当前位置:文档之家› 灰度图像处理及颜色模型转换

灰度图像处理及颜色模型转换

灰度图像处理及颜色模型转换
灰度图像处理及颜色模型转换

灰度图像处理程序代码代码

1.二值图像

function erzhi_Callback(hObject, eventdata, handles)

% hObject handle to erzhi (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2);

x=(handles.img);

if isrgb(x)

msgbox('这是彩色图像,不能转换为二值图像','转换失败');

else

j=im2bw(x);

imshow(j);

end

2.图像腐蚀

function fushi_Callback(hObject, eventdata, handles)

% hObject handle to fushi (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2);

x=(handles.img);

if isrgb(x)

msgbox('这是彩色图像,不能进行图像腐蚀','失败');

else

j=im2bw(x);

se=eye(5);

bw=bwmorph(j,'erode');

imshow(bw);

3.创建索引图像

function chuanjian_Callback(hObject, eventdata, handles)

% hObject handle to chuanjian (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2);

x=(handles.img);

if isrgb(x)

msgbox('这是彩色图像,不能创建索引图像','创建失败');

else

y=grayslice(x,16);

axes(handles.axes2);

imshow(y,jet(16));

end

4.轮廓图

颜色模型的转换程序代码

1.RGB转HSV

function hsv_Callback(hObject, eventdata, handles)

% hObject handle to hsv (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2);

x=(handles.img);

if isrgb(x)

HSV=rgb2hsv(x);

imshow(HSV);

else

msgbox('这是灰度图像,不能转换','转换失败');

end

2.RGB转NTSC

function ntsc_Callback(hObject, eventdata, handles)

% hObject handle to ntsc (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2);

x=(handles.img);

if isrgb(x)

ntsc=rgb2ntsc(x);

imshow(ntsc);

else

msgbox('这是灰度图像,不能转换','转换失败');

end

3.RGB转YCBCR

function ycbcr_Callback(hObject, eventdata, handles)

% hObject handle to ycbcr (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2);

x=(handles.img);

if isrgb(x)

ycbcr=rgb2ycbcr(x);

imshow(ycbcr);

else

msgbox('这是灰度图像,不能转换','转换失败');

end

(整理)matlab图像类型与彩色模型的转换.

第六讲图像类型与 彩色模型的转换 【目录】 一、图像类型的转换 (1) 1、真彩图像→索引图像 (3) 2、索引图像→真彩图像 (3) 3、真彩图像→灰度图像 (4) 4、真彩图像→二值图像 (4) 5、索引图像→灰度图像 (5) 6、灰度图像→索引图像 (6) 7、灰度图像→二值图像 (7) 8、索引图像→二值图像 (8) 9、数据矩阵→灰度图像 (9) 二、彩色模型的转换 (9) 1、图像的彩色模型 (10) 2、彩色转换函数 (10) 三、纹理映射 (13) 【正文】 一、图像类型的转换

1、真彩图像→索引图像 【格式】X =d i t h e r (R G B ,m a p ) 【说明】按指定的颜色表m a p 通过颜色抖动实现转换 【输入】R G B 可以是d o u b l e 或u i n t 8类型 【输出】X 超过256色则为d o u b l e 类型,否则输出为u i n t 8型 【例】 C L F ,R G B =i m r e a d ('f l o w e r s .t i f '); 100 200 300 400 500 50100150200250300350 100 200 300 400 500 50100150200250300350 【输出】R G B 为d o u b l e 类型 【例】 C L F ,l o a d t r e e s ; R G B =i n d 2r g b (X ,m a p ); s u b p l o t (1,2,1);s u b i m a g e (X ,m a p );t i t l e ('索引图') s u b p l o t (1,2,2);s u b i m a g e (R G B );t i t l e ('真彩图')

图像灰度变换实验报告

图像灰度变换报告 一.实验目的 1.学会使用Matlab ; 2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响; 二.实验内容 1.熟悉Matlab 中的一些常用处理函数 读取图像:img=imread('filename'); //支持TIF,JPEG,GIF,BMP,PNG 等文件格式。 显示图像:imshow(img,G); //G 表示显示该图像的灰度级数,如省略则默认为256。 保存图片:imwrite(img,'filename'); //不支持GIF 格式,其他与imread 相同。 亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in 至high_in 之间的值映射到low_out 至high_out 之 间,low_in 以下及high_in 以上归零。 绘制直方图:imhist(img); 直方图均衡化:histeq(img,newlevel); //newlevel 表示输出图像指定的灰度级数。 2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。 3 .产生灰度变换函数T1,使得: 0.3r r < 0.35 s = 0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.65 1 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。 4.产生灰度变换函数T2,使得: s = 5.用T2imwrite 保存处理后的新图像。 6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。 7.对circuit.jpg 图像实施反变换(Negative Transformation )。s =1-r; 使

灰度图像处理及颜色模型转换

灰度图像处理程序代码代码 1.二值图像 function erzhi_Callback(hObject, eventdata, handles) % hObject handle to erzhi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能转换为二值图像','转换失败'); else j=im2bw(x); imshow(j); end 2.图像腐蚀 function fushi_Callback(hObject, eventdata, handles) % hObject handle to fushi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能进行图像腐蚀','失败'); else j=im2bw(x); se=eye(5); bw=bwmorph(j,'erode'); imshow(bw); 3.创建索引图像 function chuanjian_Callback(hObject, eventdata, handles) % hObject handle to chuanjian (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能创建索引图像','创建失败'); else y=grayslice(x,16); axes(handles.axes2); imshow(y,jet(16)); end 4.轮廓图

matlab图像处理图像灰度变换直方图变换

附录1 课程实验报告格式 每个实验项目包括:1)设计思路,2)程序代码,3)实验结果,4)实验中出现的问题及解决方法。 实验一:直方图灰度变换 A:读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。 imread('rice.tif'); imshow('rice.tif'),title('rice.tif'); improfile,title('主对角线上灰度值')

B:读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布imread('flowers.tif'); imshow('flowers.tif'),title('flowers.tif'); improfile,title('主对角线红绿蓝分量') C:图像灰度变化 f=imread('rice.png'); imhist(f,256); %显示其直方图 g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1] g2=imadjust(f,[0.5 0.75],[0 1]); figure,imshow(g2) 图像灰度变换处理实例: g=imread('me.jpg'); imshow(g),title('原始图片'); h=log(1+double(g)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h转换为灰度图片

h=im2uint8(h); %将灰度图转换为8位图 imshow(h),title('转换后的8位图'); 运行后的结果: 实验二:直方图变换 A:直方图显示 I=imread('cameraman.tif'); %读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题运行结果如下:

图像空域增强算法设计——灰度变换增强

成绩评定表

课程设计任务书

摘要 空域增强在数字图像处理中起到对图像灰度的拉伸、压缩变换的作用,目前这种方法在处理图像灰度值方面得到广泛的运用。MATLAB这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以利用MATLAB软件来对图像进行空域增强在数字图像处理的应用中具有很大的优势。 图像变换增强是利用一系列的变换方法使图像的对比度得到提升,也就达到了增强图像的目的--更便于观察,更容易区分不同灰度的图像。根据函数的性质,灰度变换的方法有线性灰度变换、分段线性灰度变换、非线性灰度变换。对于灰度局限在某一个很小范围内的数字图像,如果用线性函数对图像的每一个像素进行线性扩展,扩大像素的对比度,将有效地改善视觉效果。本文利用MATLAB软件对灰度图像分别进行了线性灰度变换增强,非线性灰度增强和分段线性灰度增强,达到了提高图像对比度,增强图像效果的目的,证明了图像变换增强在数字图像处理中的重要作用。 关键词:MATLAB;灰度图像;线性变换;非线性变换

目录 1设计目的 (1) 2设计方案 (1) 2.1 灰度变换增强的概念 (1) 2.2 灰度变换增强流程 (2) 3设计内容 (3) 3. 1 线性灰度变换的概述 (3) 3. 2 分段线性灰度变换的概述 (3) 3. 3非线性灰度变换的概述 (4) 4程序代码设计 (5) 4.1线性灰度变换增强 (5) 4.1.1线性变换增强流程 (5) 4.1.2线性变换增强设计 (5) 4.2分段线性灰度变换程序代码 (6) 4.2.1分段线性变换增强流程 (6) 4.2.2分段线性变换增强设计 (6) 4.3非线性灰度变换程序代码 (8) 4.3.1非线性变换增强流程 (8) 4.3.2非线性变换增强设计 (8) 5仿真结果与分析 (10) 5.1线性灰度变换仿真结果 (10) 5.2分段线性灰度变换仿真结果 (11) 5.3非线性灰度变换仿真结果 (12) 5.4结果分析 (12) 结论 (14) 参考文献 (15)

数字图像处理实验二 图像灰度变换

实验二 图像灰度变换实验一、 实验目的熟悉亮度变换函数的使用熟悉灰度图像的直方图的表示;掌握图像增强的基本方法:灰度变换、直方图均衡;二、实验内容灰度线性变换、灰度直方图、直方图均衡处理;灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。三、实验原理1.函数imadjust 函数imadjust 是对灰度图像进行亮度变换的基本命令,语法为: g = imadjust(f, [low_in high_in], [low_out high_out], gamma) 将图像f 中的亮度值(灰度值)映射到新图像g 中,即将low_in 至high_in 之间的值映射到low_out 至high_out 之间的值。low_in 以下的灰度值映射为low_out ,high_in 以上的灰度值映射为high_out ,函数imadjust 的矩阵[ ]内参数均指定在0和1之间,[low_in high_in]和[low_out high_out]使用空矩阵[ ]会得到默认值[0 1]。若high_out 小于low_out ,则输出图像会反转。 参数gamma 指定了曲线(变换函数)的形状,若gamma 小于1,则映射被加权至更高(更亮)的输出值;若gamma 大于1,则映射被加权至更低(更暗)的输出值。若省略了函数的参量gamma ,则gamma 默认为1——即线性映 射。 >>f = imread(‘filename’)>>imshow(f)>>g1 = imadjust(f, [0 1], [1 0]); %图像反转>>figure, imshow(g1) %figure 命令表示同时显示多个窗口 >>g2 = imadjust(f, [0.5 0.75], [0 1]); %将0.5至0.75之间的灰度级扩展到范围0和1之间 >>figure, imshow(g2) >>g3 = imadjust(f, [ ], [ ], 2) %使用gamma 值 >>figure, imshow(g3)

数字灰度图像的基本运算处理 正文讲解

1前言 介绍一种用可视化数值计算软件MATLAB实现的数字图像处理系统平台,系统使用MATLAB中提供的GUI设计系统可视化的用户界面,下拉式的菜单方便用户选择对图像的处理。用户可以随意选择要处理的图片。但是该系统只支持灰度图片,可实现内容主要包括灰度图像的代数运算、几何运算。基于数字图像处理的一些基本原理,利用MATLAB 设计程序进行对灰度图像的处理。有部分处理运算有很多种方法,我选择了最简单、最明了的方法。 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。二维图像进行均匀采样,就可以得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的了。 随着计算机的发展,图像处理技术在许多领域得到了广泛应用,用于图像处理的软件也很多,如PHOTOSHOP、PAINTSHOP、GIMP、SaperaProcessing、MATLAB等,其中大部分软件都是基于广告策划和图像修饰处理而设计的应用软件,进行图像处理时并不是很方便。而MATLAB(矩阵实验室) 它在矩阵运算上有自己独特的特点,在矩阵运算处理具有很大的优势,因此用MATLAB处理数字图像非常的方便。不仅如此,MATLAB提供了丰富的图形命令和图形函数,而且其面向对象的图形系统具有强大的用户界面(GUI)生成能力。这样,用户就可以充分利用系统提供的 GUI 特性,编写自己需要的图形界面,从而可以高效地进行图像处理。 MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像文件格式的读,写和显示。MATLAB对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以对图像进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作。

实验一Matlab图像处理基础及图像灰度变换

实验一Matlab图像处理基础及图像灰度变换 一、实验目的 了解Matlab平台下的图像编程环境,熟悉Matlab中的DIP (Digital Image Processing)工具箱;掌握Matlab中图像的表示方法,图像类型、数据类型的种类及各自的特点,并知道怎样在它们之间进行转换。掌握Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。 二、实验内容 1.从硬盘中读取一幅灰度图像; 2.显示图像信息,查看图像格式、大小、位深等内容; 3.用灰度面积法编写求图像方图的Matlab程序,并画图; 4.把第3步的结果与直接用Matlab工具箱中函数histogram的结果进行比较,以衡量第3步中程序的正确性。 5.对读入的图像进行直方图均衡化,画出处理后的直方图,并比较处理前后图像效果的变化。 三、知识要点 1.Matlab6.5支持的图像图形格式 TIFF, JEPG, GIF, BMP, PNG, XWD (X Window Dump),其中GIF不支持写。 2.与图像处理相关的最基本函数 读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo; 3.Matlab6.5支持的数据类 double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical. 4.Matlab6.5支持的图像类型 Intensity images, binary images, indexed images, RGB image 5.数据类及图像类型间的基本转换函数 数据类转换:B = data_class_name(A);

数字图像的灰度处理简述

数字图像的灰度处理 数字图像处理的目的和意义: 图象处理着重强调的是在图象之间进行的各种变换,对图象进行各种加工以改善图象的视觉效果。在图象的灰度处理中,增强操作、直方图及图象间的变换是实现点操作的增强方式,又被称作灰度变换。本文主要介绍了一些数字图像灰度处理的方法,其中图象取反是实现图象灰度值翻转的最直接的方法;灰度切分可实现强化某一灰度值的目的。对直方图进行均衡化修正,可使图象的灰度间距增大或灰度均匀分布、增大反差,使图象的细节变得清晰。 数字图像处理是20世纪60年代初期所形成的一门涉及多领域的交叉学科。所谓数字图像处理,又称为计算机图像处理,就是指用数字计算机及其它有关的数字硬件技术,对图像施加某种应算和处理,从而达到某种预期的目的。在大多数情况下,计算机采用离散的技术来处理来自连续世界的图像。实际上图像是连续的,计算机只能处理离散的数字图像,所以要要对连续图像经过采样和量化以获得离散的数字图像。 数字图像处理中图像增强的目的是改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。其方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制图像中某些不需要的特征,使图像与视觉响应特性相匹配。而通过改变图像的灰度以期达到一种很好的视觉效果是图像增强的一种手段。灰度变换的目的是为了改善画质,使图像显示效果更加清晰。 图像的点应算是一种既简单又重要的技术,它能让用户改变图像数据占据的灰度范围。一幅输入图像经过点应算后将产生一幅新的输出图像,由输入像素点的灰度值决定相应的输出像素点的灰度值。图像的点应算可以有效的改变图像的直方图分布,以提高图像的分辨率和图像的均衡。点应算可以按照预定的方式改变一幅图像的灰度直方图。除了灰度级的改变是根据某种特定的灰度变换函数进行之外,点应算可以看作是“从像素到像素”的复制操作。如果输入图像为A(x,y),

实验三 图像增强--灰度变换

实验三图像增强—灰度变换 一、实验目的: 1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。 2、学会对图像直方图的分析。 3、掌握直接灰度变换的图像增强方法。 二、实验原理及知识点 术语‘空间域’指的是图像平面本身,在空间域内处理图像的方法是直接对图像的像素进行处理。空间域处理方法分为两种:灰度级变换、空间滤波。空间域技术直接对像素进行操作其表达式为: g(x,y)=T[f(x,y)] 其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定领域内。 定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域。此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的领域。T应用于每个位置(x,y),以便在该位置得到输出图像g。在计算(x,y)处的g值时,只使用该领域的像素。 灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f在该点处的亮度决定,T也变为一个亮度或灰度级变化函数。当处理单设(灰度)图像时,这两个术语可以互换。由于亮度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式: s=T(r) 其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。 核心函数是imhist,其基本语法为: h=imhist(f,b) 其中,f为输入图像,h为其直方图h(),b是用于形成直方图像的灰度级的个数。如果b未包含在此变量中,则默认值为256.如要处理一幅uint8

RGB与YUV、YIQ、YCbCr、HSI、CMY的模型互化(基于matlab)

2013-2014学年第二学期图像通信课程设计报告设计题目:图像的各种颜色空间转换

摘要 所谓三基色原理,是指自然界常见的各种颜色光都可由红、绿、蓝三种色光按照不同比例相配而成。同样,绝大多数颜色也可以分解成红、绿、蓝三种色光。这就是色度学中的最基本的原理。 彩色模型的用途是在某些标准下用通常课接受的方式简化彩色规范。常常涉及到用几种不同的彩色空间表示图形和图像的颜色,以应对不同的场合和应用。因此,在数字图像的生成、存储、处理及显示时,对应不同的彩色空间,需要作不同的处理和转换。现在主要的彩色模型有RGB模型、CMY模型、YUV模型、YIQ 模型、YcbCr模型、HSI模型等。本设计主要使用MATLAB编程的方法,实现RGB与其余四种模型之间的互化。即使用不同的色彩模型表示同一图形或图像。通过转换实现色彩模型的变换之后,可以让同一幅图像以各种模式在全球范围内流通,所以本设计具有一定的实际意义。一般的图像原始都为RGB—加色混合色彩模型,它与剩下的几个色彩模型之间存在着函数对应关系,通过矩阵运算改变模型的参数就可以实现不同色彩模型之间的相互转换。例如CMY—减色混合色彩模型,就是利用青色、深红色、黄色这三种彩色按照一定比例来产生想要的 彩色,CMY是RGB三基色的补色,它与RGB存在如下关系:C M Y = 1 1 1 - R G B , 使用MATLAB编程时,读入三个通道的数值,按照对应关系进行矩阵变换就可以转换成CMY色彩模型。其他色彩模型转换原理与此相似。 关键词:MATLAB,RGB、YUV、YIQ、YCbCr、HSI、色彩模型

一、设计任务、目的和要求 任务:实现RGB模型、CMY模型、YUV模型、YIQ模型、YcbCr模型、HSI 模型这几种不同色彩模型之间的相互转换 要求:最终结果用图像显示 二、总体方案设计 系统运行环境:WINDOWS 7操作系统 编程软件平台:MATLAB2012b 编码算法原理:将原图的三基色数值读入,根据不同色彩模型之间的相互关系,通过矩阵运算改变不同的亮度和色度等信息来实现色彩模型的转换,然后将变换后的图像导出 流程图: 三、设计实现

用matlab实现图像灰度变换课程设计

课程设计报告册 课程名称: MATLAB课程设计 课题名称:灰度变换增强 专业班级: 姓名: Bob Wang 学号: 15164 课程设计主要场所:信息楼220 时间: 指导教师:成绩:

前言 数字图像处理技术是20世界60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或变成以完成各自的计算。MATLAB中集成了功能强大的图像处理工具箱。由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。 MATLAB是一种以矩阵运算为基础的交互式程序语言,能够满足科学、工程计算和绘图的要求,与其它计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。我们学习掌握MATLAB,也可以说是在科学工具上与国际接轨。

目录 一、课程设计目的 (2) 二、设计任务及容 (2) 三、课题设计实验条件 (3) 四、涉及知识 (3) 五、具体设计过程及调试 (4) 5.1、图像的读入和显示 5.1.1、打开图像 (4) 5.1.2、显示原图像 (5) 5.1.3、图像灰度处理 (7) 5.1.4、显示灰阶后图像 (8) 5.2、直方图均衡化 5.2.1、生成直方图 (10) 5.2.2、直方图均衡化 (12) 5.3、灰度变换 5.3.1、线性变换 (9) 5.3.2、分段线性变换 (9) 5.3.3、非线性变换.................................... (9) 六、心得体会 (17) 七、参考文献 (18) 八、程序清单 (19)

图像灰度变换增强

图像灰度变换增强 摘要:灰度变换是基于点操作的增强方法,它将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值,如增强处理中的对比度增强。对比度增强可以采用线性拉伸和非线性拉伸。线性拉伸可以将原始输入图像中的灰度值不加区别地扩展。如果要求对局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理时,采用分段线性拉伸。非线性拉伸常采用对数扩展和指数扩展。对数扩展拉伸低亮度去,压缩高亮度区;指数扩展拉伸了高亮区,压缩了低亮度区。 关键词:图像增强,灰度变换,线性变换,分段线性变换,非线性变换 一. 概述 影响系统图像清晰程度的因素很多,例如室外光照度不够均匀就会造成图像灰度过于集中;由CCD (摄像头)获得的图像经过A/D (数/模转换,该功能在图像系统中由数字采集卡来实现)转换、线路传送都会产生噪声污染等等。因此图像质量不可避免的降低了,轻者表现为图像不干净,难于看清细节;重者表现为图像模糊不清,连概貌也看不出来。因此,在对图像进行分析之前,必须要对图像质量进行改善,一般情况下改善的方法有两类:图像增强和图像复原。图像增强不考虑图像质量下降的原因,只将图像中感兴趣的特征有选择的突出,而衰减不需要的特征,它的目的主要是提高图像的可懂度。图像复原技术与增强技术不同,它需要了解图像质量下降的原因,首先要建立"降质模型",再利用该模型,恢复原始图像。 根据图像增强处理过程所在的空间不同,图像增强可分为空余增强法和频域增强法两大类。频域增强是在图像的某种变换域内,对图像的变换系数值进行运算,即作某种修正,然后通过逆变换获得增强了的图像。空域增强则是指直接在图像所在的二维空间进行增强处理,既增强构成图像的像素。空域增强法主要有灰度变换增强,直方图增强,图像平滑和图像锐化等。 图像的灰度变换处理是图像增强处理技术中一种非常基础,直接的空间域图像处理法,也是图像数字化软件和图像显示软件的一个重要组成部分。灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。目的是为了改善画质,使图像的显示效果更加清晰。 二. 灰度变换处理 灰度变换的过程可表示为:)],([),(y x f T y x g ,它是指将输入图像中每个像素

各种颜色模型分析

色彩空间介绍 颜色模型是指某个三维颜色空间中的一个可见光子集,它包含某个颜色域的所有颜色。如我们所熟知的三原色光模式.三原色光模式(RGB color model),又称RGB颜色模型或红绿蓝颜色模型,是一种加色模型,将红(Red)、绿(Green)、蓝(Blue)三原色的色光以不同的比例相加,以产生多种多样的色光(如图1所示)。 图1 在大多数的彩色图形显示设备一般都是使用红、绿、蓝三原色,我们的真实感图形学中的主要的颜色模型也是RGB模型,但是红、绿、蓝颜色模型用起来不太方便,它与直观的颜色概念如色调、饱和度和亮度等没有直接的联系。为了更便于颜色的直观表示,一些学者提出了其它的颜色模型,如HSV、HSI、CHL、LAB、CMY等。 RGB颜色模型 RGB(Red,Green,Blue)颜色模型通常使用于彩色阴极射线管等彩色光栅图形显示设备中,彩色光栅图形的显示器都使用R、G、B数值来驱动R、G、B电子枪发射电子,并分别激发荧光屏上的R、G、B三种颜色的荧光粉发出不同亮度的光线,并通过相加混合产生各种颜色。RGB颜色模型称为与设备相关的颜色模型,RGB颜色模型所覆盖的颜色域取决于显示设备荧光点的颜色特性,是与硬件相关的。它是我们使用最多,最熟悉的颜色模型。它采用三维直角坐标系。红、绿、蓝原色是加性原色,各个原色混合在一起可以产生复合色。RGB颜色模型通常采用如图2所示的单位立方体来表示。在正方体的主对角线上,各原色的强度相等,产生由暗到明的白色,也就是不同的灰度值。目前在计算机硬件中采取每一象素用24比特表示的方法,(0,0,0)为黑色,(255,255,255)为白色。正方体的其他六个角点分别为红、黄、绿、青、蓝和品红。

图像处理灰度变换实验

一. 实验名称:空间图像增强(一) 一.实验目的 1.熟悉和掌握利用matlab工具进行数字图像的读、写、显示、像素处理等数字图像处理的基本步骤和流程。 2.熟练掌握各种空间域图像增强的基本原理及方法。 3.熟悉通过灰度变换方式进行图像增强的基本原理、方法和实现。 4.熟悉直方图均衡化的基本原理、方法和实现。 二.实验原理 (一)数字图像的灰度变换 灰度变换是图像增强的一种经典而有效的方法。灰度变换的原理是将图像的每一个像素的灰度值通过一个函数,对应到另一个灰度值上去从而实现灰度的变换。常见的灰度变换有线性灰度变换和非线性灰度变换,其中非线性灰度变换包括对数变换和幂律(伽马)变换等。 1、线性灰度变换 1)当图像成像过程曝光不足或过度,或由于成像设备的非线性和图像记录设备动态范围太窄等因素,都会产生对比度不足的弊病,使图像中的细节分辨不清,图像缺少层次。这时,可将灰度范围进行线性的扩展或压缩,这种处理过程被称为图像的线性灰度变换。对灰度图像进行线性灰度变换能将输入图像的灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。 2)令原图像f(x,y)的灰度范围为[a,b],线性变换后得到图像g(x,y),其灰度范围为[c,d],则线性灰度变换公式可表示为

a y x f b y x f a b y x f c c a y x f a b c d d y x g <≤≤>?????+---=),(),(),(, ,]),([,),( (1) 由(1)式可知,对于介于原图像f (x,y )的最大和最小灰度值之间的灰度值,可通过线性变换公式,一一对应到灰度范围[c,d]之间,其斜率为(d-c)/(b-a);对于小于原图像的最小灰度值或大于原图像的最大灰度值的灰度值,令其分别恒等于变换后的最小和最大灰度值。变换示意图如图1所示。 图1 线性灰度变换示意图 当斜率大于一时,变换后的灰度值范围得到拉伸,图像对比度得到提高;当斜率小于一时,变换后的灰度值范围被压缩,最小与最大灰度值的差变小,图像对比度降低;当斜率等于一时,相当于对图像不做变换。 3)由上述性质可知,线性灰度变换能选择性地加强或降低特定灰度值范围内的对比度,故线性灰度变换同样也可做分段处理:对于有价值的灰度范围,将斜率调整为大于一,用于图像细节;对于不重要的灰度范围,将图像压缩,降低对比度,减轻无用信息的干扰。最常用的分段线性变换的方法是分三段进行线性变换。 在原图像灰度值的最大值和最小值之间设置两个拐点,在拐点处,原图像的灰度值分别为r 1,r 2,该拐点对应的变换后的图像的灰度值分别为s 1,s 2,另外,取原图像灰度的最小值为r 0,最大值为r m ,对应的变换后的灰度值分别为s 0,s m 。

Lab颜色模型

Lab颜色模型 Lab颜色模型是有国际照明委员会(CIE)于1976年公布的一种颜色模型,Lab 颜色模型弥补了RGB和CMYK两种色彩模式的不足。Lab颜色模型由三个要素组成,一个要素是亮度(L),a 和b是两个颜色通道。a包括的颜色是从深绿色(低亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);b是从亮蓝色(底亮度值)到灰色(中亮度值)再到黄色(高亮度值)。因此,这种颜色混合后将产生具有明亮效果的色彩。 4. Lab色彩模式 Lab色彩模式由光度分量(L)和两个色度分量组成,这两个分量即a分量(从绿到红)和b分量(从蓝到黄),如图8所示。Lab色彩模式与设备无关,不管使用什么设备(如显示器、打印机或扫描仪)创建或输出图像,这种色彩模式产生的颜色都保持一致。 A.光度=100(白)B.绿到红分量 C.蓝到黄分量D.光度=0(黑) 图2-11 Lab色彩模式通常用于处理Photo CD(照片光盘)图像、单独编辑图像中的亮度和颜色值、在不同系统间转移图像以及打印到PostScript(R)Level 2和Level 3打印机。色彩模式 在进行图形图像处理时,色彩模式以建立好的描述和重现色彩的模型为基础,每一种模式都有它自己的特点和适用范围,用户可以按照制作要求来确定色彩模式,并且可以根据需要在不同的色彩模式之间转换。下面,介绍一些常用的色彩模式的概念。 1. RGB色彩模式 自然界中绝大部分的可见光谱可以用红、绿和蓝三色光按不同比例和强度的混合来表示。RGB分别代表着3种颜色:R代表红色,G代表绿色、B代表蓝色。RGB模型也称为加色模型,如图5所示。RGB模型通常用于光照、视频和屏幕图像编辑。 图5 RGB色彩模式使用RGB模型为图像中每一个像素的RGB分量分配一个0~255范围内 的强度值。例如:纯红色R值为255,G值为0,B值为0;灰色的R、G、B三个值相等(除了0和255);白色的R、G、B都为255;黑色的R、G、B都为0。RGB图像只使用三种颜色,就可以使它们按照不同的比例混合,在屏幕上重现16581375种颜色。 2. CMYK色彩模式 CMYK色彩模式以打印油墨在纸张上的光线吸收特性为基础,图像中每个像素都是由靛青(C)、品红(M)、黄(Y)和黑(K)色按照不同的比例合成。每个像素的每种印刷油墨会被分配一个百分比值,最亮(高光)的颜色分配较低的印刷油墨颜色百分比值,较暗(暗调)的颜色分配较高的百分比值。例如,明亮的红色

基于MATLAB的彩色图像灰度化处理

目录 第1章绪论............................................................................................................................ - 1 - 第2章设计原理.................................................................................................................... - 2 - 第3章彩色图像的灰度化处理............................................................................................ - 3 - 3.1加权平均法 .. (3) 3.2平均值法 (3) 3.3最大值法 (4) 3.4举例对比 (5) 3.5结果分析 (6) 第4章结论.......................................................................................................................... - 8 - 参考文献....................................................................................................... 错误!未定义书签。附录............................................................................................................................................ - 9 -

三种常用的色彩模式

学习重点是三种常用的色彩模式:HSB、RGB、CMYK。 每一种色彩模式对应一种媒介: HSB:对应眼睛视觉细胞对颜色的感受,即我们平常看到的颜色。颜色的三个属性: H:色相——色彩的相貌(名称),色相环是一个环形(360度),以度来表示颜色;S:饱和度——色彩鲜艳程度(纯度); B:明度——色彩明暗的变化。饱和度和明度都按百分比来划分。 纯黑色、白色均无色相属性。 RGB:对应发光媒体(如显示器)。光色的三原色:R——红;G——绿;B——蓝。 每种颜色亮度分为256个级别:0—255,最亮为255,最暗为0(比如灯光,值越大越亮,不开灯则最暗:0)。故显示器可以显示256X256X256种颜色。 举例一些数值配色: R:200 40 255 0 128 G:15 偏红222 偏绿255 白0 黑128 灰(三个数相等,值大点为浅灰,反之深灰)B:30 15 255 0 128 三种光色最大值相加得到白色,称之为加色模式。 CMYK:对应印刷,油墨的浓淡程度用0%—100%来区分。印刷三原色:C:青、M:品(红)、Y黄。 为什么多了个K呢:因为印刷配色工艺上不能得到真正意义上的纯黑,所以印刷用4色,多了一种黑色(blacK)。 举例: C:80% 0% 100% M:2% 偏青 0% 白(相当于一点墨都没印)100% 黑(理论上) Y:15% 0% 100% CMY最大值相加得到黑色,称为减色模式。 实际上印刷黑色时CMY值都为0%,只要K的值为100%即可。 三种模式的应用:HSB,在拾取颜色时就是直观拾取我们眼睛看到的颜色。RGB,比如一个图片要显示在网页上,那应该用RGB。CMYK,如果一幅图最终要印刷出来,工作时仍选用RGB,只需在最后一步存为CMYK即可。 Lab色彩模式 RGB模式是一种发光屏幕的加色模式,CMYK模式是一种颜色反光的印刷减色模式。而Lab模式既不依赖光线,也不依赖于颜料,它是CIE组织确定的一个理论上包括了人眼可以看见的所有色彩的色彩模式。Lab模式弥补了RGB和CMYK两种色彩模式的不足。 Lab模式由三个通道组成,但不是R、G、B通道。它的一个通道是亮度,即L。另外两个是色彩通道,用A和B来表示。A通道包括的颜色是从深绿色(底亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);B通道则是从亮蓝色(底亮度值)到灰色(中亮度值)

数字图像处理考题2012级

数字图像处理: 一、图像工程的内涵(三个层次:图像处理、图像分析和图像理解及其关系)。 图像工程的内涵: 根据抽象程度和研究方法等的不同,可分为三个层次:图像处理、图像分析和图像理解。 图像处理的内容:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。基本特征:输入是图像,输出也是图像,即图像之间进行的变换。显然,这是一种比较严格的图像处理定义,因此也呈现出了某种狭义性。 图像分析的内容:主要对图象中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图象的描述。基本特征:输入是图像,输出是数据(即对输入图像进行描述的信息)。 图像理解的内容:在中级图像处理的基础上,进一步研究图象中各目标的性质和它们之间相互的联系,并得出对图象内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉),从而指导和规划行动。基本特征:以客观世界为中心,借助知识、经验等来把握整个客观世界。“输入是数据,输出是理解”。 三者的关系: 图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图像形式的描述。 图像理解主要是高层操作,基本上是对从描述抽象出来的符号进行运算,其处理过程和方法与人类的思维推理有许多类似之处。 图像的低级处理阶段和高一级的处理阶段是相互关联和有一定重叠性的。根据本课程的任务和目标,重点放在图像处理上,并学习图像分析的基本理论和方法。也就是说本课程中提到的图像处理概念是广义的。 二、观察三幅图的等偏爱曲线,分析:空间分辨率和灰度分辨率同时变化对图像质量的影响

数字图像处理实验一 图像的灰度变换

数字图像处理实验报告 (一) 班级:测控1002 姓名:刘宇 学号:06102043

实验一图像的灰度变换 1. 实验任务 熟悉MATLAB软件开发环境,掌握读、写图像的基本方法。 理解图像灰度变换在图像增强的作用,掌握图像的灰度线性变换和非线性变换方法。 掌握绘制灰度直方图的方法,掌握灰度直方图的灰度变换及均衡化的方法。2. 实验环境及开发工具 Windws2000/XP MATLAB 7.x 3. 实验原理 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 图1.1 不同的分段线性变换 其对应的数学表达式为:

直方图均衡化 灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度,它是图像最基本的统计特征。依据定义,在离散形式下,用rk 代表离散灰度级,用pr(rk)代表pr(r),并且有下式成立: n n r P k k r = )( 1,,2,1,010-=≤≤l k r k 式中:nk 为图像中出现rk 级灰度的像素数,n 是图像像素总数,而nk/n 即为频数。 直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。假定变换函数为 ω ωd p r T s r r )()(0 ?== (a) Lena 图像 (b) Lena 图像的直方图 图1.2 Lena 图像及直方图 当灰度级是离散值时,可用频数近似代替概率值,即 1 ,,1,010)(-=≤≤= l k r n n r p k k k r

相关主题
文本预览
相关文档 最新文档