当前位置:文档之家› 动量和冲量概念详解+典型例题

动量和冲量概念详解+典型例题

动量和冲量概念详解+典型例题
动量和冲量概念详解+典型例题

第二讲动量与能量

命题趋向

“动量和能量”问题是高考的主考题型,出现的频率也是比较高的,是高考的一个热点,专家命题十分重视对主干知识的考查,在命题时不避讳常规试题,也考查我们认为的超纲问题(弹性碰撞)。注重对试题的题境的创新、设问的创新、条件的变化,注重考查学生对概念的理解、规律的应用及学生学习中可能存在的思维障碍。动量、能量考点在历年的高考物理计算题中一定应用,且分值都不低于20分,09年也不例外。

力与运动、动量、能量是解动力学问题的三种观点,一般来说,用动量观点和能量观点比用力的观点解题简便,因此在解题时优先选用这两种观点;但在涉及加速度问题时就必须用力的观点. 有些问题,用到的观点不只一个,特别像高考中的一些综合题,常用动量观点和能量观点联合求解,或用动量观点与力的观点联合求解,有时甚至三种观点都采用才能求解,因此,三种观点不要绝对化.

考点透视

1、动量

动量观点包括动量定理和动量守恒定律。

(1)动量定理

凡涉及到速度和时间的物理问题都可利用动量定理加以解决,特别对于处理位移变化不明显的打击、碰撞类问题,更具有其他方法无可替代的作用。

(2)动量守恒定律

动量守恒定律是自然界中普通适用的规律,大到宇宙天体间的相互作用,小到微观粒子的相互作用,无不遵守动量守恒定律,它是解决爆炸、碰撞、反冲及较复杂的相互作用的物体系统类问题的基本规律。

动量守恒条件为:

①系统不受外力或所受合外力为零

②在某一方向上,系统不受外力或所受合外力为零,该方向上动量守恒。

③系统内力远大于外力,动量近似守恒。

④在某一方向上,系统内力远大于外力,该方向上动量近似守恒。

应用动量守恒定律解题的一般步骤:

确定研究对象,选取研究过程;分析内力和外力的情况,判断是否符合守恒条件;选定正方向,确定初、末状态的动量,最后根据动量守恒定律列方程求解。

应用时,无需分析过程的细节,这是它的优点所在,定律的表述式是一个矢量式,应用时要特别注意方向。

2、能量

能量观点包括的内容以及一些结论有:

(1).求功的途径:

①用定义求恒力功. ②用动能定理【从做功的效果】或能量守恒求功.

③由图象求功. ④用平均力求功【力与位移成线性关系】.

⑤由功率求功.

(2).功能关系--------功是能量转化的量度,功不是能,能也不是功.

①重力所做的功等于重力势能的减少量【数值上相等】

②电场力所做的功等于电势能的减少量【数值上相等】

③弹簧的弹力所做的功等于弹性势能的减少量【数值上相等】,E p弹=k△X2/2

④分子力所做的功等于分子势能的减少量【数值上相等】

⑤合外力所做的功等于动能的增加量【所有外力】

⑥只有重力和弹簧的弹力做功,机械能守恒

⑦克服安培力所做的功等于感应电能的增加量【数值上相等】

⑧除重力和弹簧弹力以外的力做功等于机械能的增加量【功能原理】

⑨摩擦生热Q=f·S相对=E损【f滑动摩擦力的大小,S相对为相对路程或相对位移,E损为系

统损失的机械能,Q为系统增加的内能】

⑩静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做正功、负功、还可以不做功,但会摩擦生热;作用力和反作用力做功之间无任何关系.

(3).传送带以恒定速度匀速运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能,即Q=mv02/2 (4).发动机的功率P=F牵v,当加速度a=0时,有最大速度v m=P/F牵【注意额定功率和实际功率】

(5).摩擦生热:Q = f·S相对;Q常不等于功的大小。动摩擦因数处处相同,克服摩擦力做功W = μ mg S

(6).能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.

【典型例题】【基本概念的应用】

【例1】(20XX年理科综合)下列是一些说法:

①一质点受到两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的

冲量一定相同;

②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一时间内做的功

或者都为零,或者大小相等符号相反;

③在同样时间内,作用力力和反作用力的功大小不一定相等,但正负符号一定相反;

④在同样的时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反.

以上说法正确的是()A.①②B.①③C.②③D.②④

解析:本题辨析一对平衡力和一对作用力和反作用力的功、冲量.因为,一对平衡力大小相等、方向相反,作用在同一物体上,所以,同一段时间内,它们的冲量大小相等、方向相反,故不是相同的冲量,则①错误.如果在同一段时间内,一对平衡力做功,要么均为零(静止),要么大小相等符号相反(正功与负功),故②正确.至于一对作用力与反作用力,虽然两者大小相等,方向相反,但分别作用在两个不同物体上(对方物体),所以,即使在同样时间内,力的作用点的位移不是一定相等的(子弹穿木块中的一对摩擦力),则做功大小不一定相等.而且作功的正负号也不一定相反(点电荷间相互作用

图1 力、磁体间相互作用力的做功,都是同时做正功,或同时做负功.)因此③错误,④正 确.综上所述,选项D 正确. 【例2】【动量定理的应用】

由轻杆AB 和BC 做成的三角形支架,其A 、C 端分别用铰链固定于墙上其中AB 水平,BC 与竖直墙面夹60°角.如图1所示,一个质量为1kg 的钢球从离B 点0.8m 的正上方自由落下碰在支架端点B ,反弹的最大高度 为0.2m,碰撞时间为0.2s,求撞击时AB 及BC 两杆受到的冲击力大小. (g 取10m/s 2)

解析:设钢球在与B 端碰撞前的速度为v 1 v 1=

48.010221=??=gh m/s,方向竖直向下

设钢球在与B 端碰撞后的速度为v 2 v 2=

22.010222=??=gh m/s,方向竖直向上

取竖直向上为正方向,在碰撞过程中,对钢球由动量定理可得 (F -mg )t =mv 2+mv 1

由以上三式解得球对B 端的撞击力F =40N

将F 分解到沿两杆的方向,解力的三角形可得,AB 杆受到的冲击力F 1=40

3

N,BC 杆受到

的冲击力F 2=80N

一句话点评:动量定理结合力的分解,瞬时性的应用 【例3】 【动量守恒定理的应用】 一个连同装备总质量为M =100kg 的宇航员,在距离飞船s =45m 处与飞船处于相对静止 状态,宇航员背着装有质量为m 0=0.5kg 氧气的贮气筒,筒上有个可以使氧气以v =50m/s 的 速度喷出的喷嘴,宇航员必须向着返回飞船的相反方向放出氢气,才能回到飞船,同时又必 须保留一部分氧气供途中呼吸用.宇航员的耗氧量为Q =2.5×10-4kg/s.不考虑喷出氧气对设 备及宇航员总质量的影响,则

(1)宇航员安全地返回飞船的最长时间和最短时间分别为多少?

(2)为了使总耗氧量最低,应一次喷出多少氧气?返回时间又是多长?(提示:一般飞船 沿椭圆轨道运动,不是惯性参考系,但是在一段很短的圆弧上,可以将飞船的运动视

为匀速直线运动,看作惯性参考系)

解析:(1)设所求为m ,喷出质量为m 的氧气后宇航员返回飞船的速度为v 1.在氧气喷出 的瞬间,对喷出的氧气、宇航员及贮气筒组成的系统由动量守恒定律有 0=mv -(M +m 0)v 1

① 宇航员返回飞船的时间t =s /v 1 ② 依题意有Qt ≤m 0-m ③ 由以上三式代入已知数据解得1800s≥t ≥200s

(2)设总的耗氧量为m ’,一次性喷出的氧气质量为m 2,喷出质量为m 2的氧气后宇航员返 回飞船的速度为v 2.在氧气喷出的瞬间,对喷出的氧气、宇航员及贮气筒组成的系统由动 量守恒定律有0=m 2v -(M +m 0)v 2 ④ 宇航员返回飞船过程供呼吸所用的氧气质量m 3=Qs /v 2 ⑤

所以总的耗氧量m ’=m 2+m 3

⑥ 由以上三式解得m ’=m 2+sQ (M +m 0)/(m 2v ) ⑦ 由上式可知当m 2=sQ (M +m 0)/(m 2v ),即m 2=0.15kg 时m ’最小. ⑧ 由⑧④代入知数据解得v 2=0.075m/s ⑨

返回时间t =s /v 2 ⑩ 由⑨⑩两式解得t =603s

一句话点评:应用动量守恒定律解题,注意系统的选择。 【例4】【机械能守恒定律的应用】 有一光滑水平板,板的中央有一小孔,孔内穿入一根光 滑轻线,轻线的上端系一质量为M 的小球,轻线的下端系着质量分别为m 1和m 2的两个 物体,当小球在光滑水平板上沿半径为R 的轨道做匀速圆周运动时,轻线下端的两个物 体都处于静止状态(如下图).若将两物体之间的轻线剪断,则小球的线速度为多大时 才能再次在水平板上做匀速圆周运动?

解析:该题用守恒观点和转化观点分别解答如下: 解法一:(守恒观点)选小球为研究对象,设小球沿半径为 R 的轨道做匀速圆周运动的线速度为v 0,

根据牛顿第二定律有20

12()v m m g M R

+= ① 当剪断两物体之间的轻线后,轻线对小球的拉力减小,不足以维持小球在半径为R 的轨

道上继续做匀速圆周运动,于是小球沿切线方向逐渐偏离原来的轨道,同时轻线下端的 物体m 1逐渐上升,且小球的线速度逐渐减小.假设物体m 1上升高度为h ,小球的线速 度减为v 时,小球在半径为(R +h )的轨道上再次做匀速圆周运动,根据牛顿第二定律 有2

1v m g M R h

=+ ②

再选小球M 、物体m 1与地球组所的系统为研究对象,研究两物体间的轻线剪断后物体 m 1上升的过程,由于只有重力做功,所以系统的机械能守恒.选小球做匀速圆周运动的 水平面为零势面,设小球沿半径为R 的轨道做匀速圆周运动时m 1到水平板的距离为H ,

根据机械能守恒定律有2

20

1111()22

Mv m gH Mv m g H h -=-- ③ 以上三式联立解得 12(3)3m m gR

v M

+

解法二:(转化观点)与解法一相同,首先列出①②两式,然后再选小球、物体m 1与地 球组成的系统为研究对象,研究两物体间的轻线剪断后物体m 1上升的过程,由于系统 的机械能守恒,所以小球动能的减少量等于物体m 1重力势能的增加量.即

22011122

Mv Mv m gh -= ④ ①、②、④式联立解得 12(3)3m m gR

v M

+=

一句话点评:比较上述两种解法可以看出,根据机械能守恒定律应用守恒观点列方程时, 需要选零势面和找出物体与零势面的高度差,比较麻烦;如果应用转化观点列方程,则 无需选零势面,往往显得简捷. 【例5】【碰撞与子弹打木块模型】

如图所示,甲、乙两人各乘一辆冰车在山坡前的水平冰道上游戏,甲和他冰车的总质量

m 1=40kg ,从山坡上自由下滑到水平直冰道上的速度v 1=3m/s ,乙和他的冰车的质量m 2=60kg ,以大小为v 2=0.5m/s 的速度迎面滑来.若不计一切摩擦,为使两车不再相撞,试求甲的推力对乙做功的数值范围?

解析:取向右方向为正,m 1v 1-m 2v 2=甲v m 1+乙v m 2,对乙由动能定理得W =

2

22

1乙

v m - 2

2

22

1v m ,当甲v =乙v 时,甲对乙做的功最少W =16.8J ,当甲v =-乙v 时,甲对乙做的功最 多W =600J ,

甲对乙做功的数值范围为16.8J≤W ≤600J .

一句话点评:碰撞爆炸与子弹打木块模型的应用中往往需要同时列出动量和能量方程。 本题结合临界条件即可得出正确答案。

【例6】 如下图所示,一辆质量是m =2kg 的平板车左端放有质量M =3kg 的小滑块,滑块与 平板车之间的动摩擦因数μ=0.4,开始时平板车和滑块共同以v 0=2m/s 的速度在光滑水 平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保 持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取

g =10m/s 2)求:

(1)平板车每一次与墙壁碰撞后向左运动的最大距离. (2)平板车第二次与墙壁碰撞前瞬间的速度v .

(3)为使滑块始终不会滑到平板车右端,平板车至少多长? 解析:(1)设第一次碰墙壁后,平板车向左移动s

平板车速度为零时,滑块还在向右滑行.

由动能定理2

0102

MgS mv μ-=- ①

202mv s Mg

μ= ②

代入数据得2221

0.33m 20.43103

s ?===??? ③

(3)假如平板车在第二次碰撞前还未和滑块相对静止,那么其速度的大小肯定还是 2m/s ,滑块的速度则大于2m/s ,方向均向右.这样就违反动量守恒.所以平板车在第二 次碰撞前肯定已和滑块具有共同速度v .此即平板车碰墙前瞬间的速度.

00()Mv mv M m v -=+ ④ ∴0M m

v v M m

-=

+ ⑤ 代入数据得01

0.4m/s 5

v v ==

a )

(b )

(c )

(3)平板车与墙壁第一次碰撞后到滑块与平板又达到共同 速度v 前的过程,可用图(a )(b )(c )表示.(a )为平板车

与墙壁撞后瞬间滑块与平板车的位置,图(b )为平板车到

达最左端时两者的位置,图(c )为平板车与滑块再次达到 共同速度为两者的位置.在此过程中滑块动能减少等于摩 擦力对滑块所做功Mgs μ',平板车动能减少等于摩擦力对平板车所做功Mgs μ''(平板车从B 到A 再回到B 的过程中摩 擦力做功为零),其中s '、s ''分别为滑块和平板车的位移. 滑块和平板车动能总减少为1,Mgl μ其中1l s s '''=+为滑块相 对平板车的位移.此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边.设滑块相对平板车总位移为

l ,则有2

1

()2

M m v Mgl μ+= ⑦ 2

0()2M m v l Mg

μ+= ⑧

代入数据得2525

0.833m 20.43106

l ?===??? ⑨

l 即为平板车的最短长度.

一句话点评:碰撞爆炸与子弹打木块模型的应用中往往需要同时列出动量和能量方 程。本题关键在于过程的分析。

【变式】如图所示,在光滑水平面上有两个并排放置的木块A 和B ,已知m A =500g,m B =300g,一 质量为80g 的小铜块C 以25m/s 的水平初速度开始,在A 表面滑动,由于C 与A 、B 间有 摩擦,铜块C 最后停在B 上,B 和C 一起以2.5m/s 的速度共同前进,求:

(1)木块A 的最后速度;

(2)C 在离开A 时的速度.

解析:(1)设A 的最后速度为v A ’,从C 开始滑动到 C 和B 相对静止的过程,对A 、B 、C 系统有m C v 0=m A v A ’+(m C +m B )v 同

由上面式子得v A ’=[m C v 0-(m C +m B )v 同]/m A 代入数据得v A ’=2.1m/s (2)设C 在离开A 时的速度为v C ’,从C 开始滑到C 离开A 的过程,有 m C v 0=m C v C ’+(m C +m B )v A ’ 由上面式子得v C ’=[m C v 0-(m C +m B )v A ’]/m C 代入数据得v C ’=4m/s

【例7】 【传送带模型与动量能量的综合】 如图所示,水平传送带AB 长l =8.3m ,质量为 M =1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动(传送带的传送速度恒定),

木块与传送带间的动摩擦因数μ=0.5.当木块运动至最左端A 点时,一颗质量为m =20g

的子弹以0v -

=300m/s 水平向右的速度正对射入木块并穿出,穿出速度u =50m/s ,以后每

隔1s 就有一颗子弹射向木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g

取10m/s .求:

(1)在被第二颗子弹击中前,木块向右运动离A 点的最大距离? (2)木块在传达带上最多能被多少颗子弹击中?

(3)从第一颗子弹射中木块到木块最终离开传送带的过程中,子弹、木块和传送带这

一系统产生的热能是多少?(g 取10m/s ) 解析: (1)第一颗子弹射入木块过程中动量守恒

011mv MV mu MV '-=+ ① 解得:1

v '=3m/s ② 木块向右作减速运动加速度5Mg

a g M

μμ===m/s 2 ③

木块速度减小为零所用时间1

1v t a

'=

④ 解得t 1 =0.6s<1s ⑤

所以木块在被第二颗子弹击中前向右运动离A 点最远时,速度为零,移动距离为 2112v s a

'= 解得s 1=0.9m . ⑥

(2)在第二颗子弹射中木块前,木块再向左作加速运动,时间t 2=1s -0.6s=0.4s ⑦ 速度增大为v 2=at 2=2m/s (恰与传送带同速) ⑧

向左移动的位移为2

22

10.4m 2

s at == ⑨ 所以两颗子弹射中木块的时间间隔内,木块总位移S 0=S 1-S 2=0.5m 方向向右 ⑩ 第16颗子弹击中前,木块向右移动的位移为150.57.5m s =?= ○

11 第16颗子弹击中后,木块将会再向右先移动0.9m ,总位移为0.9m +7.5=8.4m>8.3m 木 块将从B 端落下.

所以木块在传送带上最多能被16颗子弹击中. (3)第一颗子弹击穿木块过程中产生的热量为

222210111111

2222

Q mv MV mu MV '=

+-- ○12 木块向右减速运动过程中板对传送带的位移为111S v t s '=+ ○13 产生的热量为Q 2=MgS μ' ○

14 木块向左加速运动过程中相对传送带的位移为122S V t s ''=- ○15 产生的热量为3Q Mgs μ''= ○

16 第16颗子弹射入后木块滑行时间为t 3有2

1331

0.82

v t at '-= ○

17 解得t 3=0.4s ○

18

v 0 m

A B

M

木块与传送带的相对位移为S =v 1t 3+0.8 ○19 产生的热量为Q 4=Mgs μ ○20 全过程中产生的热量为Q =15(Q 1+Q 2+Q 3)+Q 1+Q 4 解得Q =14155.5J ○

21 一句话点评:在传送带与动量能量的综合应用中除需要列出动量方程外,在列能量守恒 的方程中,一般还需要分析出相对位移,这也就需要对物体和传送带进行运动情况的分 析。 【例8】【弹簧与动量能量的综合】 如图所示,光滑水平面上有一小车B ,右端固定一个砂箱,砂箱左侧连着一水平轻弹簧, 小车和砂箱的总质量为M ,车上放有一物块A ,质量也是M ,物块A 随小车以速度v 0

向右匀速运动.物块A 与左侧的车面的动摩擦因数为μ,与右侧车面摩擦不计.车匀速

运动时,距砂面H 高处有一质量为m 的泥球自由下落,恰好落在砂箱中,求: (1)小车在前进中,弹簧弹性势能的最大值.

(2)为使物体A 不从小车上滑下,车面粗糙部分应多长?

解析:

在m 下落在砂箱砂里的过程中,由于车与小泥球m 在水平方向不受任何外力作用,故 车及砂、泥球整个系统的水平方向动量守恒,则有: 01()Mv M m v =+ ①

此时物块A 由于不受外力作用,继续向右做匀速直线运动再与轻弹簧相碰,以物块A 、 弹簧、车系统为研究对象,水平方向仍未受任何外力作用,系统动量守恒,当弹簧被压 缩到最短,达最大弹性势能E p 时,整个系统的速度为v 2,则由动量守恒和机械能守恒 有:

012()(2)Mv M m v M m v ++=+ ②

222011111()(2)222

p Mv M m v E M m v ++=++ ③ 由①②③式联立解得:22

02()(2)

P Mm E v M m M m =++ ④

之后物块A 相对地面仍向右做变减速运动,而相对车则向车的左面运动,直到脱离弹簧, 获得对车向左的动能,设刚滑至车尾,则相对车静止,由能量守恒,弹性势能转化为系 统克服摩擦力做功转化的内能有:p MgL E μ= ⑤

由④⑤两式得:220

2()(2)

m v L g M m M m μ=++

一句话点评:本题应用动量守恒,机械能守恒及能量守恒定律联合求解。凡是题目当中

m

H

A

B

v 0

1-4

v v 0图1-6

涉及到弹簧弹性势能的运算,一般不是利用能量守恒间接运算,就是利用前后两个状态 弹性势能相等而抵消,

【跟踪练习】

1.物体在恒定的合力F 作用下作直线运动,在时间△t 1内速度由0增大到v ,在时间△t 2内

速度由v 增大到2v .设F 在△t 1内做的功是W 1,冲量是I 1;在△t 2内做的功是W 2,冲量是I 2,那么 ( ) A .1212,I I W W <= B .1212,I I W W << C .1212,I I W W == D .1212,I I W W =< 2.如图1-4所示,质量分别为m 1和m 2、大小相同的两物块,分别以速度 v 1和v 2沿固定斜面向下匀速滑行,且v 1>v 2,m 2的右端装有轻质弹簧,在它们发生相互作用后又分开.则在m 1和m 2相互作用的过程中,下列说法中正确的是 A .由于有重力和摩擦力,所以该过程动量不守恒 B .由于系统所受合外力为零,所以该过程动量守恒

C .若相互作用过程中,m 1的速度不反向,则该过程动量守恒

D .若相互作用过程中,m 1的速度反向,则该过程动量守恒

3.如图1-5所示,质量为M 的木板静止在光滑水平面上.一个质量为m 的小滑块以初速度v 0

从木板的左端向右滑上木板.滑块和木板的水平速度随时间变化的图像如图1-6所示.某同学根据图像作出如下的一些判断正确的是 )

A .滑块与木板间始终存在相对运动

B .滑块始终未离开木板

C .滑块的质量大于木板的质量

D .在t 1时刻滑块从木板上滑出 4.如图所示,AB 为斜轨道,与水平方向成45°角,BC 为水平轨道,两轨道在B 处通过一段小圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的滑动摩擦系数为μ,求:

(1)在整个滑动过程中摩擦力所做的功.

图1-5

(2)物块沿轨道AB段滑动时间t1与沿轨道BC段滑动时间t2之比值

1

2

t

t

(3)使物块匀速地、缓慢地沿原路回到A点所需做的功.

5.如图所示,粗糙的斜面AB下端与光滑的圆弧轨道BCD相切于B,整个装置竖直放置,C 是最低点,圆心角∠BOC=37°,D与圆心O等高,圆弧轨道半径R=0.5m,斜面长L=2m,现有一个质量m=0.1kg的小物体P从斜面AB上端A点无初速下滑,物体P与斜面AB之间的动摩擦因数为 =0.25.求:

(1)物体P第一次通过C点时的速度大小和对C点处轨道的压力各为多大?

(2)物体P第一次离开D点后在空中做竖直上抛运动,不计空气阻力,则最高点E和D 点之间的高度差为多大?

(3)物体P从空中又返回到圆轨道和斜面,多次反复,在整个运动过程中,物体P对C 点处轨道的最小压力为多大?

6.如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点衔接,导轨半径为R.一个质量为m的静止物块在A处压缩弹簧,在弹力的作用下获一向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点.求:

1)弹簧对物块的弹力做的功.

(2)物块从B至C克服阻力做的功.

(3)物块离开C点后落回水平面时其动能的大小.

7.一传送带装置示意如下图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切.现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h.稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L.每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动).已知在一段相当长的时间T 内,共运送小货箱的数目为N.这装置由电动机带电,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P.

8.如图所示,质量M=0.45kg的带有小孔的塑料块沿斜面滑到最高点C时速度恰为零,此时与从A点水平射出的弹丸相碰,弹丸沿着斜面方向进入塑料块中,并立即与塑料块有相同的速度.已知A点和C点距地面的高度分别为:H=1.95m,h=0.15m,弹丸的质量m=0.050kg,水平初速度v0=8m/s,取g=10m/s2.求:

(1)斜面与水平地面的夹角θ.(可用反三角函数表示)

(2)若在斜面下端与地面交接处设一个垂直于斜面的弹性挡板,塑料块与它相碰后的速率等于碰前的速率,要使塑料块能够反弹回到C点,斜面与塑料块间的动摩擦因数可为多少?

9.用轻弹簧相连的质量均为2kg的A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量4kg的物块C静止在前方,如下图所示.B与C碰撞后二者粘在一起运动.求:在以后的运动中:

(1)当弹簧的弹性势能最大时物体A的速度多大?

(2)弹性势能的最大值是多大?

(3)A的速度有可能向左吗?为什么?

10.图中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态.另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行.当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回到出发点P并停止.滑块A和B与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为l2,重力加速度为g.求A从P点出发时的初速度v0.

参 考 答 案

1. 【答案】 D

【解析】 在△t 1时间内,I 1=F △t 1=mv =△p 1,在△t 2时间内.I 2=F △t 2=2mv -mv =mv =△p 2 ∴I 1=I 2

又2222121113,(2)2

2

2

2

W mv W m v mv mv ==-=

∴W 1

【说明】 物体在恒定的合外力F 作用下做直线运动,由牛顿第二定律可知物体做匀加 速直线运动,速度由零增大到v 的时间△t 2和由v 增大到2v 的时间△t 2是相等的,所以 在△t 1和△t 2的两段时间内合外力的冲量是相等的.在△t 1的平均速度小于△t 2时间内的 平均速度,从而得出在△t 1内的位移小于在△t 2时间的位移,恒力F 所做的功W 1

【说明】碰撞前两物块分别沿固定斜面向下匀速滑行,所以两物块的重力沿斜面的分力分 别与沿斜面向上的滑动摩擦力相等.在相互作用过程中,以m 1、m 2和弹簧组成的系统为 对象,当两个物体都向下滑行时,即m 1的速度不反向,系统的重力沿斜面向下的分力与滑 动摩擦力相等,所以系统的合外力为零,系统的动量守恒.若在相互作用过程中,m 1的速度 反向,则m 1受到的滑动摩擦力沿斜面向下,系统的合外力不为零,系统的动量不过恒. 3. 【答案】 ACD

【说明】从图中可以看出,滑块与木板始终没有达到共同速度,所以滑块与木板间始终存 在相对运动;又因木板的加速度较大,所以滑块的质量大于木板的质量;因在t 1时刻以后, 滑块和木板都做匀速运动,所以在t 1时刻滑块从木板上滑出.所以选项A 、C 、D 正确 4. 【解析】 (1)设整个过程摩擦力做的功是W ,由动能定理得:mgh -W =0 ① W =mgh

(2)设物块沿轨道AB 滑动的加速度为a 1,

由牛顿第二定律有1sin 45cos45mg mg ma μ?-?= ②

设物块到达B 点时的速度为V B ,则有V B =a 1t 1 ③

设物块沿轨道BC 滑动的加速度为a 2,由牛顿第二定律有2mg ma μ= ④

物块从B 点开始作匀减速运动,到达C 点时,速度为零,故有220B V a t =- ⑤

由②③④⑤式可得:

1221t a t a == ⑥ (3)使物块匀速地、缓慢地沿原路回到A 点所需做的功应该是克服重力和阻力所做功

之和,即是W 1=mgh +W =2mgh

5. 【解析】 (1)物体P 从A 下滑经B 到C 过程中根据动能定理:

2

10(sin 37cos37)cos372

C mv mg R R mg μ-=∠?+-?-∠?

4.24m/s C v ==

经C 点时22 4.6N C C

C C v v N mg m N mg m R R

-==+=

根据牛顿第三定律,P 对C 点的压力 4.6N C

C N N '== (2)从C 到E 机械能守恒2

1()2

C

ED mv mg R h =+ E 与D 间高度差20.4m 2C ED

v h R g

=-= (3)物体P 最后在B 与其等高的圆弧轨道上来回运动时,经C 点压力最小,由B 到C 根据机械能守恒

21

(1cos37)2

C C

mgR mv v ''-?=

= 22

2

0.1100.1 1.4N 0.5

C C v N mg m R '=+=?+?=

根据牛顿第三定律 压力22 1.4N C

C N N '== 6. 【解析】 物块的运动可分为以下四个阶段:①弹簧弹力做功阶段;②离开弹簧后在AB

段的匀速直线运动阶段;③从B 到C 所进行的变速圆周运动阶段;④离开C 点后进行的 平抛运动阶段.弹簧弹力是变化的,求弹簧弹力的功可根据效果——在弹力作用下物块 获得的机械能,即到达B 点的动能求解.物块从B 至C 克服阻力做的功也是变力,同样 只能根据B 点和C 点两点的机械能之差判断.因此求出物块在B 点和C 点的动能是关 键.可根据题设条件:“进入导轨瞬间对导轨的压力为其重力的7倍”、“恰能到达C 点”, 求出、kB kC E E .

物块在B 点时受力mg 和导轨的支持力N =7mg ,由牛顿第二定律,

有2

7B

v mg mg m R -=

∴2

132

kB B

E mv mgR == 物块到达C 点仅受重力mg ,根据牛顿第二定律,有2C

v mg m R =

∴2

10.52

kC C

E mv mgR ==. (1)根据动能定理,可求得弹簧弹力对物体所做的功为W 弹=E kB =3mgR . (2)物体从B 到C 只有重力和阻力做功,根据动能定理,

有2kC kB W mg R E E -=-阻

0.5320.5W mgR mgR mgR mgR =-+=-阻

即物体从B 到C 克服阻力做的功为0.5mgR .

(3)物体离开轨道后做平抛运动,仅有重力做功,机械能守恒,

有0.52 2.5k

kC pC E E E mgR mgR mgR '=+=+=. 评析:中学阶段不要求直接用cos W Fs α=求解变力做功,可根据其效果——使用能量 变化间接来判断.对于物体运动的全过程必须逐段进行认真分析,确定每一阶段符合的 规律:如本题最后一个阶段是平抛运动,物块在C 点有动能,不能把平抛当成自由落体 来处理.

7. 【解析】 以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中, 小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ;加速度为 a ,则对小箱有

2

12

s at =

① v 0=at ②

在这段时间内,传送带运动的路程为s 0=v 0t ③ 由以上可得s 0=2s ④

用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为2

01

2

A fs mv ==⑤

传送带克服小箱对它的摩擦力做功2

00012

2A fs mv == ⑥ 两者之差就是克服摩擦力做功发出的热量 2

012

Q mv = ⑦

可见,在小箱加速运动过程中,小箱获得的动能与发热量相等. T 时间内,电动机输出的功为W PT = ⑧

此功用于增加小箱的动能、势能以克服摩擦力发热, 即2012

W Nmv Nmgh NQ =

++ ⑨ 已知相邻两小箱的距离为L ,所以v 0T =NL ⑩ 联立⑦⑧⑨⑩,得22

2[]Nm N L P gh T T

=+ ○

11

8. 【解析】 (1)子弹做平抛运动,经时间t 有2

1,2

H h gt -=

解得t =0.6(s ). 此时子弹的速度与水平方向夹角为θ,水平分速度为v x 、竖直分速度为 v y ,则有

0,,tan y x y x

v v v v gt v θ===

解得3tan 4θ=

∴3

arctan 374

θ==? 由于子弹沿斜面方向与木块相碰,故斜面的倾角与t s 末子弹的速度与水平方向的夹角 相同,所以斜面的倾角3

arctan

374

θ==?. (2)设在C 点子弹的末速度为v t ,则有22

2t x y v v v =+

∴10(m/s)t v ==

子弹立即打入木块,满足动量守恒条件,有()t C mv m M v =+ 解得1C v =(m/s ) 碰后,子弹与木块共同运动由C 点到与挡板碰撞并能够回到C 点, 有21k k f E E W -=-

2

1211(),0,2

k C k k f E M m v E E W =

+≥≥ 22()cos sin f h W fs s M m g s μθ

θ

==+=

代入数据,得0.125μ≤

子弹与木块共同运动要能够回到C 点,则斜面与塑料块间的动摩擦因数0.125μ≤. 9. 【解析】 (1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大

由于A 、B 、C 三者组成的系统动量守恒,()()A B A B C A m m v m m m v '+=++

解得(22)6

3m/s 224

A v +?'=

=++

(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为v ′, 则()B B C m v m m v '=+ 26

2m/s 24

v ?'=

=+ 设物A 速度为A v '时弹簧的弹性势能最大为p E ,根据能量守恒22222111()()222111

(24)226(224)312J 222

p B C A A B C A

E m m v m v m m m v ''=++-++=?+?+??-?++?= (3)A 不可能向左运动 系统动量守恒,()A B A A B C B m v m v m v m m v +=++ 设A 向左,v A <0,则v B >4m/s

则作用后A 、B 、C 动能之和 222

1

11()()48J 222

A A

B C B B C B E m v m m v m m v '=++>+= 实际上系统的机械能2

1()123648J 2

p A B C A E E m m m v '=+++=+=

根据能量守恒定律,E ′>E 是不可能的. 10.【解析】令A 、B 质量均为m ,A 刚接触B 时的速度为v 1(碰前).

A 克服阻力做功:2201

122

mv mv mgl μ-= ①

A 、

B 碰撞过程中动量守恒,令碰后A 、B 的共同速度为v 2,有mv 1=2mv 2 ②

碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的 共同速度为v 3,在这一过程中,弹簧的弹性势能始末状态都是零,只有克服摩擦力做功

23

22

2(2)(2)(2)(2)22

m v m v m g l μ-= ③ 此后A 、B 开始分离,A 单独向右滑动到P 点停下,克服阻力做功2

3

12

mv mgl μ= ④

由以上各式得0v = ⑤

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

冲量动量动量定理练习题(带答案)

2016年高三1级部物理第一轮复习-冲量动量动量定理 1.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2.以下判断正确的是( ) A.小球从抛出至最高点受到的冲量大小为10 N·s B.小球从抛出至落回出发点动量的增量大小为0 C.小球从抛出至落回出发点受到的冲量大小为0 D.小球从抛出至落回出发点受到的冲量大小为20 N·s 解析:小球在最高点速度为零,取向下为正方向,小球从抛出至最高点受到的冲量I=0-(-mv0)=10 N·s,A正确;因不计空气阻力,所以小球落回出发点的速度大小仍等于20 m/s,但其方向变为竖直向下,由动量定理知,小球从抛出至落回出发点受到的冲量为:I=Δp=mv-(-mv0)=20 N·s,D正确,B、C均错误. 答案:AD 2.如图所示,倾斜的传送带保持静止,一木块从顶端以一定的初速度匀加速下滑到底端.如果让传 送带沿图中虚线箭头所示的方向匀速运动,同样的木块从顶端以同样的初速度下滑到底端的过程中,与传送带保持静止时相比( ) A.木块在滑到底端的过程中,摩擦力的冲量变大 B.木块在滑到底端的过程中,摩擦力的冲量不变

C.木块在滑到底端的过程中,木块克服摩擦力所做的功变大 D.木块在滑到底端的过程中,系统产生的内能数值将变大 解析:传送带是静止还是沿题图所示方向匀速运动,对木块来说,所受滑动摩擦力大小不变,方向沿斜面向上;木块做匀加速直线运动的加速度、时间、位移不变,所以选项A错,选项B 正确.木块克服摩擦力做的功也不变,选项C错.传送带转动时,木块与传送带间的相对位移变大,因摩擦而产生的内能将变大,选项D正确. 答案:BD 3.如图所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B 的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静置一小球 C,A、B、C的质量均为m.给小球一水平向右的瞬时冲量I,小球会在环内侧做 圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起,瞬时冲量必须满足( ) A.最小值m4gr B.最小值m5gr C.最大值m6gr D.最大值m7gr 解析:在最低点,瞬时冲量I=mv0,在最高点,mg=mv2/r,从最低点到最高点,mv20/2=mg×2r+mv2/2,解出瞬时冲量的最小值为m5gr,故选项B对;若在最高点,2mg=mv2/r,其余不变,则解出瞬时冲量的最大值为m6gr. 答案:BC

动量冲量和动量定理典型例题精析

动量、冲量和动量定理·典型例题精析 [例题1]质量为m的物体,在倾角为θ的光滑斜面上由静止开始下滑.如图7-1所示.求在时间t内物体所受的重力、斜面支持力以及合外力给物体的冲量. [思路点拨]依冲量的定义,一恒力的冲量大小等于这力大小与力作用时间的乘积,方向与这力的方向一致.所以物体所受各恒力的冲量可依定义求出.而依动量定理,物体在一段时间t内的动量变化量等于物体所受的合外力冲量,故合外力给物体的冲量又可依动量定理求出. [解题过程]依冲量的定义,重力对物体的冲量大小为 I G=mg·t, 方向竖直向下. 斜面对物体的支持力的冲量大小为 I N=N·t=mg·cosθ·t,

方向垂直斜面向上. 合外力对物体的冲量可分别用下列三种方法求出. (1)先根据平行四边形法则求出合外力,再依定义求出其冲量. 由图7-1(2)知,作用于物体上的合力大小为F=mg·sinθ,方向沿斜面向下. 所以合外力的冲量大小 I F=F·t=mg·sinθ·t. 方向沿斜面向下. (2)合外力的冲量等于各外力冲量的矢量和,先求出各外力的冲量,然后依矢量合成的平行四边形法则求出合外力的冲量. 利用前面求出的重力及支持力冲量,由图7-1(3)知合外力冲量大小为 方向沿斜面向下.

或建立平面直角坐标系如图7-1(4),由正交分解法求出.先分别求出合外力冲量I F在x,y方向上分量I Fx,I Fy,再将其合成. (3)由动量定理,合外力的冲量I F等于物体的动量变化量Δp. I F=Δp=Δmv=mΔv=m(at)=mgsinθ·t. [小结] (1)计算冲量必须明确计算的是哪一力在哪一段时间内对物体的冲量. (2)冲量是矢量,求某一力的冲量除应给出其大小,还应给出其方向. (3)本题解提供了三种不同的计算合外力冲量的方法.

2动量和动量定理

2动量和动量定理 学 习目标知识脉络 1.知道动量的概念,知 道动量和动量变化量均 为矢量,会计算一维情 况下的动量变化量.(重 点) 2.知道冲量的概念,知 道冲量是矢量.(重点) 3.知道动量定理的确切 含义,掌握其表达 式.(重点、难点) 4.会用动量定理解释碰 撞、缓冲等生活中的现 象.(难点) 动量及动量的变化量 [先填空] 1.动量 (1)定义 物体的质量与速度的乘积,即p=m v. (2)单位 动量的国际制单位是千克米每秒,符号是kg·m/s. (3)方向 动量是矢量,它的方向与速度的方向相同. 2.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的矢量运算:选定一个正方向,动量、动

量的变化量用带正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅表示方向,不表示大小). [再判断] 1.动量的方向与物体的速度方向相同.(√) 2.物体的质量越大,动量一定越大.(×) 3.物体的动量相同,其动能一定也相同.(×) [后思考] 1.物体做匀速圆周运动时,其动量是否变化? 【提示】变化.动量是矢量,方向与速度方向相同,物体做匀速圆周运动时,速度大小不变,方向时刻变化,其动量发生变化. 2.在一维运动中,动量正负的含义是什么? 【提示】正负号仅表示方向,不表示大小.正号表示动量的方向与规定的正方向相同;负号表示动量的方向与规定的正方向相反. [合作探讨] 如图16-2-1所示,质量为m,速度为v的小球与挡板发生碰撞,碰后以大小不变的速度反向弹回. 图16-2-1 探讨1:小球碰撞挡板前后的动量是否相同? 【提示】不相同.碰撞前后小球的动量大小相等,方向相反. 探讨2:小球碰撞挡板前后的动能是否相同? 【提示】相同. 探讨3:小球碰撞挡板过程中动量变化量大小是多少? 【提示】2m v. [核心点击]

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

冲量与动量公式汇编

冲量与动量公式汇编 1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 2.冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决定} 3.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′ 5.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 8.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2) 9.由8得的推论——等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动 时的机械能损失。 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块 的位移} 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上; (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、 爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒; (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;

知识讲解 动量 动量定理(基础)

物理总复习:动量 动量定理 编稿:刘学 【考纲要求】 1、理解动量的概念; 2、理解冲量的概念并会计算; 2、理解动量变化量的概念,会解决一维的问题; 3、理解动量定理,熟练应用动量定理解决问题。 【知识网络】 【考点梳理】 考点一、动量和冲量 1、动量 (1)定义:运动物体的质量与速度的乘积。 (2)表达式:p mv =。 单位:/kg m s ? (3)矢量性:动量是矢量,方向与速度方向相同,运算遵守平行四边形定则。 (4)动量的变化量:21p p p ?=-,p ?是矢量,方向与v ?一致。 (5)动量与动能的关系:22 21()222k mv p E mv m m === p =要点诠释:对“动量是矢量,方向与速度方向相同”的理解,如:做匀速圆周运动的物体速度的大小相等,动能相等(动能是标量),但动量不等,因为方向不同。对“p ?是矢量,方向与v ?一致”的理解,如:一个质量为m 的小钢球以速度v 竖直砸在钢板上,假设反弹速度也为v ,取向上为正方向,则速度的变化量为()2v v v v ?=--=,方向向上,动量的变化量为:2p mv ?=方向向上。 2、冲量

(1)定义:力与力的作用时间的乘积。 (2)表达式:I Ft = 单位: N s ? (3)冲量是矢量:它由力的方向决定 考点二、动量定理 (1)内容:物体所受的合外力的冲量等于它的动量的变化量。 (2)表达式:21Ft p p =- 或 Ft p =? (3)动量的变化率:根据牛顿第二定律 2121v v p p F ma m t t --===?? 即 p F t ?=?,这是动量的变化率,物体所受合外力等于动量的变化率。如平抛运动物体动量的变化率等于重力mg 。 要点诠释: (1)动量定理的研究对象可以是单个物体,也可以是物体系统。对物体系统,只需分析系统受的外力,不必考虑系统内力。系统内力的作用不改变整个系统的总动量。 (2)用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。 但是,动量定理不仅适用于恒定的力,也适用于随时间变化的力。对于变力,动量定理中的F 应当理解为变力在作用时间内的平均值。 (3)用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。分析问题时,要把哪个量一定哪个量变化搞清楚。 (4)应用I p =?求变力的冲量:如果物体受到变力作用,则不直接用I Ft =求变力的冲量,这时可以求出该力作用下的物体动量的变化p ?,等效代换变力的冲量I 。 (5)应用p Ft ?=求恒力作用下的曲线运动中物体动量的变化:曲线运动中物体速度方向时刻在改变,求动量变化21p p p ?=-需要应用矢量运算方法,比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。 【典型例题】 类型一、动量、动量变化量的计算 【高清课堂:动量 动量定理例1】 例1、质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,被墙以4m/s 的速度弹回,如图所示,求:这一过程中动量改变了多少?方向怎样? 举一反三 【变式】(2014 北京大兴模拟)篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( ) A .减小球对手的冲量 B .减小球对手的冲击力 C .减小球的动量变化量 D .减小球的动能变化量 举一反三

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

冲量和动量、动量定理练习题.doc

一、冲量和动量、动量定理练习题 一、选择题 1.在距地面h高处以v0水平抛出质量为m的物体,当物体着地时和地面碰撞时间为Δt,则这段时间内物体受到地面给予竖直方向的冲量为[ ] 2.如图1示,两个质量相等的物体,在同一高度沿倾角不同的两个光滑斜面由静止自由滑下到达斜面底端的过程中,相同的物理量是[ ] A.重力的冲量 B.弹力的冲量 C.合力的冲量 D.刚到达底端的动量 E.刚到达底端时的动量的水平分量 F.以上几个量都不同 3.在以下几种运动中,相等的时间内物体的动量变化相等的是[ ] A.匀速圆周运动 B.自由落体运动 C.平抛运动 D.单摆的摆球沿圆弧摆动 4.质量相等的物体P和Q,并排静止在光滑的水平面上,现用一水平恒力推物体P,同时给Q物体一个与F同方向的瞬时冲量I,使两物体开始运动,当两物体重新相遇时,所经历的时间为[ ] A.I/F B.2I/F C.2F/I D.F/I 5.A、B两个物体都静止在光滑水平面上,当分别受到大小相等的水平力作用,经过相等时间,则下述说法中正确的是[ ] A.A、B所受的冲量相同 B.A、B的动量变化相同

C.A、B的末动量相同 D.A、B的末动量大小相同 6.A、B两球质量相等,A球竖直上抛,B球平抛,两球在运动中空气阻力不计,则下述说法中正确的是[ ] A.相同时间内,动量的变化大小相等,方向相同 B.相同时间内,动量的变化大小相等,方向不同 C.动量的变化率大小相等,方向相同 D.动量的变化率大小相等,方向不同 7.关于冲量、动量与动量变化的下述说法中正确的是[ ] A.物体的动量等于物体所受的冲量 B.物体所受外力的冲量大小等于物体动量的变化大小 C.物体所受外力的冲量方向与物体动量的变化方向相同 D.物体的动量变化方向与物体的动量方向相同 二、填空题 8.将0.5kg小球以10m/s的速度竖直向上抛出,在3s内小球的动量变化的大小等于______kg·m/s,方向______;若将它以10m/s的速度水平抛出,在3s内小球的动量变化的大小等于______kg·m/s,方向______。 9.在光滑水平桌面上停放着A、B小车,其质量m A=2m B,两车中间有一根用细线缚住的被压缩弹簧,当烧断细线弹簧弹开时,A车的动量变化量和B车的动量变化量之比为______。 10.以初速度v0竖直上抛一个质量为m的小球,不计空气阻力,则小球上升到最高点的一半时间内的动量变化为______,小球上升到最高点的一半高度内的动量变化为______(选竖直向下为正方向)。 11.车在光滑水平面上以2m/s的速度匀速行驶,煤以100kg/s的速率从上面落入车中,为保持车的速度为2m/s不变,则必须对车施加水平方向拉力______N。 12.在距地面15m高处,以10m/s的初速度竖直上抛出小球a,向下抛出小球b,若a、b 质量相同,运动中空气阻力不计,经过1s,重力对a、b二球的冲量比等于______,从抛出到到达地面,重力对a、b二球的冲量比等于______。 13.重力10N的物体在倾角为37°的斜面上下滑,通过A点后再经2s到斜面底,若物体与斜面间的动摩擦因数为0.2,则从A点到斜面底的过程中,重力的冲量大小______N·s,方向______;弹力的冲量大小______N·S,方向______;摩擦力的冲量大小______N·s。方向______;合外力的冲量大小______N·s,方向______。 14.如图2所示,重为100N的物体,在与水平方向成60°角的拉力F=10N作用下,以2m/s的速度匀速运动,在10s内,拉力F的冲量大小等于______N·S,摩擦力的冲量大小等于______N·s。 15.质量m=3kg的小球,以速率v=2m/s绕圆心O做匀速圆周运动

冲量和动量、动量定理练习题 经典习题加定理说明

冲量和动量、动量定理练习题 一、动量与冲量 动量定理 1.动量 在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv 遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv 来量度物体的“运动量”,称之为动量。 2.冲量 要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F 和力作用的时间t ?的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F t ?叫做冲量。 3.质点动量定理 由牛顿定律,容易得出它们的联系:对单个物体: 01mv mv v m t ma t F -=?=?=? p t F ?=? 即冲量等于动量的增量,这就是质点动量定理。 在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为: x tx x mv mv t F 0-=? y ty y mv mv t F 0-=? z tz z mv mv t F 0-=? 对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理: 第1个 1I 外+1I 内=10111v m v m t - 第2个 2I 外+2I 内=20222v m v m t - M M 第n 个 n I 外+n I 内=0n n nt n v m v m - 由牛顿第三定律: 1I 内+2I 内+……+n I 内=0 因此得到: 1I 外+2I 外+ ……+n I 外=(t v m 11+t v m 22+……+nt n v m )-(101v m +202v m +……0n n v m ) 即:质点系所有外力的冲量和等于物体系总动量的增量。 二、守恒定律 动量守恒定律是人们在长期实践的基础上建立的,首先在碰撞问题的研究中发现了它,随着实 践范围的扩大,逐步认识到它具有普遍意义, 对于相互作用的系统,在合外力为零的情况下,由牛顿第二定律和牛顿第三定律可得出物体的总动量保持不变。 即: t v m 11+t v m 22+……+n n v m =+'+'221 1v m v m ……n n v m ' 上式就是动量守恒定律的数学表达式。 三、功和功率 1功的概念 力和力的方向上位移的乘积称为功。即θcos Fs W = 式中θ是力矢量F 与位移矢量s 之间的夹角。功是标量,有正、负。外力对物体的总功或合外力对物体所做功等于各个力对物体所做功的代数和。 对于变力对物体所做功,则可用求和来表示力所做功,即 i si F W i θcos ?∑=

动量、冲量和动量定理

高二物理选修3-5第一章选编:熊美先审核:高二物理备课组课型:新授课时间_____ 班级_____ 小组_____ 姓名_____ 组内评价_____ 教师评价_____ 第一节动量、冲量和动量定理 三维目标 (一)知识与技能 1、理解动量和动量变化的矢量性,会计算一条直线上的物体动量的变化。 2、理解冲量的意义和动量定理及其表达式。 3、能利用动量定理解释有关现象和解决实际问题。 4、理解动量与动能、动量定理与动能定理的区别。 (二)过程与方法 在理解动量定理的确切含义的基础上正确区分动量改变量与冲量。 (三)情感、态度与价值观 培养逻辑思维能力,培养逻辑思维能力,会应用动量定理分析计算有关问题。 教学重点:动量、冲量的概念和动量定理。 教学难点:动量的变化。 课前预习 1.冲量:在物理学中,物体受到的_____与力的__________的乘积叫做力的冲量,用公式表示为I=______,冲量是____量,它的方向跟_____的方向相同,在国际单位制中的单位是______,符号是______。 2.动量:物体的______和______的乘积叫做动量,用公式表示为p=_____,动量是-____量,它的方向跟______的方向相同,在国际单位制中的单位是_________,符号是- ______。 3.动量的变化量:Δp=______,Δp是_____量,Δp的方向与_____的方向相同。 4.动量定理:物体所受_______的冲量等于物体_______________,这个结论叫动量定理。 5.动量定理的应用 (1)物体的动量变化一定的情况下:力作用时间越短,力就越_____; 作用时间越长,力就越_____。 (2)作用力一定的情况下:力的作用时间越长,动量的变化就越 _____;力的作用时间越短,动量变化就越_____。 新课引入 如图1所示,一个大人从你身旁走过,不小心碰了你一下,可以使你打个趔趄,甚至摔倒,大人则安然无事。但是,如果碰你的是个小孩,尽管他走得跟那个大人一样快,打趔趄甚至摔倒的可能就是他。根据前面所学习的牛顿第三定律知,大人和小孩受到的作用力的大小是相等的,那么两者为什么出现了不同的情况?可见,当我们考虑一个物体的运动效果时,只考虑运动速度是不够的,还必须把物体的质量考虑进去,那么mv是描述什么的物理量? 课堂探究 一、动量 1、概念:p=______,动量是_____量,它的方向与物体运动速度的方向一致。只要m 的大小、v的大小和方向三者中任一因素发生了变化,物体的动量就改变。 2、思考:(1)动量除了具有矢量性外,还有什么性质?

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

冲量,动量定理教案

动量定理 1.动量 (1)定义:运动物体的质量和速度的乘积叫做动量,p =mv 动量的单位:kg ·m/s. (2)物体的动量表征物体的运动状态,其中的速度为瞬时速度,通常以地面为参考系. (3)动量是矢量,其方向与速度v 的方向相同. 两个物体的动量相同含义:大小相等,方向相同. (4)注意动量与动能的区别和联系: 动量、动能和速度都是描述物体运动的状态量; 动量是矢量,动能是标量; 动量和动能的关系是:p 2=2mE k . 2.动量的变化量 (1)Δp =p t -p 0. (2)动量的变化量是矢量,其方向与速度变化Δv 的方向相同,与合外力冲量的方向 相同,跟动量的方向无关. (3)求动量变化量的方法: ①定义法 Δp =p t -p 0=mv 2-mv 1; ②动量定理法 Δp =Ft . 3.冲量 (1)定义:力和力的作用时间的乘积,叫做该力的冲量 I =Ft ,冲量的单位:N ·s. (2)冲量是过程量,它表示力在一段时间内的累积作用效果. (3)冲量是矢量,其方向由力的方向决定.如果在作用时间内力的方向不变,冲量的 方向就与力的方向相同. (4)求冲量的方法: ①定义法 I =Ft (适用于求恒力的冲量); ②动量定理法 I =Δp . 4、动量定理 (1)物体所受合外力的冲量,等于这个物体动量的增加量,这就是动量定理. 表达式为:Ft =p p -' 或 Ft =mv v m -' (2)动量定理的研究对象是单个物体或可视为单个物体的系统. 当研究对象为物体系时,物体系总动量的增量等于相应时间内物体系所受的合外 力的冲量. 所谓物体系总动量的增量是指系统内各物体的动量变化量的矢量和. 所谓物体系所受的合外力的冲量是指系统内各物体所受的一切外力的冲量的矢量和,而 不包括系统内部物体之间的相互作用力(内力)的冲量;这是因为内力总是成对出现的,而 且它们的大小相等、方向相反,其矢量和总等于零. (3)动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力.它可以是 恒力,也可以是变力. 当合外力为变力时,F 应该是合外力对作用时间的平均值. 说明: ①在打击和碰撞问题中,物体之间的相互作用力的很大,大小变化很快,作用时间

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

冲量动量动量定理

冲量、动量、动量定理 1、一帆船在静水中顺风飘行,风速为0v .问:船速多大时,风供给船的功率最大?设帆面是完全弹性面,且与风向垂直。(提示:空气碰到帆后按原来相对与帆的速度返回) 2、一盛水的容器沿倾斜角为θ的固定斜面向下滑动,从靠近容器底部的细管A 的管口向外喷水,水相对于容器速度为0v ,细管的内横截面积为S ,已知水和容器的总质量为M ,假设容器内水的质量可视为不变,水的密度是ρ,当容器下滑时,水面与斜面平行,试求容器底部与斜面间的动摩擦因数。 3、长为l ,质量为m 的柔然绳子放在水平桌面上,用手将绳子的一端以恒定的速度v 向上提起,求当提起高度为)(l x x <时手的拉力。 4、一根均匀柔软的链条悬挂在天花板上,且下端正好触地。若松开悬点,让链条自由下落,试证明,在下落过程中,链条对地板的作用力(约)等于已落在地板上的那段链条重的三倍。 5、如图所示,在光滑的水平面上静止放置两个相互接触的木块B A 、,质量分别为21m m 、。今有一子弹水平穿过木块B A 、的时间为21t t 、,试求最终木块B A 、运动的速度之比。 6、宇宙飞船在定向流动的陨石碎块粒子流中以速度v 迎着粒子流运行,然后飞船转头,开始以速度v 顺着粒子流方向运行,这时发动机的牵引力为原来的1/4。试求陨石粒子流的速度。设飞船可视为两端平坦的圆柱形,而粒子与飞船面的碰撞是完全弹性的。

动量、能量守恒、 1、如图所示,质量为m ,从高度为h ,质量为M 的光滑斜面顶端滑下,斜面的倾角为θ,放在光滑水平桌面上,问:(1)m 滑到底端时,M 后退了多少?(2)m 对M 做功多少? 2、如图所示,设重物A 和B 的质量分别为m A 和m B ,用柔软、不可伸长的轻绳相连跨过一轻质滑轮置于带平台的斜劈C 上,斜劈放在光滑地板上,质量为M 。试求,当A 沿斜面下移距离l 时,此斜劈C 移动了多少距离? 3、一个砂漏(古代的一种计时器)置于一个盘秤上,初始时瓶中的所有砂子都放在上面的容器里,如图所示。瓶的质量为M ,瓶中砂子的质量为m 。在t=0时,砂子开始流入下面的容器,砂子以质量变化率为常数( )m t l D =D 流下。画出t ≥0的全部时间内秤的读数W 与时 间t 的函数曲线。 4、由喷泉中喷出的水柱,把一个质量为m 的桶倒顶在空中,水以速率为0v 、恒定的质量曾率(单位时间内喷出的质量)k t m =??从地下射向空中。求垃圾桶可停留的最大高度。设水柱喷到桶底后以相同的速率返回。

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

相关主题
文本预览
相关文档 最新文档