49.39%。一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成。 O O O O O O O O O 1→4)苷键β-D-葡萄糖 纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征 做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。 纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。 表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成

6种纤维素的作用及来源要点

6种纤维素的作用及来源 维生素A 维生素A:保护眼睛和全身上皮组织间接抵抗各种疾病的感染。缺乏时会造成夜盲、干眼症、角膜软化甚至穿孔、失明以及免疫力低下。维生素A来源于鱼肝油,胡萝卜,动物的肝、肾、乳类、蛋黄,有色蔬菜(南瓜、鸡毛菜、克莱、芥菜、紫菜等)及黄色水果(杏、柿等)。 维生素D 维生素D:可以促进钙、磷的吸收和骨骼正常的生长。缺乏时会患佝楼病。维生素D来源于鱼肝油、肝和蛋,以及日光照射裸露的皮肤在体内形成。 维生素E 维生素E利用它的抗氧化性质来防止心脏病。并且它增进了循环,有助于防止血凝。维生素E也能抵抗某种癌症,延缓衰老,预防白内障。而且对免疫系统正常发挥它的功能也有帮助作用。不过它也可以帮助伤口愈合。成年人的维生素E缺乏症可以通过下述症状来鉴别:过早衰老,肌肉虚弱,走路困难,容易被传染,伤口愈合能力差,容易疲劳。维生素E缺乏涉及到的疾病主要是红血球被破坏、肌肉的变性、贫血症、生殖机能障碍。尽管维生素E是一种脂肪可溶的维生素,并且储存在人体内,但是维生素E是最安全的维生素,而且毒性很小。维生素E的主要食物来源包括麦芽、大豆、植物油、坚果类、芽甘蓝、绿叶蔬菜、菠菜、有添加营养素的面粉、全麦、未精制的谷类制品、蛋。维生素E的建议每日摄入量是400-800IU,而且最好是通过α-维生素E获取。 维生素B1 维生素B1:可以预防神经炎及脚气病等,调节碳水化合物代谢,帮助消化,促进生长发育。缺乏时会引起食欲不振、健忘、不安、易怒、患脚气病,甚至出现惊厥昏迷,心力衰竭。维生素Bl来源于米糠、麦就豆类、花生等。 维生素B2 维生素B2:功用是促进细胞组织氧化,防止皮肤干燥和口、眼症状。缺乏时会发生口角炎、眼炎、舌炎。维生素B2来源于肝、蛋、乳、绿叶蔬菜。 维生素C 维生素C:调节生理机能,促进铁的吸收,提高对传染病及其他疾病的抵抗力。缺乏时会出现坏血病、骨骼生长及造血机能发生障碍,引起生长迟缓。维生素C来源于新鲜水果(以柚、橙。猕猴桃、山植含量高)和新鲜蔬菜(番茄、青椒含量高)。 水和食物纤维的作用

羟乙基纤维素的合成及应用

羟乙基纤维素的合成及应用 羟乙基纤维素(HEC )是一种非离子型的水溶性纤维素醚。外观为白色至淡黄色的无毒、无味纤维状或粉末状固体。被广泛应用于石油开采、日用化工、建筑、涂料、高分子聚合等领域,近年来在医药方面的应用也越来越得到重视。 1 生产工艺 1.1 气相法和液相法 气相法和液相法这2种生产工艺都需预先制备碱纤维素,将纤维素于20℃左右浸渍于18%(质量)左右的NaOH 中脱脂、醚化反应后经过中和、洗涤、干燥、粉碎,获得最终产品。 合成HEC 的主要反应方程式如下: a .碱活化反应 [C 6H 7O 2(OH)3]n + nNaOH [C 6H 7O2(OH)2ONa]n + nH 2O 该反应先在纤维素分子中葡萄糖单元的伯羟基然后在仲羟基上发生碱化,使纤维素分子间的氢键力减弱或被破坏,碱化后的纤维素溶解于高浓度的碱液中。 b.醚化反应 在上述碱纤维素溶液中加入环氧乙烷,随即发生醚化反应: O C 6H 7O 2(OH)2OH ·NaOH + CH 2 2 C 6H 7(OH)2OCH 2CH 2OH 醚化的产物可以和环氧乙烷进一步反应,或使侧链增长,或使侧链数目增加。 (1) 气相法 气相法又分为直接气固法和真空气固法。 ①直接气固法制HEC 的生产过程:棉纤维脱脂、挤干,与环氧乙烷在44~46℃下直接反应1~2小时制取。该法过程简单,但产品粘度太低。 ② 真空充氮气固法制取HEC 的生产过程:把反应器抽成真空,充氮两次,加入环氧乙烷,在真空度9.064×104Pa 、27-32℃下反应3~3.5小时得到产品HEC 。此法虽然生产过程简单,但环氧乙烷消耗量大,反应时间较长,最终产品成本高。工艺框图见图1。

纤维素对人体的作用

纤维素对人体的作用 姓名:陈钊学号:2010210101 班级:信息管理504班一、生理作用 纤维素的主要生理作用是吸附大量水分,增加粪便量,促进肠蠕动,加快粪便的、排泄,使致癌物质在肠道内的停留时间缩短,对肠道的不良刺激减少,从而可以预防肠癌发生。 二、膳食纤维 人类膳食中的纤维素主要含于蔬菜和粗加工的谷类中,虽然不能被消化吸收,但有促进肠道蠕动,利于粪便排出等功能。食纤维可提高胰岛素受体的敏感性,提高胰岛素的利用律;膳食纤维能包裹食物的糖分,使其逐渐被吸收,有平衡餐后血糖的作用,从而达到调节糖尿病患者的血糖水平,治疗糖尿病的作用。 三、预防和治疗冠心病 血清胆固醇含量的升高会导致冠心病。胆固醇和胆酸的排出与膳食纤维有着极为密切的关系。膳食纤维可与胆酸结合,而使胆酸迅速排出体外,同时膳食纤维与胆酸结合的结果,会促使胆固醇向胆酸转化,从而降低了胆固醇水平。 四、降压作用 膳食纤维能够吸附离子,与肠道中的钠离子、钾离子进行交换,从而降低血液中的钠钾比值,从而起到降血压的作用。 五、抗癌作用 自七十年代以来,膳食纤维在抗癌方面的研究报道日益增多,尤其是膳食纤维与消化道癌的关系。肠道中的有益菌能够利用膳食纤维产生丁酸,丁酸能抑制肿瘤细胞的生长增殖,诱导肿瘤细胞向正常细胞转化,并控制致癌基因的表达。 六、减肥治疗肥胖症 膳食纤维取代了食物中一部分营养成份的数量,而使食物总摄取量减少。膳食纤维促增加唾液和消化液的分泌,对胃起到了填充作用,同时吸水膨胀,能产生饱腹感而抑制进食欲望。膳食纤维与部分脂肪酸结合,这种结合使得当脂肪酸通过消化道时,不能被吸收,因此减少了对脂肪的吸收率。 七、治疗便秘 膳食纤维具有很强的持水性,其吸水率高达10倍。它吸水后使肠内容物体积增大,

羟乙基纤维素

羟乙基纤维素(HEC) 一、化学名称:羟乙基纤维素(HEC) 结构式: 二、技术要求: 质量标准 三、性状: 本品为白色或微黄色无嗅无味易流动的粉末,40目过筛率≥99%;软化温 度:135-140℃ ;表现密度:0.35-0.61g/ml;分解温度:205-210℃ ;燃烧速度较慢;平衡含温量:23℃ ;50%rh时6%,84%rh时29%。 既溶于凉水溶于热水,一般情况下在大多数有机溶媒中不溶。PH值在2-12范围内粘度变化较小,但超过此范围粘度下降。 四、重要性质: 羟乙基纤维素作为一种非离子型的表面活性剂,除具有增稠、悬浮、粘合、浮化、成膜、分散、保水及提供保护胶体作用外,还具有下列性质: 1、 HEO可溶于热水或冷水,高温或煮沸不沉淀,使它具有大范围的溶解性和粘度特性,

及非热凝胶性; 2、本身非离子型可与大范围内的其他水溶性聚合物,表面活性剂、盐共存,是含高浓度电解质溶液的一种优良的胶体增稠剂; 3、保水能力比甲基纤维素高出一倍,具有较好的流动调节性, 4、 HEC的分散能力与公认的甲基纤维素和羟丙基甲基纤维素相比分散能力最差,但保护胶体能力最强。 五、溶液和配制方法 1、向容器中加规定量的干净水; 2、在低速搅拌下加入羟乙基纤维素,搅拌至所有羟乙基纤维素,搅拌至所有物料完全湿透; 3、搅拌至所有羟乙基纤维素完全溶解后再加配方的其他组分搅匀即可。 六、包装: 纸袋内衬聚乙烯袋封装,25kg/袋,注意防潮。 七、用途: 一般用作增稠剂、保护剂、粘合剂、稳定剂以及制备乳剂、冻胶、软膏、洗剂、清眼剂、栓剂和片剂的添加剂,亦用作亲水凝胶、骨架材料、制备骨架型缓释制剂,还可用于食品方面作稳定剂等作用。

纤维素结构

纤维素的结构 引言 纤维素是地球上存在的最丰富的可再生有机资源, 在高等植物、细菌、动物、 海藻等生物中广泛存在, 每年总量有几百亿吨, 具有巨大的经济开发价值[1]。五 十年代至六十年代,由于合成高分子材料的兴起,纤维素资源的开发研究受到极大的影响。七十年代初期,由于国际上出现了石油危机,这种曾被忽视的可更新资源又再次被重视起来.能否利用这些丰富的可再生资源是解决未来能源问题的关键因素。因此,世界各国都很重视纤维素的研究与开发[2]。纤维素结构是纤维素性能研究及应用的基础,本文就纤维素的化学剂物理结构进行了概述。 1纤维素的化学结构 纤维素的元素组成为:C=44.44%,H=6.17%,O=49.39%, 其化学实验式(C 6H 10O 5)n (n 为聚合度,一般高等植物纤维素的聚合度为7000—150000)[3] 纤维素大分子的基环是脱水葡萄糖,其分子式为(C 6H 10O 5)。纤维素的化学结构是由D-吡喃葡萄糖环彼此以β- 1, 4-糖苷键以C1椅式构象联结而成的线形高分 子化合物[4],其结构表达式如图1所示。 非还原端 纤维二糖 还原端 图1 纤维素链结构 除两端的葡萄糖基外,每个葡萄糖基上都有三个游离羟基,分别位于C 2、C 3和C 6位上,所以纤维素的分子可以表示为[[C 6H 7O 2(OH)3]n,其中C 2和C 3位上为仲醇羟基,C 6位上为伯醇羟基,他们的反应能力不同,对纤维素的性质具有重要影 响,如纤维素的酯化、醚化、氧化和接枝共聚,以及纤维素之间的分子间氢键作用,纤维素的溶胀与水解都与纤维素的羟基有关。 纤维素大分子两端的葡萄糖末端基,其结构和性质不同,一端的葡萄糖末端基在C4上存在一个苷羟基,此羟基的氢原子易转移,与基环上的氧原子结合,使氧环结构转变为开链式结构,在C1处形成醛基,具有潜在还原性,固有隐形醛基之称。左端的葡萄糖末端为非还原性的,由于纤维素的每一个分子链一端是还原性,另一端是非还原性,所以纤维素分子具有极性和方向性。 纤维素以及糖链形成以后,其葡萄糖残基上的经基和分子间或者内部的经基基团形成稳定的氧键网络,平行面上的糖链形成稳定的一层糖链片层,使纤维糖链形成极为稳定的超大分子,图2为糖链片层的结构模型。

高纤维素食物的有益功能有哪些

高纤维素食物的有益功能有哪些 多吃五谷杂粮,有益身体健康。所以合理食用含高纤维素的食物是对人体健康非常有帮助的,不仅可以帮身体肥胖的朋友减肥,还可以预防很多疾病的发生。高纤维的食物可以治疗便秘,还有降血脂的作用。很多朋友都不了解高纤维素食物的有益功能有哪些? ★第一促进减肥 纤维素比重小、体积大,进食后充填胃腔,需要较长时间来消化,延长胃排空的时间,使人容易产生饱腹感,减少热量的摄取;同时膳食纤维减少了摄入食物中的热量比值;纤维素在肠内会吸引脂肪而随之排出体外,有助于减少脂肪积聚,三者同时可达到减肥目的。 ★第二吸收毒素 食物在消化分解的过程中,必定会产生不少毒素,这些有害物质在肠腔内会刺激粘膜上皮,日久引起粘膜发炎;吸收到血液

内,可加重肝脏的解毒负担。纤维素在胃肠道中遇水形成致密的网络,吸附有机物、无机物、水分,对维持胃肠道的正常菌群结构起着重要作用;同时,肠内容物中的毒素会被纤维素吸附,肠粘膜与毒物的接触机会减少,吸收入血量亦减少。 ★第三防治便秘 食物纤维体积大,可促进肠蠕动,其中的水分不易被吸收,从而有通便作用。 保护皮肤。血液中含有有毒物质时,皮肤就成了其抛弃废物的地方,面部暗疮正是由于血液中过量的酸性物质及饱和脂肪而形成的;经常便秘的人,肤色枯黄,也是因为粪便在肠中停留时间过长,毒性物质通过肠壁吸收并使血液沾上毒素所致。吸烟过多的人脸色犹如死灰,也是上述原因造成的。食物纤维能刺激肠的蠕动,使废弃物能及时排出体外,减少毒素对肠壁的毒害作用,因而可以保护皮肤。 ★第四降低血脂

食物纤维中有些成分如果胶可与胆固醇结合,木质素可与胆酸结合,使其直接从便粪中排出,从而消耗体内的胆固醇来补充胆汁中被消耗的胆固醇,由此降低了血脂。膳食纤维在肠道内吸水对肠内容物起到稀释作用,降低了胆汁和胆固醇的浓度,并能助长肠道内正常寄居细菌的生长繁殖;这些正常细菌在繁殖过程中也能使胆固醇转化经粪便排出,有助于减少冠心病的发生。 ★第五控制血糖 有人认为糖尿病的起因之一是食物中纤维素含量太少。含有大量食物纤维的食品,给人体提供的能量很少,纤维中的果胶可延长食物在肠内的停留时间,降低葡萄糖的吸收速度,使进餐后血糖不会急剧上升,有利于糖尿病病情的改善;同时,高纤维食品可降低生理范围内的胰岛素的分泌,降低食物的摄取;另外,高纤维食品可降低糖尿病患者对胰岛素或一般口服降血糖药的 需求,而仍能有效控制血糖的浓度。 富含食物纤维素的食品虽然有上述种种好处,但也不可偏食。

半纤维素简介与知识点总结

第三节半纤维素 一、半纤维素的分离与测定 半纤维素存在于各种植物原料中,在牛纤维素基础理论研究或应用机理研究巾,往往需要把半纤维素从原料中分离出来,分离要彻底,并且要尽量减少半纤维素的裂解。但由于中纤维素与木素之间有化学键联接,此复合体简称L.C.C,与纤维素虽没化学键联接,但结合紧密,性质近似,所以半纤维素的分离是比较复杂的。 1.半纤维素的分离 纤维原料中除了三大组成外,还有其它少量组分存在,在半纤维素的分离(抽提)前必须先把这些少量组分除去。通常是采用苯一乙醇或丙酮抽提除去。经过抽提后的试料,称为无抽提物试料。分离提取半纤维素有两种方法,一是直接抽提法,二是制成综纤维素后再提取。直接抽提法适用于阔叶木和草类原料,不适用于针叶木,因为针叶木管胞次生壁的木质化程度高,使碱不易进入,因而分离出来的半纤维素很少,无实用价值。直接法所得的半纤维素量少,且杂质也多,给提纯工作增加困难。因此,大多数是制备综纤维素,再从综纤维素中抽提半纤维素,这种做法比较普遍。 2.半纤维素的测定 对半纤维素的测定研究,自60年代以来,所用方法日趋完善。现在除用部分水解法、高碘酸盐氧化法及甲基化法外,又增加了Smith降解法,并且用色谱和质谱联用鉴定技术等。现以白桦半纤维素为例,将这些方法的主要原理简介如下: (1)部分水解法。将半纤维素水解,得到糖的复合物,主要含木糖和糖醛酸。用阴离子交换树脂将这两种糖分离,而糖醛酸又可用色谱法分成三种。 (2)高碘酸盐氧化法。高碘酸盐氧化法可以测定聚糖还原性末端基的数目和支链情况,因此可以通过高碘酸盐的消耗量和形成的甲酸量计算末端基和支链的数目。 (3)Smith降解法。它是目前用得最多的办法,是在高碘酸盐氧化的基础上发展起来的方法。其基本原理是:聚糖经过高磺酸的氧化后用硼氢化钠还原,然后进行酸水解、还原,最后用色谱鉴定所得产物,藉以了解聚糖结构情况。

膳食纤维的作用有哪些

膳食纤维的作用有哪些 膳食纤维的作用有哪些 食物纤维是一种特殊的营养素,其本质是碳水化合物中不能被人体消化酶所分解的多糖类物质。食物纤维有数百种之多,其中包括了纤维素、半纤维素、果胶、木质素、树胶和植物黏胶、藻类多糖等。 @维护肠道健康的“多面手”。 肠道是人体中最大的免疫器官,70%的淋巴分布于肠道之中。膳食纤维对于肠道的保护作用不容小觑。肠道年龄的界定主要是以肠道内有益菌 群与有害菌群的比例作为判断依据。而膳食纤维能够促进有益菌生长、抑制有害菌繁殖,从而维持正常的肠道功能。 另外,如果食物在肠内的时间太长,肠道微生物代谢产生的有害物质及分解的酵素长时间与肠黏膜接触。会造成有害物质的吸收和黏膜细胞受到伤害。粪便在肠内的时间过长,各种毒素的吸收会导致肠道肿瘤发生。而膳食纤维可使肠道中的食物膨胀变软,促进肠道蠕动和排便,所以减少了致癌物质在肠道内的停留时间,能够预防肠癌。 @治疗糖尿病的有力武器。 经过科学研究,可溶性膳食纤维在降低餐后血糖及胆固醇浓度方面有突出的贡献。由于膳食纤维可以使胃肠通过时间大大增加,而且吸水后体积增加并有一定黏度,所以延缓了葡萄糖的吸收。过去糖尿病患者的保健食品大多是不溶性纤维,而现在可溶性膳食纤维的广泛应用,必将进一步改善糖尿病患者的饮食质量和治疗效果。 @预防心脑血管疾病。 肝脏中的胆固醇会转变成胆酸,到达小肠后能帮助消化脂肪,然后胆酸会回到肝脏再转变成胆固醇。可溶性纤维可以让胆酸不被小肠肠壁吸收,而通过消化道排出体外。于是,当肠内食物再进行消化时,肝脏只能靠吸收血中的胆固醇来补充胆酸,从而降低了血液中的胆固醇含量。这样一来,冠心病和中风的发病率也会大大降低。 @减少胆结石的发生。 胆结石形成的原因是胆固醇合成过多及胆汁酸合成过少。增加膳食纤维,可降低胆汁中胆固醇含量,减少胆汁酸的再吸收,起到预防胆结石的 作用。

高取代羟乙基纤维素醚生产新工艺讲解

高取代羟乙基纤维素醚生产新工艺一.任务提出的目的和意义 以农产品棉花为主要原料的纤维素醚产业是个蓬勃发展的产业。随着新世纪石油及合成化工原料的紧缺和价格持续上涨,以及全世界对环境污染问题的日趋重视,价廉物丰、可生物降解、无毒、生物相容性好的可再生纤维素资源及其衍生物日益受到世人的青睐,其开发和应用成为一项重要的研究课题。 羟乙基纤维素是纤维素醚中的一个具有较长使用历史的品种,目前在乳胶漆、油田、化妆品等工业生产领域,均有广泛的应用。随着经济发展和社会进步,人们对羟乙基纤维素的需求量逐年增加,对应用性能的要求也越来越高,而且市场上常规的羟乙基纤维素只在一个方面具有理想的性能,比如耐盐、抗温、抗酶、良好的流变性或抗溅性等,而在综合性能上有所欠缺,因此高性能新产品的开发迫在眉睫。 羟乙基纤维素是世界范围内生产的一种水溶性纤维素醚,产量大、发展迅速,是仅次于CMC和HPMC的重要纤维素醚品种,据不完全统计,1978年世界产量18000吨;1983年50000吨,我国1977年才开始生产。羟乙基纤维素可溶解在冷、热水中,使它具有更大范围的溶解性和黏度特性。作为非离子型醚,羟乙基纤维素具有非离子型醚的一切特征,不与带正、负电荷离子作用,活性少,在大范围内的水溶性聚合物、表面活性剂、盐等共

存,使其广泛作为增稠、流动调节剂、保护胶、稳定剂、保水剂、黏结剂等,应用于乳胶漆、医药、石油开采等行业。 本项目开发的新型羟乙基纤维素是在新工艺下,通过产学研结合,自主研发、制备、生产与推广的高取代羟乙基纤维素醚生产新工艺。与传统的羟乙基纤维素相比,该产品具有成本低、综合性能优良、应用广泛、易推广的显著特点。 基于对普通的羟乙基纤维素的工艺改进,该项目一方面提高了产品的取代度,另一方面采取一次碱化多次醚化工艺,反应过程均匀缓和,羟乙氧基在纤维素分子上的分布均匀,所以产品受生物攻击的缺陷得以弥补,使其抗酶性能大大改进。而且,通过此工艺,可以大大降低羟乙基纤维素的成本,其他性能也有相应的提高。例如其在乳胶漆中应用时,其粘稠性、流平性、抗流挂性、喷溅性、颜料性能以及生物稳定性等都能够得到大幅的提升。 二.研制过程 由于反应机理的特殊性,羟乙基纤维素产品醚化的均匀性总不是很理想,导致取代度较低,不稳定。而通过改变生产工艺,除了可以提高羟乙基纤维素的得率,降低羟乙基纤维素的成本,还可以大大提高产品的抗酶性、耐盐性等。

纤维素结构

纤维素结构 structure of cellulose 包括纤维素的化学结构和物理结构。 纤维素的化学结构纤维素是由D-吡喃型葡萄糖基(失水葡萄糖)组成。简单分子式 为[kg2](C H10O);化学结构式可用下二式表示: 霍沃思式是由许多D-葡萄糖基(1-5结环),藉1-4,β-型联结连接起来的,而且连接在环上碳原子两端的OH和H位置不相同,所以具有不同的性质。式中为聚合度。在天然纤维素中,聚合度可达10000左右;再生纤维素的聚合度通常为200~800。在一个样品中,各个高分子的聚合度可以不同,具有多分散性。 [1045-05] 椅式由于内旋转作用,使分子中原子的几何排列不断发生变化,产生了各种内旋转异构体,称为分子链的构象。纤维素高分子中,6位上的碳-氧键绕5和6位之间的碳-碳键旋转时,相对于5位上的碳-氧键和5位与4位之间的碳-氧键可以有三种不同的构象。如以g表示旁式,t表示反式,则三种构象为gt、tg、和gg(图1[C(6位)上O H基团的 构象]H基团的构象" class=image>)。多数人认为,天然纤维素是gt构象,再生纤维素是tg构象。 [1045-06] 在纤维素分子链中,存在着氢键。这种氢键把链中的O(6位上的氧)与O2'以及O与

O5'连接起来使整个高分子链成为带状,从而使它具有较高的刚性。在砌入晶格以后, 一个高分子链的O与相邻高分子的O之间也能生成链间氢键(图2[纤维素高分子的链中 和链间氢键])。 纤维素的物理结构晶胞及其参数具有一定构象的纤维素高分子链按一定的秩序堆砌,便成为纤维素的微晶体,微晶体的组成单元称为晶胞。代表晶胞尺寸的参数可以从纤维素的宽角X射线图象(图3[纤维素的宽角X射线纤维图 象])直接算出。 在纤维素中存在着化学组成相同,而单元晶胞不同的同质多晶体(结晶变体),常见的结晶变体有四种,即纤维素Ⅰ、Ⅱ、Ⅲ、Ⅳ。四种结晶变体的晶胞参数见表[纤维素的各种结晶变体的晶胞参

纤维素在沥青混合料中的作用

纤维素在沥青混合料中的作用 摘要:介绍了纤维素的分类和其在沥青混合料中的主要作用,以及使用方法、质量指标和检测方法。最后介绍了木质素、合成聚合物、聚丙烯腈和聚酯等常用纤维素的质量指标与参考价格。在沥青混合料中添加纤维素后能大大提高沥青路面的路用性能,适宜在修筑优质沥青道路时采用。 关键词:沥青路面纤维素强度稳定性耐久性 随着我国公路交通的发展,交通运输量特别是重载车辆运输量的增加,在行车产生的疲劳荷载和冲击荷载作用下,沥青路面出现较为严重的破损现象。沥青路面混合料的性能及级配不同,路面的使用性能也有差别。近年来,在对提高沥青路面的耐久性深入研究后,发现在沥青混合料中添加纤维稳定剂,既可在生产、运输、摊铺和碾压过程中保证混合料的均匀性及稳定性,又是提高路面耐久性和稳定性的有效措施。由于国内外对纤维素的研究起步不久,各品牌的纤维素质量、价格相差颇大,设计、施工单位在选择时较难取舍;因此有必要对纤维素的性能、质量标准、检验方法以及其在沥青混合料中的作用作一介绍,为使用者提供决策依据。 1 纤维素的分类及在沥青混合料中的主要作用 1.1 纤维素的分类 目前,应用在沥青工程中的纤维,按其化学成分,主要有木质素纤维、有机化学合成纤维和无机矿物纤维;按其产品形状,可分为絮状(纯纤维素)和颗粒状(纤维素通过添加部分沥青预制而成)。 1.2 纤维素在沥青混合料中的主要作用 根据工程实践和权威部门测定数据证实,在沥青混合料中添加0.3%的路用工程纤维,马歇尔稳定度明显提高;混合料的流值有所降低,使路面处于不易蠕动状态,结构的稳定性大大提高;劈裂强度增长幅度显著;在高温高湿度条件下,残留稳定度仍保持较高数值,从而阻止了沥青和胶浆的涌出。因此,路用工程纤维已被广泛应用于新建及修建沥青玛蹄脂碎石路面(SMA路面)、纤维加强型沥青路面,以及透水沥青混合料。其主要作用可归纳为: 1)加筋作用,增强路面的抗低温开裂能力。在添加纤维素的混合料中,纤维与纤维间搭接成三维立体结构,犹如在灰泥中掺加草筋一样,起到加筋增强作用,有效地减少路面低温开裂。 2)分散作用,提高路面的抗车辙能力。纤维素具有良好的分散性,SMA路面混合料在拌和时加入适量的纤维素后,沥青和矿粉就能均匀地分散在集料之间,避免结为胶团而使路面出现油斑。 3)吸附作用,提高路面耐久性。纤维素对液体具有良好的吸附力,其吸油率可达自身质量的5倍以上。在混合料中能吸附沥青,使沥青的用量增加,集料表面的结构沥青膜增厚,从而提高路面的耐久性。 4)粘附作用,提高路面抗水损害能力。纤维素能增加沥青和集料的粘附性,提高沥青混合料的黏度,加强集料间的粘结能力,从而增大路面与轮胎之间摩擦力,增加沥青混合料的抗疲劳强度,提高抗水损害的能力。

半纤维素综述

半纤维素综述 091060002 钟毅铭 一、什么是半纤维素(hemicellulose): ①是由几种不同类型的单糖构成的异质多聚体,这些糖是五碳糖和六碳 糖,包括木糖、阿伯糖、甘露糖和半乳糖等。 ②半纤维素木聚糖在木质组织中占总量的50%,它结合在纤维素微纤维 的表面,并且相互连接,这些纤维构成了坚硬的细胞相互连接的网络。1.构成半纤维素的主要糖基: ①糖基:D-木糖、D-甘露糖、D-葡萄糖、D-半乳糖、L-阿拉伯糖、 4-氧甲基-D-葡萄糖醛酸及少量L-鼠李糖、L-岩藻糖等。 ②半纤维素主要分为三类: Ⅰ、聚木糖类 Ⅱ、聚葡萄甘露糖类 Ⅲ、聚半乳糖葡萄甘露糖类。 2.半纤维素结构: 3.半纤维素的生物合成: 在植物细胞德尔内质网的核蛋白体上合成的蛋白质可以向高尔基体转移并进行糖苷化,合成的半纤维素包含在高尔基囊泡内并向细胞表面移动,在细胞膜处高尔基囊泡融合成连续的质膜,从而使半纤维素粘到细胞壁上。高尔基体之所以能产生半纤维素,使高尔基体能产生合成半纤维素所需的酶。

4.半纤维素的命名法: ①先写支链糖基,后写主链糖基;含量少在前,含量多在后;词首加“聚”。 ②只写主链糖基,不写支链糖基,词首写“聚”字 ③将构成半纤维素的各种糖基都列出来,首先写支链少的糖基,再写支 链多的糖基,最后写主链糖基。 分支度:分子中支链数与分子量的比值,表示半纤维素分子结构中枝链的多少。用相同溶剂在相同条件下同一类半纤维素中分枝度高的半纤维素溶解度高。 5.半纤维素在细胞壁中的分布: ①半纤维素浓度分布的趋势为胞间层和细胞外壁较高,次生壁,特别 S2层中最低。 ②半纤维素浓度在S1外层最多,从S1向S2方向降低,在S1/S2交界 处半纤维素浓度重新增加到S1外层的水平,在S2层逐渐下降到一个水平,并在此水平基本恒定,到S2/S3交界处,浓度又重新上升,S3层的半纤维素浓度通常与S2层中部差不多或稍高。 二、半纤维素的分离与提取: 1.分离前的准备: ①微量组分的去除。 ②综纤维素的制备。 2.抽提: 浓碱溶解硼酸铬分级抽提法(对象:针叶木原料)、逐步增加碱液浓度分级抽提法(对象:针叶木综纤维素)、单纯碱抽提法(对象:阔叶木与草类原料中的聚木糖)、二甲亚砜抽提法(优点:可以保留半纤维素中乙酰基)。 三、半纤维素化学结构的研究方法: ①部分水解法。 ②高碘酸盐氧化法。 ③Smith降解法。

纤维素的分类介绍

主要分为甲基纤维素(MC),羟丙基甲基纤维素(HPMC),羟乙基纤维素(HEC),羧甲基纤维素(CMC) 附:HPMC与MC、HEC、CMC的应用区别 HPMC和MC是两种不同的产品。 1、甲基纤维素(MC)分子式 将精制棉经碱处理后,以氯化甲烷作为醚化剂,经过一系列反应而制成纤维素醚。一般取代度为 1.6~2.0,取代度不同溶解性也有不同。属于非离子型纤维素醚。 (1)甲基纤维素可溶于冷水,热水溶解会遇到困难,其水溶液在pH=3~12范围内非常稳定。与淀粉、胍尔胶等以及许多表面活性剂相容性较好。当温度达到凝胶化温度时,会出现凝胶现象。 (2)甲基纤维素的保水性取决于其添加量、粘度、颗粒细度及溶解速度。一般添加量大,细度小,粘度大,则保水率高。其中添加量对保水率影响最大,粘度的高 低与保水率的高低不成正比关系。溶解速度主要取决于纤维素颗粒表面改性程度和颗粒细度。在以上几种纤维素醚中,甲基纤维素和羟丙基甲基纤维素保水率较高。 (3)温度的变化会严重影响甲基纤维素的保水率。一般温度越高,保水性越差。如果砂浆温度超过40℃,甲基纤维素的保水性会明显变差,严重影响砂浆的施工性。 (4)甲基纤维素对砂浆的施工性和粘着性有明显影响。这里的“粘着性”是指工人涂抹工具与墙体基材之间感到的粘着力,即砂浆的剪切阻力。粘着性大,砂浆的剪切阻力大,工人在使用过程中所需要的力量也大,砂浆的施工性就差。在纤维素醚产品中甲基纤维素粘着力处于中等水平。 2、羟丙基甲基纤维素(HPMC)分子式为 羟丙基甲基纤维素是近年来产量、用量都在迅速增加的纤维素品种。是由精制棉经碱化处理后,用环氧丙烷和氯甲烷作为醚化剂,通过一系列反应而制成的非离子型纤维素混合醚。取代度一般为 1.2~2.0。其性质受甲氧基含量和羟丙基含量的比例不同,而有差别。 (1)羟丙基甲基纤维素易溶于冷水,热水溶解会遇到困难。但它在热水中的凝胶化温度要明显高于甲基纤维素。在冷水中的溶解情况,较甲基纤维素也有大的改善。 (2)羟丙基甲基纤维素的粘度与其分子量的大小有关,分子量大则粘度高。温度同样会影响其粘度,温度升高,粘度下降。但其粘度高温度的影响比甲基纤维素低。其溶液在室温下储存是稳定的。 (3)羟丙基甲基纤维素的保水性取决于其添加量、粘度等,其相同添量下的保水率高于甲基纤维素。 (4)羟丙基甲基纤维素对酸、碱具有稳定性,其水溶液在pH=2~12范围内非常稳定。苛性钠和石灰水,对其性能也没有太大影响,但碱能加快其溶解速度,并对粘度销有提高。羟丙基甲基纤维素对一般盐类具有稳定性,但盐溶液浓度高时,羟丙基甲基纤维素溶液粘度有增高的倾向。

羟乙基纤维素使用方法

羟乙基纤维素在乳胶漆中的使用方法 1. 直接于研磨颜料时加入:此法最简单,且所用时间短。详细步骤如下: (1) 在高应切搅拌器的大桶中加入适当的净化水(一般情况下,乙二醇,湿润剂和成膜剂等均在此时加入) (2) 开始低速不停搅拌并慢慢加入羟乙基纤维素 (3) 继续搅拌至所有颗粒物湿透 (4) 加入防霉剂,PH调节剂等 (5) 搅拌至所有羟乙基纤维素完全溶解(溶液粘度明显增加)才加入配方中其他组份,研磨至成漆为止。 2. 配备母液候用:此法是先配备浓度较高的母液,然后加入乳胶漆中,此法的优点是有较大的灵活性,可以直接加入漆成品中,但须适当贮存。步骤与方法与方法1中的(1)-(4)步相似,不同之处是无须高应切搅拌器,只用一些功率足够使羟乙基纤维保持在溶液中均匀分散的搅伴器即可。继续不停搅拌至完全溶解成粘稠溶液。须注意是:防霉剂必须尽早加入母液中。 3. 配成粥状物候用:由于有机溶剂对羟乙基纤维素来说是不良溶剂,因此可用这些有机溶剂来配备粥状物。最常用的有机溶剂如乙二醇,丙二醇,和成膜剂(如已二醇或二乙二醇丁基醋酸酯),冰水亦是不良溶剂,故冰水也常与有机液体一起,用于配备粥状物。 粥状的羟乙基纤维素可直接加于漆中。在粥状时羟乙基纤维素已充份被泡涨。当加漆中后,便马上溶解,并起增稠作用。加入后仍须不断搅拌直至羟乙基纤维素完全溶解、均匀为止。一般粥状物是用六份有机溶剂或冰水与一份羟乙基纤维素混合成,约5-30分钟后,羟乙基纤维素便水解并明显地发涨。夏季时一般水的湿度太高,不宜用于配备粥状物。 4 配备羟乙基纤维素母液时所须注意事项 由于羟乙基纤维素是经过处理的粉粒状物,只要注意下列事项,则很容易操作并使之溶于水中。 1 在加入羟乙基纤维素前和后,均必须不停搅拌,直至溶液完全透明澄清为止。 2 必须慢慢筛入搅拌桶内,切勿大批或把已结成块状和球状的羟乙基纤维素直接加入搅拌桶内。 3 水温和水中的pH值对羟乙基纤维素的溶解有明显关系,须特别注意。 4 不要在羟乙基纤维素粉末被水湿透前加入一些碱性物质于混合物中。在湿透后才提高pH 值则有助于溶解。 5 尽可能范围内,提早加入防霉剂。 6 使用高粘度型号羟乙基纤维素时,母液浓度不可高于2.5-3%(重量计),否则母液难于操作。 影响乳胶漆粘度的因素 1 残留在漆中空气小泡的含量越多,粘度越高。 2 漆配方中表面活化剂的用量和水之用量是否洽当。 3 在合成胶乳时,残留的催化剂等氧化物含量之多寡。 4 漆配方中其他天然增稠剂的用量及与羟乙基纤维素的用量比例。) 5 在制漆过程中,加入增稠剂的步骤次序是否适当。 6 因搅拌过度以至在分散时湿度过热。 7 微生物对增稠剂的侵蚀。

常识积累:纤维素的制法及作用

常识积累:纤维素的制法及作用 纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上。棉花的纤维素含量接近100%,为天然的最纯纤维素来源。一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。 纤维素是植物细胞壁的主要结构成分,通常与半纤维素、果胶和木质素结合在一起,其结合方式和程度对植物源食品的质地影响很大。而植物在成熟和后熟时质地的变化则由果胶物质发生变化引起的。人体消化道内不存在纤维素酶,纤维素是一种重要的膳食纤维。 一、纤维素的制法 生产方法一:纤维素是世界上蕴藏量最丰富的天然高分子化合物,生产原料来源于木材、棉花、棉短绒、麦草、稻草、芦苇、麻、桑皮、楮皮和甘蔗渣等。我国由于森林资源不足,纤维素的原料有70%来源于非木材资源。我国针叶材、阔叶材的纤维素平均含量约43-45%;草类茎秆的纤维素平均含量在40%左右。纤维素的工业制法是用亚硫酸盐溶液或碱溶液蒸煮植物原料,主要是除去木素,分别称为亚硫酸盐法和碱法。得到的物料称为亚硫酸盐浆和碱法浆。然后经过漂白进一步除去残留木素,所得漂白浆可用于造纸。再进一步除去半纤维素,就可用作纤维素衍生物的原料。

生产方法二:用纤维植物原料与无机酸捣成浆状,制成α-纤维素,再经处理使纤维素作部分解聚,然后再除去非结晶部分并提纯而得。 生产方法三:将选好的工业木浆板疏解,然后送入已加1%~10%的盐酸(用量为5%~10%)的反应釜进行升温水解,温度为90~100℃,水解时间0.5~2h,反应结束后经冷却送人中和槽,用液碱调至中性,过滤后滤饼在80~100℃下干燥,最后经粉碎得产品。 生产方法四:由木浆或棉花浆制成的纤维素。经漂白处理和机械分散后精制而成。 二、纤维素的作用 纤维素是地球上最古老、最丰富的天然高分子,是取之不尽用之不竭的,人类最宝贵的天然可再生资源。纤维素化学与工业始于一百六十多年前,是高分子化学诞生及发展时期的主要研究对象,纤维素及其衍生物的研究成果为高分子物理及化学学科的创立、发展和丰富作出了重大贡献。 (一)生理作用 人体内没有β-糖苷酶,不能对纤维素进行分解与利用,但纤维素却具有吸附大量水分,增加粪便量,促进肠蠕动,加快粪便的排泄,使致癌物质在肠道内的停留时间缩短,对肠道的不良刺激减少的作用,从而可以预防肠癌发生。

纤维素的大分子结构

第三节棉纤维的结构 棉纤维的结构一般包括大分子结构、超分子结构和形态结构。棉纤维的性能基本上由这些结构所决定。因此,了解棉纤维结构可为检验棉花品质提供理论基础。 一、棉纤维的大分子结构 成熟的棉纤维绝大部分由纤维素组成。纤维素是天然高分子化合物,其分子式为(C6H10O5),大分子结构式如图1-3所示。 图1-3 纤维素大分子结构式 纤维素是一种多糖物质,每个纤维大分子都是由n个葡萄糖剩基,彼此以1-4苷键联结而形成的。所以,纤维素大分子的基本链节是葡萄糖剩基,在大分子结构式中为不对称的六环形结构,也称“氧六环”。相邻两个氧六环彼此的位置扭转180°,依靠苷键连成一个重复单元,即大分子单元结构是纤维素双糖,长度为1.03nm,是纤维素大分子结构的恒等周期。纤维素大分子的空间结构,如图1-4所示。 图1-4 纤维素大分子空间结构示意图 纤维素大分子的官能团是羟基和苷链。羟基是亲水性基团,使棉纤维具有一定的吸湿能力;而苷键对酸敏感,所以棉纤维比较耐碱而不耐酸。此外,纤维素大分子中氧六环之间距离较短,大分子之间羟基的作用又较多,所以纤维素大分子的柔曲性较差,是属于较僵硬的线型大分子,棉纤维表现为比较刚硬,初始模量较高,回弹性质有限。 二、棉纤维的超分子结构 超分子结构是指大于分子范围的结构,又称“聚焦态结构”。 (一)大分子间的结合力 棉纤维中大分子之间是依靠分子引力(又称“范德华力”)和氢键结合的。 1.分子引力 分子引力是永远存在分子间的一种作用力,是由偶极分子之间的静电引力、相邻分子之间诱导电动势引起的诱导力以及相邻原子上电子云旋转引起瞬间偶极矩产生的色散力综合组成。它的强度比共价键的强度小得多,而且与分子间的距离有关,作用距离约为0.3-0.5nm,当分子间距离大于0.5nm时,这种作用力可忽略不计。 2.氢键 氢键是大分子侧基上(或部分主链上)极性基团之间的静电引力。它的结合力略大于分子引力,在作用距离约0.23-0.32nm条件下能使相邻分子较稳定地结合。 (二)结晶态和非结晶态 纤维中大分子的排列是比较复杂的,一般存在两种状态,即某些局部区域呈结晶态,另一些局部区域呈非结晶态。纤维中大分子在规律地整齐排列的状态都叫“结晶态”,纤维中呈现结晶态的区域叫“结晶区”。在纤维的结晶区中,由于大分子排列比较整齐密实,缝隙孔洞较少,分子之间互相接近的各个基团的结合力互相饱和,因而纤维的吸湿较困难,强度较高,变形较小。棉纤维结晶区内结晶结构的最小单元,即单元晶格是由五个平行排列的纤维素大分子在两个氧六环链节长的一段上组成,中间的一个大分子与棱边的四个大分子是倒向的。不同种类的纤维素纤维其晶胞尺寸是不相同的。棉纤维和麻纤维单元晶格的尺寸为a=0.835nm,b=1.03nm,c=0.795nm,?=84°,称为“纤维素Ⅰ晶胞”,如图1-5所示。粘胶

羟乙基纤维素(Hydroxyethyl-cellulose)-SDS

1、化学产品和企业标识 中文名:羟乙基纤维素 英文名:Hydroxyethyl cellulose 分子式: CAS号:9004-62-0 RTECS号:FJ5958000 UN编号: 危险货物编号: IMDG规则页码: 2、危险标识 GHS分类:不被分类 GHS标签要素: 符号:无符号 警示词:无警示词 危害说明: 物理危害:按照GHS标准,未被归类为有害物质; 健康危害:按照GHS标准,未被归类为有害物质; 环境危害:按照GHS标准,未被归类为有害物质。 GHS预防措施说明: 预防措施:无预防用语; 事故相应:无预防用语; 储存:无预防用语; 废弃处理:无预防用语。 不影响分类的其他危害:粉体和空气可形成爆炸性混合物。遇明火、高热能引起燃烧。 3、主要组成 物质/制剂:羟乙基纤维素 CAS号:9004-62-0

4、急救措施 皮肤接触:用肥皂水及清水彻底冲洗。就医。 眼睛接触:拉开眼睑,用流动清水冲洗15分钟。就医。 吸入:脱离现场至空气新鲜处。就医。 食入:误服者,饮适量温水,催吐。就医。 5、燃爆性和消防措施 避免接触的条件: 燃烧性:可燃。最大爆炸压力上升速率/100kPa:9.5 建规火险分级: 闪点(℃): 自燃温度(℃):360(粉尘云) 爆炸下限(V%): 爆炸上限(V%): 燃烧(分解)产物:一氧化碳、二氧化碳。 灭火方法:雾状水、抗溶性泡沫、二氧化碳、干粉。 6、泄漏应急处理 泄漏处置:隔离泄漏污染区,周围设警告标志,建议应急处理人员戴好口罩、护目镜,穿工作服。用大量水冲洗,经稀释的污水放入废水系统。如大量泄漏,收集回收或无害处理后废弃。 7、搬运和储存 储运注意事项:储存于阴凉、通风仓间内。远离火种、热源。保持容器密封。防止阳光曝晒。应和氧化剂分开存放。搬运时要轻装轻卸,防止包装及容器损坏。 工程控制:提供良好的自然通风条件。 8、防护措施 呼吸系统防护:一般不需特殊防护。 眼睛防护:高浓度环境中,戴安全防护眼镜。 防护服:穿工作服。 手防护:必要时戴防护手套。 其他:工作后,淋浴更衣。注意个人清洁卫生。

相关主题
文本预览
相关文档 最新文档