当前位置:文档之家› 高中数学常用结论集锦

高中数学常用结论集锦

高中数学常用结论集锦
高中数学常用结论集锦

1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == .

2U U A B A A B B A B C B C A =?=???? U A C B ?=Φ U C A B R ?=

3. 若A={123,,n a a a a },则A的子集有2n

个,真子集有(2n

-1)个,非空真子集有(2n

-2)个

4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠.

三次函数的解析式的三种形式①一般式32()(0)f x ax bx cx d a =+++≠ ②零点式123()()()()(0)f x a x x x x x x a =---≠

5.设[]2121,,x x b a x x ≠∈?那么

[]1212()()()0x x f x f x -->?[]1212()()

0(),f x f x f x a b x x ->?-在上是增函数;

[]1212()()()0x x f x f x --

[]1212

()()

0(),f x f x f x a b x x -

设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.

6.函数()y f x =的图象的对称性:

①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-=

②函数()y f x =的图象关于直2

a b

x +=对称()()f a x f b x ?+=-()()f a b x f x ?+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ?=--

函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ?

=--

7.两个函数图象的对称性:

①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b

x m

+=

对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称

③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-

④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- ⑤函数)(x f y =和)(1

x f y -=的图象关于直线y=x 对称.

8.分数指数幂

m n

a

=0,,a m n N *>∈,且1n >).

1

m n

m n

a

a

-

=

(0,,a m n N *

>∈,且1n >).

9. log (0,1,0)b a N b a N a a N =?=>≠>.

log log log a a a M N MN +=(0.1,0,0)a a M N >≠>>

log log log a a a

M

M N N

-=(0.1,0,0)a a M N >≠>>

10.对数的换底公式 log log log m a m N N a

=.推论 log log m n

a a n

b b m =.

对数恒等式log a N

a

N =(0,1a a >≠)

11.11

,

1,2n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).

12.等差数列{}n a 的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;

13.等差数列{}n a 的变通项公式d m n a a m n )(-+=

对于等差数列{}n a ,若q p m n +=+,(m,n,p,q 为正整数)则q p m n a a a a +=+。

14.若数列{}n a 是等差数列,n S 是其前n 项的和,*

N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。如下图所

示:

k

k

k k

k S S S k k S S k k k a a a a a a a a 3232k

31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s +=

1(1)2n n na d -=+211

()22

d n a d n =+-. 15.数列{}n a 是等差数列?n a kn b =+,数列{}n a 是等差数列?n S =2

An Bn +

16.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质: ○

1前n 项的和偶奇S S S n += ○2当n 为偶数时,d 2n

S =-奇偶S ,其中d 为公差;

3当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 2

1

n S -=,

11S S -+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S S S S S S n (其中中a 是等差数列的中间一项)

17.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'

12-n S , 则

'1

2

1

2--=n n n n S S b a 。 18.等比数列{}n a 的通项公式1

*11()n n

n a a a q

q n N q

-==

?∈; 等比数列{}n a 的变通项公式m n m n q a a -=

其前n 项的和公式11

(1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a q

q q s na q -?≠?

-=??=?.

19. 对于等比数列{}n a ,若v u m n +=+(n,m,u,v 为正整数),则v u m n a a a a ?=?

也就是: =?=?=?--2

3121n n n a a a a a a 。如图所示:

n

n a a n a a n n a a a a a a ??---11

2,,,,,,12321

20. 数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列。如下图所示:

k

k

k k

k S S S k k S S k k k a a a a a a a a 3232k

31221S 321-+-+++++++++++ 21. 同角三角函数的基本关系式 2

2

sin cos 1θθ+=,tan θ=θ

θ

cos sin ,tan 1cot θθ?= . 2

21

1tan cos αα

+=

22. 正弦、余弦的诱导公式

21

2(1)sin ,sin()2(1)s ,n

n n n co n απαα-?

-?+=??-?为偶数为奇数

212(1)s ,s()2(1)sin ,n

n co n n co n απαα+?

-?+=??-?

为偶数为奇数

即:奇变偶不变,符号看象限,如cos()cos ,sin()sin 22

sin()sin ,cos()cos ππ

αααα

πααπαα

+=-+=-=-=-

23. 和角与差角公式

sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;

tan tan tan()1tan tan αβ

αβαβ

±±= .

22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.

sin cos a b αα+

)α?+(辅助角?所在象限由点(,)a b 的象限决定,tan b

a

?=

). 24. 二倍角公式 sin 2sin cos ααα=.

2222cos 2cos sin 2cos 112sin ααααα=-=-=-.(升幂公式)

221cos 21cos 2cos ,sin 22αα

αα+-==(降幂公式)

2

2tan tan 21tan α

αα

=-. 25.万能公式:22tan sin 21tan ααα=+, 22

1tan cos 21tan α

αα-=+ 26.半角公式:sin 1cos tan 21cos sin ααα

αα

-==+

27. 三函数的周期公式

函数sin()y A x ω?=+,x ∈R 及函数cos()y A x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T π

ω

=;

若ω未说明大于0,则2||

T πω=

函数tan()y x ω?=+,,2

x k k Z π

π≠+

∈(A,ω,?为常数,且A ≠0,ω>0)的周期T πω

=

. 28. sin y x =的单调递增区间为2,222k k k Z ππππ?

?-+∈???

?单调递减区间为

32,222k k k Z ππππ?

?++∈???

?,对称轴为()2x k k Z ππ=+∈,对称中心为(),0k π()k Z ∈ 29. cos y x =的单调递增区间为[]2,2k k k Z πππ-∈单调递减区间为[]2,2k k k Z πππ+∈,

对称轴为()x k k Z π=∈,对称中心为,02k π

π??

+ ??

?

()k Z ∈ 30. tan y x =的单调递增区间为,22k k k Z ππππ?

?-+∈ ??

?,对称中心为(,0)()2k k Z π∈

31. 正弦定理

2sin sin sin a b c

R A B C === 32. 余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-; 222

2cos c a b ab C =+-.

33.面积定理(1)111

222

a b c S ah bh ch =

==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111

sin sin sin 222

S ab C bc A ca B ===.

(3)OAB S ?=1tan 2

OA OB θ (θ为,OA OB 的夹角)

34.三角形内角和定理 在△ABC 中,有

()222

C A B A B C C A B πππ+++=?=-+?

=-222()C A B π?=-+. 35.平面两点间的距离公式

,A B d

=||AB =

=11(,)x y ,B 22(,)x y ).

36.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a ∥b ?b =λa 12210x y x y ?-=. a ⊥b(a ≠0)?a ·b=012120x x y y ?+=.

37.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=

,则

121

211x x x y y y λλλλ+?=??+?+?=?+?

?12

1OP OP OP λλ+=+ ?12

(1)OP tOP t OP =+- (11t λ=+). 38.若OA xOB yOB =+

则A,B,C 共线的充要条件是x+y=1

39. 三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐

标是123123

(,)33

x x x y y y G ++++.

40.点的平移公式 ''''

x x h x x h y y k y y k

??=+=-?????=+=-????'

'OP OP PP ?=+ (图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''

(,)P x y ,且'PP

的坐标为(,)h k ).

41.常用不等式:

(1),a b R ∈?2

2

2a b ab +≥(当且仅当a =b 时取“=”号).

(2),a b R +∈

?

2

a b

+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>

(4)b a b a b a +≤+≤-注意等号成立的条件

(5)1

0,0)112a b a b a b

+≤≤≤>>+

42.极值定理 已知y x ,都是正数,则有

(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2;

(2)如果和y x +是定值s ,那么当y x =时积xy 有最大值

24

1s . 43.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠?=->,如果a 与2

ax bx c ++同号,则其解集在两

根之外;如果a 与2

ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

121212()()0()x x x x x x x x x <?--><或.

44.含有绝对值的不等式 当a> 0时,有

2

2x a x a a x a

22x a x a x a >?>?>或x a <-.

45.无理不等式(1

()0()0

()()f x g x f x g x ≥??

?≥??>?

(2

2()0

()0()()0()0()[()]f x f x g x g x g x f x g x ≥?≥??

>?≥??

?>?或.

(3

2()0()()0

()[()]f x g x g x f x g x ≥??

?>??

. 46.指数不等式与对数不等式 (1)当1a >时,

()()

()()f x g x a a f x g x >?>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >??

>?>??>?

.

(2)当01a <<时,

()()

()()f x g x a a f x g x >?<;()0log ()log ()()0()()a a f x f x g x g x f x g x >??

>?>??

47.斜率公式 21

21

y y k x x -=

-(111(,)P x y 、222(,)P x y )

直线的方向向量v=(a,b),则直线的斜率为k =(0)b

a a

48.直线方程的五种形式:

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

11

2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).

(4)截距式1(,x y

a b x y a b

+=≠≠分别为轴轴上的截距,且a 0,b 0)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

49.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212,l l k k b b ?=≠ ;②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,

①121221122100l l A B A B AC A C ?-=-≠ 且;②1212120l l A A B B ⊥?+=; 50.夹角公式 21

21

tan |

|1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)

1221

1212

tan A B A B A A B B α-=

+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2

π

.

直线l 1到l 2的角是21

21tan 1k k k k α-=+(111:l y k x b =+,222:l y k x b =+,121k k ≠-)

51.点到直线的距离

d =

(点00(,)P x y ,直线l :0Ax By C ++=).

52.两条平行线的间距离

d =

直线l 1:122120,0,)Ax By C l Ax By C C C ++=++=≠).

53. 圆的四种方程

(1)圆的标准方程 222

()()x a y b r -+-=.

(2)圆的一般方程 22

0x y Dx Ey F ++++=(2

2

4D E F +->0).

(3)圆的参数方程 cos sin x a r y b r θ

θ

=+??

=+?.

(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ). 54.圆中有关重要结论:

(1)若P(0x ,0y )是圆2

2

2

x y r +=上的点,则过点P(0x ,0y )的切线方程为2

00xx yy r +=

(2)若P(0x ,0y )是圆22

2()()x a y b r -+-=上的点,则过点P(0x ,0y )的切线方程为

200()()()()x a x a y b y b r --+--=

(3) 若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200xx yy r +=

(4) 若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200()()()()x a x a y b y b r --+--=

55.椭圆22

221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ

=??=?.

56.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +

=,)(2

2x c

a e PF -=.

56.椭圆22221(0)x y a b a b +=>>的准线方程为2a x c =±,椭圆22221(0)x y a b b a +=>>的准线方程为2

a y c =±

57.椭圆22221(0)x y a b a b +=>>的通径(过焦点且垂直于对称轴的弦)长为2

2b a

58.P 是椭圆22

221(0)x y a b a b

+=>>上一点,F 1,F 2 是它的两个焦点,∠F 1P F 2=θ

则△P F 1 F 2的面积=2

tan 2

b θ

59.双曲线22221(0,0)x y a b a b -=>>的准线方程为2

a x c =±

双曲线22221(0,0)x y a b b a -=>>的准线方程为2

a y c

60. 双曲线22

221(0,0)x y a b a b

-=>>的渐近线方程为b y x a =±

双曲线22

221(0,0)x y a b b a

-=>>的的渐近线方程为a y x b =±

61.P 是双曲线22

221(0,0)x y a b a b

-=>>上一点,F 1,F 2 是它的两个焦点,∠F 1P F 2=θ

则△P F 1 F 2的面积=2

cot 2

b θ

62.抛物线px y 22

=上的动点可设为P ),2(2

y p

y 或或)2,2(2

pt pt P P (,)x y ,其中 22y px = .

63. P(0x ,0y )是抛物线px y 22

=上的一点,F 是它的焦点,则|PF|=0x +2

p

64. 抛物线px y 22

=的焦点弦长22sin p l θ

=,其中θ是焦点弦与x 轴的夹角

65.直线与圆锥曲线相交的弦长公式 AB =

02=++c bx ax ,0?>,k 为直线的斜率).

若(弦端点A ),(),,(2211y x B y x 由方程???=+=0

)y ,x (F

b

kx y 消去x 得到20ay by c ++

=,0?>,k 为直线的斜率).则

12|AB y y =-=

66.圆锥曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.

67.共线向量定理 对空间任意两个向量a 、b (b ≠0 ),a ∥b ?存在实数λ使a =λb .

68.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++

, 则四点P 、A 、B 、C

是共面?1x y z ++=.

69. 空间两个向量的夹角公式 cos 〈a ,b 〉(a =123(,,)a a a ,b =123(,,)b b b ).

70.直线AB 与平面所成角sin ||||

AB m arc AB m β?= (m

为平面α的法向量). 71.二面角l αβ--的平面角cos ||||m n arc m n θ?= 或cos ||||

m n

arc m n π?-

(m ,n 为平面α,β的法向量).

72.设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO

与AC 所成的角为θ.则12cos cos cos θθθ=.

73.若夹在平面角为?的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ?θθθθθ?=+- ;

1212||180()θθ?θθ-≤≤-+ (当且仅当90θ= 时等号成立).

74.空间两点间的距离公式 若A 111

(,,)x y z ,B 222(,,)x y z

,则

,A B d =||AB =

=.

75.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ). 76.异面直线间的距离 ||

||

CD n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).

77.点B 到平面α的距离 ||||

AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 78. 222

2123l l l l =++222123cos cos cos 1θθθ?++=

(长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、)(立几中长方体对角线长的公式是其特例).

79. 面积射影定理 'cos S S θ

=

(平面多边形及其射影的面积分别是S 、'

S ,它们所在平面所成锐二面角的为θ).

80.球的半径是R ,则其体积是34

3

V R π=,其表面积是24S R π=. 81.1

,,3

V Sh V Sh =

=锥柱 82.分类计数原理(加法原理)12n N m m m =+++ . 83.分步计数原理(乘法原理)12n N m m m =??? .

84.排列数公式 m n A =)1()1(+--m n n n =

!)(m n n -.(n ,m ∈N *

,且m n ≤).

85.排列恒等式 (1)1(1)m m n n A n m A -=-+;(2)1m m n n n A A n m

-=-;(3)1

1

m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n n A A mA -+=+.

86.组合数公式 m

n C

=

m n m

m

A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ,m ∈N *

,且m n ≤). 87.组合数的两个性质(1) m n C =m n n C - ;(2) m n C +1-m n C =m

n C 1+

88.组合恒等式(1)11m

m n n n m C C m --+=;(2)1m m

n n n C C n m

-=-; (3)11m

m n n n C C m

--=; (4) 1

1k k n n kC nC --= (5)

∑=n

r r n

C

=n

2;(5)1

121++++=++++r n r n r r r r r r C C C C C . 89.排列数与组合数的关系是:m m

n n

A m C =?! . 90.二项式定理 n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式:r

r n r n r b a C T -+=1)210(n r ,,,

=. 91.等可能性事件的概率()m

P A n

=

. 92.互斥事件A ,B 分别发生的概率的和P(A +B)=P(A)+P(B). 93.n 个互斥事件分别发生的概率的和

P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).

94.独立事件A ,B 同时发生的概率P(A ·B)= P(A)·P(B).

95.n 个独立事件同时发生的概率 P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).

96.n 次独立重复试验中某事件恰好发生k 次的概率()(1)

.k k n k

n n P k C P P -=- 97.函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是

))((000x x x f y y -'=-.

98.导数与函数的单调性的关系

㈠0)(>'x f 与)(x f 为增函数的关系。

0)(>'x f 能推出)(x f 为增函数,但反之不一定。如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

㈡0)(≥'x f 与)(x f 为增函数的关系。

)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。当函

数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性。∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。

99.抽象函数的性质所对应的一些具体特殊函数模型:

)()()(2121x f x f x x f +=+?正比例函数)0()(≠=k kx x f

)()()(2121x f x f x x f ?=+;)()()(2121x f x f x x f ÷=-?()x f x a = ③

)()()(2121x f x f x x f +=?;)()()(

212

1

x f x f x x f -=?()log a f x x = ; 100.n 个数据123,,n x x x x ,则它们的平均数为1231

()n x x x x x n

=

++++ , 方差2

s =222

2

1231[()()()()]n x x x x x x x x n

-+-+-++-

高考数学常用公式及结论200条(一)【天利】

高考数学常用公式及结论200条(一) 湖北省黄石二中 杨志明 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11()f x N M N > --. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(), ()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈- =,则{}m i n () m i n ( ),() f x f p f q = ,若

高中数学重要结论集锦

高中数学重要结论集锦 1.函数()y f x =的图象的对称性: ①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②函数()y f x =的图象关于直2 a b x +=对称()()f a x f b x ?+=-()()f a b x f x ?+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ?=-- 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ? =-- 2.两个函数图象的对称性: ①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m += 对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- 3. 分数指数幂 m n a =0,,a m n N *>∈,且1n >). 1m n m n a a - = (0,,a m n N *>∈,且1n >) 4. 对数的换底公式 log log log m a m N N a =.推论 log log m n a a n b b m =. 对数恒等式log a N a N =(0,1a a >≠) 5. 若数列{}n a 是等差数列,n S 是其前n 项的和,* N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+- 5. 若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为' 12-n S , 则'1212--=n n n n S S b a 。等比数列{}n a 的通项公式1 *11()n n n a a a q q n N q -==?∈; 等比数列{}n a 的变通项公式m n m n q a a -= 其前n 项的和公式11 (1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a q q q s na q -?≠? -=??=? 6. 同角三角函数的基本关系式 22 sin cos 1θθ+=,tan θ=θ θ cos sin ,tan 1cot θθ?= . 2 21 1tan cos αα +=

高中高考数学所有二级结论《完整版》

高中数学二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为2 00))(())((r b y b y a x a x =--+-- ①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ①过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x ①抛物线)0(22 >=p px y 的切点弦方程为)(00x x p y y += ①二次曲线的切点弦方程为02 22000000=++++++++F y y E x x D y Cy x y y x B x Ax 9.①椭圆)0,0(122 22>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(122 22>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-

高中数学常用结论集锦

1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 2U U A B A A B B A B C B C A =?=???? U A C B ?=Φ U C A B R ?= 3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个 4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠. 三次函数的解析式的三种形式①一般式32()(0)f x ax bx cx d a =+++≠ ②零点式123()()()()(0)f x a x x x x x x a =---≠ 5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 6.函数()y f x =的图象的对称性: ①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②函数()y f x =的图象关于直2 a b x +=对称()()f a x f b x ?+=-()()f a b x f x ?+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ?=-- 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ? =-- 7.两个函数图象的对称性: ①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m += 对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- ⑤函数)(x f y =和)(1 x f y -=的图象关于直线y=x 对称. 8.分数指数幂 m n a =0,,a m n N *>∈,且1n >). 1 m n m n a a - = (0,,a m n N * >∈,且1n >). 9. log (0,1,0)b a N b a N a a N =?=>≠>. log log log a a a M N MN +=(0.1,0,0)a a M N >≠>> log log log a a a M M N N -=(0.1,0,0)a a M N >≠>>

高中数学常用二级结论

高中数学常用二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为2 00))(())((r b y b y a x a x =--+-- ②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ③过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x ④抛物线)0(22 >=p px y 的切点弦方程为)(00x x p y y += ⑤二次曲线的切点弦方程为02 22000000=++++++++F y y E x x D y Cy x y y x B x Ax 9.①椭圆)0,0(122 22>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(122 22>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-

高考数学常用结论集锦

高考数学常用结论集锦 一. 函数 1.函数 ()y f x =的图象的对称性: ①. 函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②. 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ?=-- 2.两个函数图象的对称性: ①. 函数 ()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②. 函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③. 函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④. 函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- 3. 对数的换底公式 log log log m a m N N a =. 推论 log log m n a a n b b m =. 对数恒等式log a N a N =(0,1a a >≠) 4. 导数: ⑴导数定义:f(x)在点x 0处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(000 00 ; ⑵常见函数的导数公式: ①' C 0=;②1')(-=n n nx x ;③x x cos )(sin '=;④. x x sin )(cos '-=; ⑤a a a x x ln )(' =;⑥x x e e =')(;⑦'1(log )log a a x e x =;⑧. x x 1)(ln '= ; ⑶导数的四则运算法则:;)(;)(;)(2 v v u v u v u v u v u uv v u v u '-'=''+'=''±'='± 二.数列 1. 若数列 {}n a 是等差数列,n S 是其前 n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。如图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s +=1(1)2n n na d -=+21 1()22d n a d n =+- 5. 若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'12-n S ,则'1 212--=n n n n S S b a 。 等比数列 {}n a 的通项公式1*11()n n n a a a q q n N q -== ?∈;等比数列{}n a 的变通项公式m n m n q a a -= 其前n 项的和公式 11 (1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a q q q s na q -?≠? -=??=? 三.三角函数 1. 同角三角函数的基本关系式 2 2sin cos 1θθ+=,tan θ=θ θ cos sin ,tan 1cot θθ ?=2 211tan cos αα += 2. 正弦、余弦的诱导公式: 2 12(1)sin ,sin()2(1)s ,n n n n co n απαα-?-?+=??-?为偶数为奇数 212(1)s ,s()2(1)sin ,n n co n n co n απαα+?-?+=??-? 为偶数为奇数 即:奇变偶不变,符号看象限,如cos()sin ,sin()cos 22 sin()sin ,cos()cos π π ααααπααπαα +=-+ =-=-=- 3. 和角与差角公式:sin()sin cos cos sin α βαβαβ±=±;cos()cos cos sin sin αβαβαβ ±=; tan tan tan()1tan tan αβαβαβ ±±= . 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);

新课标高中数学常用公式及常用结论大全

1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集 有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b x ,2?-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布 依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .

高中数学常用公式及知识点总结

高中数学常用公式及知识 点总结 Last updated on the afternoon of January 3, 2021

高中数学常用公式及知识点总结 一、集合 1、N 表示N+(或N*)表示Z 表示 R 表示Q 表示C 表示 2、含有n 个元素的集合,其子集有个,真子集有个,非空子集 有个,非空真子集有个。 二、基本初等函数 1、指数幂的运算法则 m n a a =m n a a ÷=()m n a =()m a b = n m a =m a -=()m ab = 2、对数运算法则及换底公式(01a a >≠且,M>0,N>0) log log a a M N +=log log a a M N -=log n a M = log a N a =log a b =log a a = log log a a a b =1log a = 3、对数与指数互化:log a M N =? 4、基本初等函数图像

(3)幂函数的图像和性质 三、函数的性质 1、奇偶性 (1)对于定义域内任意的x ,都有()()f x f x -=,则()f x 为函数,图像关于对称; (2)对于定义域内任意的x ,都有()()f x f x -=-,则()f x 为函数,图像关于对称; 2、单调性 设1122,[,],x a b x x x <∈,那么 12()()0()[,]f f f x x a b x --) 12()()0()[,]f f f x x a b x ->?在上是函数。(即 1212 ()() 0f x f x x x -<-) 3、周期性 对于定义域内任意的x ,都有()()f x T f x +=,则()f x 的周期为; 对于定义域内任意的x ,都有1 () ()()()f x f x T f x +=-或 ,则()f x 的周期为; 四、函数的导数及其应用 1、函数()y f x = 在点0x 处的导数的几何意义

高中数学二级结论

1高中数学二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆2 22)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为2 00))(())((r b y b y a x a x =--+-- ②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ③过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x ④抛物线)0(22 >=p px y 的切点弦方程为)(00x x p y y += ⑤二次曲线的切点弦方程为02 22000000=++++++++F y y E x x D y Cy x y y x B x Ax 9.①椭圆)0,0(122 22>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(122 22>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、

高考数学常用结论大盘点

2015年高考数学常用结论大盘点 江苏省苏州中学 王思俭(215007) 一、集合与逻辑常用用语 1. ()()();()()().U U U U U U C A B C A C B C A B C A C B ==I U U I 2. ;.A B A A B A B B A B =??=??I U 3.集合{}123,,,,()n A a a a a n N *=∈L ,子集个数为2n ,真子集个数为21n -。 4.集合A ,则,A A A ???;若A 为非空集合,则A ≠ ??. 5.原命题与逆否命题等价;逆命题与否命题等价;原命题、逆命题、否命题与逆否命题中,真命题个数是偶数个(即0,2,4)。 二、函数 6.对称性与周期性 (1)若()()f a x f b x +=-,,a b 为常数,则函数()f x 的图像关于直线2 a b x +=对称. (2) 若()()2f a x f b x m ++-=,,,a b m 为常数, 则函数()f x 的图像关于点(,) 2 a b m +成中心对称. (3)若()()f x a f x b +=-,,a b 为常数, 则函数()f x 为周期函数,周期为T a b =+. (4)若()()f a x f a x +=-,()()f b x f b x +=-,,a b 为不相等的常数, 则函数()f x 为周期函数,周期为2T a b =-. (5) 若()()f a x f a x +=-,()()0f b x f b x ++-=,,a b 为不相等的常数, 则函数()f x 为周期函数,周期为4T a b =-. (6) 若()()0f a x f a x ++-=,()()0f b x f b x ++-=,,a b 为不相等的常数, 则函数 ()f x 为周期函数,周期为2T a b =-. 7.函数的奇偶性 (1)()f x 的定义域()(),0a a a ->(或[],a a -),()f x 为奇函数,则()00f =,反之未必; (2) ()f x 为奇函数()()()0f x f x f x ?-+=?的图象关于原点中心对称; (3)()f x 为偶函数()()()0f x f x f x ?--=?的图象关于y 轴对称; (4)()()()0f x x R f x =∈?既是奇函数又是偶函数,但不唯一.

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

高中数学常用公式及常用结论

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b x ,2?-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.

高考数学备考笔记(常用公式及常用结论)

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ????U A C B ?=Φ U C A B R ?= 6 4.容斥原理 ()()card A B cardA cardB card A B =+- ()() card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+. 5.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

高考数学常用结论集锦

高考数学常用结论集锦 湖北省黄冈市团风中学 胡建平 1.函数()y f x =的图象的对称性: ①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②函数()y f x =的图象关于直2 a b x +=对称()()f a x f b x ?+=-()()f a b x f x ?+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ?=-- 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ? =-- 2.两个函数图象的对称性: ①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- 3. 分数指数幂 m n a =0,,a m n N *>∈,且1n >). 1m n m n a a - = (0,,a m n N * >∈,且1n >) 4. 对数的换底公式 log log log m a m N N a =.推论 log log m n a a n b b m =. 对数恒等式log a N a N =(0,1a a >≠) 5. 若数列{}n a 是等差数列,n S 是其前n 项的和,* N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+- 5. 若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为 '12-n S , 则 ' 1212--=n n n n S S b a 。等比数列{}n a 的通项公式1* 11()n n n a a a q q n N q -==?∈; 等比数列{}n a 的变通项公式m n m n q a a -=

高考数学所有公式及结论总结大全

高考数学常用公式及结论200条 1 高考数学常用公式及结论200条 集合 ● 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. ● 德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. ● 包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= ● 容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. ● 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的 真子集有2n –2个. ● 集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射; 二次函数,二次方程 ● 二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. ● 解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. ● 方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=;

高中数学公式及结论总结(完整版)

高中数学常用公式及结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2. 包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 3. 容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ 4. 德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == 5.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <-

? 11 ()f x N M N > --. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b x ,2?-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布 依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则 (1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402 p q p m ?-≥? ?->??; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()040 2 f m f n p q p m n >??>?? ?-≥? ?<-?或()0 ()0 f n af m =??>?;

相关主题
文本预览
相关文档 最新文档