Endophytic culturable bacteria colonizing Lavandula dentata
- 格式:pdf
- 大小:1008.11 KB
- 文档页数:7
口腔微生物名称中英对照(二)小编为大家整理了口腔微生物名称中英对照,希望对你有帮助哦! 口腔微生物名称中英对照(二):Mycobacterium leprae 麻风分枝杆菌Mycobacterium tuberculosis 结核分枝杆菌Neisseria 奈瑟菌属Neisseria flava 黄奈瑟菌Neisseria gonorrhoeae 淋病奈瑟菌Neisseria meningitidis 脑膜炎奈瑟菌Neisseria mucosa 粘液奈瑟菌Neisseria sicca 干燥奈瑟菌Neisseria subflava 微黄奈瑟菌Peptostreptococcus 消化链球菌属Peptostreptococcus anaerobius 厌氧消化链球菌Peptostreptococcus asaccharolyticus 不解糖消化链球菌Peptostreptococcus lanceolatus 矛形消化链球菌Peptostreptococcus magnus 大消化链球菌Peptostreptococcus micros 微小消化链球菌Peptostreptococcus parvalus 小消化链球菌Peptostreptococcus prevotii 普氏消化链球菌Peptostreptococcus productus 产生消化链球菌Peptostreptococcus taetradius 四联消化链球菌Porphyromonas 卟啉单胞菌属Porphyromonas asaccharolytica 不解糖卟啉单胞菌Porphyromonas circumdentaria 齿周卟啉单胞菌Porphyromonas endodontalis 牙髓卟啉单胞菌Porphyromonas gingivalis 牙龈卟啉单胞菌Porphyromonas levii 利氏卟啉单胞菌Porphyromonas salivosa 唾液卟啉单胞菌Prevotella 普氏菌属Prevotella bivia 二路普氏菌Prevotella buccae 颊普氏菌Prevotella buccalis 口颊普氏菌Prevotella corporis 人体普氏菌Prevotella denticola 栖牙普氏菌Prevotella heparinolytica 解肝素普氏菌Prevotella intermedia 中间普氏菌Prevotella loescheii 洛氏普氏菌Prevotella melaninogenica 产黑普氏菌Prevotella nigrescens 变黑普氏菌Prevotella oralis 口腔普氏菌Prevotella oris口普氏菌Prevotella oulorum 龈炎普氏菌Prevotella veroralis 真口普氏菌Prevotella zoogleoformans 动胶普氏菌Propionibacterium 丙酸杆菌属Propionibacterium acnes 疮疱丙酸杆菌Propionibacterium avidum 贪婪丙酸杆菌Propionibacterium freudenreichii 费氏丙酸杆菌Propionibacterium granulosum 颗粒丙酸状菌Propionibacterium jensenii 詹氏丙酸杆菌Propionibacterium propionicum 丙酸丙酸杆菌Proteus 变形杆菌属Proteus mirabilis 奇异变形杆菌Proteus vulgaris 普通变形杆菌Rothia 罗氏菌属Rothia dentocariosa 龋齿罗氏菌Selenomonas 新月形单胞菌属Selenomonas artemidis 蛛形新月形单胞菌Selenomonas dianae 月神新月形单胞菌Selenomonas flueggei 福氏新月形单胞菌Selenomonas infelix 损伤新月形单胞菌Selenomonas noxia 有害新月形单胞菌Selenomonas sputigena 生痰新月形单胞菌Staphylococcus 葡萄球菌属Staphylococcus aureus 金黄色葡萄球菌Staphylococcus capitis 头葡萄球菌Staphylococcus epidermidis 表皮葡萄球菌Staphylococcus saccharolyticus 解糖葡萄球菌Staphylococcus salivarius 唾液葡萄球菌Staphylococcus saprophyticus 腐生葡萄球菌Staphylococcus schleiferi 施氏葡萄球菌Stomatoccus 口腔球菌属Stomatoccus mucilaginosus 粘滑口腔球菌Streptococcus 链球菌属Intermedius streptococci 中间链球菌群Streptococcus anginosus 咽峡炎链球菌Streptococcus constellatus 星群链球菌Streptococcus intermedius 中间链球菌Mutans streptococci 变形链球菌群Streptococcus cricetus 仓鼠链球菌Streptococcus downei 汗毛链球菌Streptococcus ferus 野鼠链球菌Streptococcus macacae 猕猴链环菌Streptococcus mutans 变形链球菌Streptococcus rattus 大鼠链球菌Streptococcus sobrinus 远缘链球菌Oralis streptococci 口腔链球菌群Streptococcus crista 嵴链球菌Streptococcus gordonii 格登链球菌Streptococcus mitis 轻链球菌Streptococcus oralis 口腔链球菌Streptococcus parasanguis 副血链球菌Streptococcus sanguis 血链球菌Pyogenic hemolytic streptococci 化脓性溶血性链球菌群Streptococcus pneumoniae 肺炎链球菌Streptococcus pyogenes 酿脓链球菌Salivarius streptococci 唾液链球菌群Streptococcus salivarius 唾液链球菌Streptococcus vestibularis 前庭链球菌Treponemas 密螺旋体属Treponemas denticola 栖牙密螺旋体Treponemas maltophilum 嗜麦芽糖密螺旋体Treponemas medium 中间密螺旋体Treponemas pallidum 苍白密螺旋体Treponemas pectinovorum 食果胶密螺旋体Treponemas phagedenis 溃蚀齿密螺旋体Treponemas socranskii 索氏密螺旋体Treponemas scaliodontium 曲齿密螺旋体Treponemas vicentii 文森密螺旋体Veillonella韦荣菌属Veillonella alcalescens 产碱韦荣菌Veillonella atypica 非典型韦荣菌Veillonella dispar 殊异韦荣菌Veillonella parvula 小韦荣菌Veillonella ratti 大鼠韦荣菌Vibrios 弧菌属Vibrios cholera 霍乱弧菌Vibrios parahaemolyticus 副溶血霍乱弧菌Wolinella 沃廉菌属Wolinella succinogenes 产琥珀酸沃廉菌Fungi 真菌Candida 念珠菌属Candida albicans 白色念珠菌Candida krusei 克柔念珠菌Candida pseudotropicalis 伪热带念珠菌Candida stellatoidea 类星形念珠菌Candida tropicalis 热带念珠菌Cryptococcus 隐球菌属Cryptococcus neoformans 新型隐球菌Yeasts 酵母菌Virus 病毒ademovirus 腺病毒cytomegalovirus(CMV) 巨细胞病毒Epstein-Barr virus(EBV) EB病毒herpes simplex virus(HSV) 单纯疱疹病毒herpesvirus 疱疹病毒human immunodeficiency virus(HIV) 人类免疫缺陷病毒human papillomavirus 人类乳头瘤病毒influenze virus 流行性感冒病毒measles virus 麻疹病毒mumps virus 流行性腮腺炎病毒parainfluenza virus 副流感病毒varicella-zoster virus(VZV) 水痘-带状疱疹病毒Chlamydiae 衣原体Chlalmydia pneumoniae 肺炎衣原体Chlalmydia psittaci 鹦鹉衣原体Mycoplasmas 枝原体Mycoplasmas hominis 人型枝原体Mycoplasmas orale 口腔枝原体Mycoplasma pneumoniae 肺炎枝原体Mycoplasma salivarium 唾液枝原体Ureaplasma urealyticum 解脲脲原体Rickettsia 立克次体Coxiella 柯克斯体属Rickettsia 立克次体属。
Abiotrophia adjacens 毗邻贫养菌Abiotrophia defectiva 软弱贫养菌Achromobacter spp 无色杆菌属某些种Acinetobacter /Pseudomonas spp 不动杆菌/假单胞菌属某些种Acinetobacter baumannii 鲍氏不动杆菌Acinetobacter calcoaceticus 醋酸钙不动杆菌Acinetobacter haemolyticus 溶血不动杆菌Acinetobacter johnsonii 约氏不动杆菌Acinetobacter junii 琼氏不动杆菌Acinetobacter lwoffii 鲁氏不动杆菌Acinetobacter radioresistens 抗辐射不动杆菌Acinetobacter spp 不动杆菌属某些种Acinetobacter spp/Pseudomonas spp 不动杆菌属某些种/假单胞菌属某些种Acinetobacter/Pseudomonas spp 不动杆菌/假单胞菌属某些种Actinobacillus actinomycetemcomitans 伴放线放线杆菌Actinomyces israelii 衣氏放线菌Actinomyces meyeri 麦氏放线菌Actinomyces naeslundii 内氏放线菌Actinomyces neuii anitratus 纽氏放线菌无硝亚种Actinomyces neuii neuii 纽氏放线菌纽氏亚种Actinomyces neuii radingae 纽氏放线菌罗亚种Actinomyces neuii turicensis 纽氏放线菌图列茨亚种Actinomyces odontolyticus 龋齿放线菌Actinomyces viscosus 粘放线菌Aerococcus viridans 绿浅气球菌Aeromonas caviae 豚鼠气单胞菌Aeromonas hydrophila 嗜水气单胞菌Aeromonas hydrophila gr. 嗜水气单胞菌群Aeromonas salmonicida achromogenes 杀鲑气单胞菌无色亚种Aeromonas salmonicida masoucida 杀鲑气单胞菌杀日本鲑亚种Aeromonas salmonicida salmonicida 杀鲑气单胞菌杀鲑亚种Aeromonas sobria 温和气单胞菌Agrobacterium radiobacter 放射形土壤杆菌Alcaligenes denitrificans 反硝化产碱菌Alcaligenes faecalis 粪产碱菌Alcaligenes spp 产碱菌属某些种Alcaligenes xylosoxidans 木糖氧化产碱菌Alloiococcus otitis 耳炎差异球菌Anaerobiospirllum succiniproducens 产琥珀酸厌氧螺菌Arachnia propionica 丙酸蛛菌Arcanobacterium bernardiae 伯纳德隐秘杆菌Arcanobacterium haemolyticum 溶血隐秘杆菌Arcanobacterium pyogenes 化脓隐秘杆菌Arcobacter cryaerohoilus 嗜低温弓形杆菌Arthrobacter spp 节杆菌属某些种Bacteroides caccae 粪拟杆菌Bacteroides capillosus 多毛拟杆菌Bacteroides eggerthii 埃氏拟杆菌Bacteroides fragilis 脆弱拟杆菌Bacteroides levii 利氏拟杆菌Bacteroides merdae 屎拟杆菌Bacteroides ovatus 卵形拟杆菌Bacteroides stercoris 粪便拟杆菌Bacteroides thetaiotaomicron 多形拟杆菌Bacteroides uniformis 单形拟杆菌Bacteroides ureolyticus 解脲拟杆菌Bacteroides vulgatus 普通拟杆菌Bergeyella zoohelcum 动物溃疡伯格菌Bifidobacterium adolescentis 青春双岐杆菌Bifidobacterium bifidum 双岐双岐杆菌Bifidobacterium breve 短双岐杆菌Bifidobacterium dentium 齿双歧杆菌Bifidobacterium infantis 婴儿双岐杆菌Bifidobacterium spp 双岐杆菌属某些种Bordetella avium 鸟博德特菌Bordetella bronchiseptica 支气管炎博德特菌Bordetella spp 博德特菌属某些种Branhamella catarrhalis 粘膜炎布兰汉球菌Brevendimonas diminuta 缺陷短波单胞菌Brevendimonas vesicularis 泡囊短波单胞菌Brevibacterium casei 乳酪短杆菌Brevibacterium epidermidis 表皮短杆菌Brevibacterium spp 短杆菌属某些种Brucella spp 布鲁菌属某些种Budvicia aquatica 水生布戴约维采菌Burkholderia cepacia 洋葱伯克霍尔德菌Burkholderia diminuta 洋葱伯克霍尔德菌Burkholderia gladioli 唐菖蒲伯克霍尔德菌Burkholderia pseudomallei 类鼻疽伯克霍尔德菌Buttiauxella agrestis 乡间布丘菌Campylobacter coli 大肠弯曲杆菌Campylobacter fetus fetus 胚胎弯曲杆菌胚胎亚种Campylobacter fetus venerealis 胚胎弯曲杆菌性病亚种Campylobacter hyointestinalis 豚肠弯曲杆菌Campylobacter jejuni doylei 空肠弯曲杆菌德莱亚种Campylobacter jejuni jejuni 空肠弯曲杆菌空肠亚种Campylobacter lari 红嘴鸥弯曲杆菌Campylobacter lari UPTC 红嘴鸥弯曲杆菌UPTC变种Campylobacter mucosalis 粘膜弯曲杆菌Campylobacter sputorrum bubulus 唾液弯曲杆菌牛生物变种Campylobacter sputorrum fecalis 唾液弯曲杆菌粪生物变种Campylobacter upsaliensis 乌普萨拉弯曲杆菌Candida albicans 白假丝酵母Candida boidinii 博伊丁假丝酵母Candida catenulata 链状假丝酵母Candida ciferrii 西弗假丝酵母Candida colliculosa 软假丝酵母Candida curvata 弯假丝酵母Candida dattila dattila假丝酵母Candida drusei 克鲁斯假丝酵母Candida dubliniensis 杜氏假丝酵母Candida famata 无名假丝酵母Candida glabrata 光滑假丝酵母Candida globosa 球形假丝酵母Candida guilliermondii 高里假丝酵母Candida hellenical (=C. steatolytica) Candida holmii 霍氏假丝酵母Candida inconspicua 平常假丝酵母Candida intermedia 中间假丝酵母Candida kefyr 乳酒假丝酵母Candida krusei 克柔假丝酵母Candida lambica 郎比可假丝酵母Candida lipolytica 解脂假丝酵母Candida lusitaniae 葡萄牙假丝酵母Candida magnoliae 木兰假丝酵母Candida melibiosica 口津假丝酵母Candida membranaefaciens 璞膜假丝酵母Candida norvegensis 挪威假丝酵母Candida norvegica norvegica假丝酵母Candida parapsilosis 近平滑假丝酵母Candida pelliculosa 菌膜假丝酵母Candida pulcherrima 铁红假丝酵母Candida rugosa 皱落假丝酵母Candida rugosa 皱褶假丝酵母Candida sake 清酒假丝酵母Candida silvicola 森林假丝酵母Candida sphaerica 园球形假丝酵母Candida tropicalis 热带假丝酵母Candida utilis 产朊假丝酵母Candida valida 粗状假丝酵母Candida zeylanoides 诞沫假丝酵母Capnocytophaga gingivalis 牙龈二氧化碳嗜纤维菌Capnocytophaga ochracea 黄褐二氧化碳嗜纤维菌Capnocytophaga spp 二氧化碳嗜纤维菌属某些种Capnocytophaga sputigena 生痰二氧化碳嗜纤维菌CDC gruop IV C-2 CDC菌群IV C-2Cedecea davisae 戴氏西地西菌Cedecea lapagei 拉氏西地西菌Cedecea neteri 奈氏西地西菌Cedecea spp 西地西菌属某些种Cellulomonas spp 纤维单胞菌属某些种Cellulomonas turbata 特氏纤维单胞菌Ceotruchum candidum 假丝地霉Ceotruchum capitatum 头状地霉Ceotruchum fermenfans 发酵地霉Ceotruchum penicillatum 潘氏地霉Ceotruchum spp 地霉菌属某些种Chromobacterium violaceum 紫色色杆菌Chryseobacterium indologenes 产吲哚金黄杆菌Chryseobacterium meningosepticum 脑膜脓毒性金黄杆菌Chryseomonas luteola 浅黄金色单胞菌Citrobacter amalonaticua 无丙二酸柠檬酸杆菌Citrobacter braakii 布氏柠檬酸杆菌Citrobacter farmeri 法氏柠檬酸杆菌Citrobacter freundii 弗氏柠檬酸杆菌Citrobacter freundii group 弗氏柠檬酸杆菌群Citrobacter koseri 柯氏柠檬酸杆菌Citrobacter koseri 克氏柠檬酸杆菌Citrobacter koseri (= C.diversus) 克氏柠檬酸杆菌(=差异柠檬酸杆菌)Citrobacter koseri/amalonaticus 克氏/无丙二酸柠檬酸杆菌Citrobacter youngae 杨氏柠檬酸杆菌Clostridium acetobutylicum 丙酮丁醇梭杆菌Clostridium barati 巴氏梭菌Clostridium beijerinckii 拜氏梭菌Clostridium beijerinckii /butyricum 拜氏/丁酸梭菌Clostridium bifermentans 双酶梭菌Clostridium botlinum 肉毒梭菌Clostridium butyricum 丁酸梭菌Clostridium cadaveris 尸毒梭菌Clostridium clostridiiforme 梭状梭菌Clostridium difficile 艰难梭菌Clostridium fallax 谲诈梭菌Clostridium glycolicum 乙二醇梭菌Clostridium hastiforme 矛形梭菌Clostridium histolyticum 溶组织梭菌Clostridium innocuum 无害梭菌Clostridium innocuum 无害芽胞梭菌Clostridium limosum 泥渣梭菌Clostridium paraputrificum 类腐败梭菌Clostridium perfringens 产气荚膜梭菌Clostridium ramosum 多枝梭菌Clostridium septicum 败毒梭菌Clostridium sordellii 索氏梭菌Clostridium sporogenes 生孢梭菌Clostridium spp 梭菌属某些种Clostridium subterminale 近端梭菌Clostridium tertium 第三梭菌Clostridium tetani 破伤风梭菌Clostridium tyrobutyricum 酪丁酸梭菌Comamonas acidovorans 食酸丛毛单胞菌Comamonas spp 丛毛单胞菌属某些种Comonas testosteroni 睾丸酮丛毛单胞菌Corynebacterium accolens 拥挤棒杆菌Corynebacterium afermentans 非发酵棒杆菌Corynebacterium amycolatum 无枝菌酸棒杆菌Corynebacterium aquaticum 水生棒杆菌Corynebacterium argentoratense 银色棒杆菌Corynebacterium auris 耳棒杆菌Corynebacterium bovis 牛棒杆菌Corynebacterium cystitidis 膀胱炎棒杆菌Corynebacterium diphtheriae belfanti Corynebacterium diphtheriae gravis 重白喉棒杆菌Corynebacterium diphtheriae mitis 缓和白喉棒杆菌Corynebacterium glucuronolyticum 解葡萄糖苷Corynebacterium group F- 1 F-1群棒杆菌Corynebacterium group G G群棒杆菌Corynebacterium jeikeium 杰氏棒杆菌Corynebacterium kutscher 库氏棒杆菌Corynebacterium macginleyi 麦氏棒杆菌Corynebacterium minutissimum 极小棒杆菌Corynebacterium pilosum 多毛棒杆菌Corynebacterium propinquum 丙酸棒杆菌Corynebacterium pseudodiphtheriticum 假白喉棒杆菌Corynebacterium pseudotuberculosis 假结核棒杆菌Corynebacterium renale 牛肾盂炎棒杆菌Corynebacterium renale group 牛肾盂炎棒杆菌群Corynebacterium seminale 生殖棒杆菌Corynebacterium striatum 纹带棒杆菌Corynebacterium ulcerans 溃疡棒杆菌Corynebacterium urealyticum 解脲棒杆菌Cryptococcus albidus 浅白隐球酵母Cryptococcus humicola 土生隐球菌Cryptococcus humicolus 土生隐球酵母Cryptococcus laurentii 罗伦隐球酵母Cryptococcus neoformans 新型隐球酵母Cryptococcus terreus 地生隐球酵母Cryptococcus uniguttulatus 指甲隐球酵母Cryytococcus neoformans 白地霉Debaryomyces polymorphus 多形德巴利酵母菌Dermabacter hominis 人皮肤杆菌Dermacoccus nishinomiyaensis 西宫皮肤球菌Dietzia spp 迪茨菌属某些种Edwardsiella hoshinae 保科爱德华菌Edwardsiella tarda 迟钝爱德华菌Eikenella corrodens 啮蚀艾肯菌Enterobacter aerogenes 产气肠杆菌Enterobacter amnigenus 河生肠杆菌Enterobacter asburiae 阿氏肠杆菌Enterobacter cancerogenus 生癌肠杆菌Enterobacter cloacae 阴沟肠杆菌Enterobacter gergoviae 日沟维肠杆菌Enterobacter intermedius 中间肠杆菌Enterobacter sakazakii 阪崎肠杆菌Enterobacter spp 肠杆菌属某些种Enterococcus avium 鸟肠球菌Enterococcus casselifavus 铅黄肠球菌Enterococcus durans 耐久肠球菌Enterococcus faecalis 粪肠球菌Enterococcus faecium 屎肠球菌Enterococcus gallinarum 鹑鸡肠球菌Enterococcus hirae 海氏肠球菌Enterococcus saccharolyticus 解糖肠球菌Erwinia spp 欧文菌属某些种Erysipelothrix rhusiopathiae 猪红斑丹毒丝菌Escherichia coli 大肠埃希菌Escherichia fergusonii 费格森埃希菌Escherichia hermannii 赫氏埃希菌Escherichia vulneris 伤口埃希菌Eubacterium aerofaciens 产气真杆菌Eubacterium lentum 迟缓真杆菌Eubacterium limosum 粘液真杆菌Ewingella americana 美洲爱文菌Flavimonas oryzihabitans 栖稻黄色单胞菌Fusobacterium mortiferum 死亡梭杆菌Fusobacterium necrogenes 坏疽梭杆菌Fusobacterium necrophorum 坏死梭杆菌Fusobacterium nucleatum 具核梭杆菌Fusobacterium varium 可变梭杆菌Gardnerella vaginalis 阴道加德纳氏菌Gemella haemolysans 溶血孪生球菌Gemella mobillorum 麻疹孪生球菌Geotrichum candidum 白地霉Geotrichum capitatum 头状地霉Geotrichum penicillatum 帚状地霉Gordona spp 戈登菌属某些种Haemophilus aphrophilus 嗜沫嗜血杆菌Haemophilus influenzae 流感嗜血杆菌Haemophilus influenzae I 流感嗜血杆菌Ⅰ型Haemophilus influenzae II 流感嗜血杆菌Ⅱ型Haemophilus influenzae III 流感嗜血杆菌Ⅲ型Haemophilus influenzae IV 流感嗜血杆菌Ⅳ型Haemophilus influenzae V 流感嗜血杆菌Ⅴ型Haemophilus influenzae VI 流感嗜血杆菌Ⅵ型Haemophilus influenzae VII 流感嗜血杆菌Ⅶ型Haemophilus influenzae VIII 流感嗜血杆菌Ⅷ型Haemophilus parainfluenzae 副流感嗜血杆菌Haemophilus parainfluenzae I 副流感嗜血杆菌Ⅰ型Haemophilus parainfluenzae II 副流感嗜血杆菌Ⅱ型Haemophilus parainfluenzae III 副流感嗜血杆菌Ⅲ型Haemophilus parainfluenzae IV 副流感嗜血杆菌Ⅳ型Haemophilus parainfluenzae V 副流感嗜血杆菌Ⅴ型Haemophilus parainfluenzae VI 副流感嗜血杆菌Ⅵ型Haemophilus parainfluenzae VII 副流感嗜血杆菌Ⅶ型Haemophilus parainfluenzae VIII 副流感嗜血杆菌Ⅷ型Haemophilus paraphrophilus 副嗜沫嗜血杆菌Haemophilus somnus 睡眠嗜血杆菌Hafinia alvei 蜂房哈夫尼亚菌Hansenula polymorpha 多形汉逊酵母Hansenula saturnus 土星汉逊酵母Helicobacter cinaedi 同性恋螺杆菌Helicobacter fennelliae 芬纳尔螺杆菌Helicobacter pylori 幽门螺杆菌Klebsiella ornithinolytica 解鸟氨酸克雷伯菌Klebsiella oxytoca 产酸克雷伯菌Klebsiella planticola 植生克雷伯菌Klebsiella pneumonia ozaenae 肺炎克雷伯菌臭鼻亚种Klebsiella pneumonia rhinoscleromatis 肺炎克雷伯菌鼻硬结亚种Klebsiella pneumoniae pneumoniae 肺炎克雷伯菌肺炎亚种Klebsiella terrigena 土生克雷伯菌Kloeckera apiculata 柠檬克勒克酵母Kloeckera apis 蜜蜂克勒克酵母Kloeckera japonica 日本克勒克酵母Kloeckera spp 克勒克酵母某些种Kluyvera ascorbata 抗坏血酸克吕沃尔菌Kluyvera cryocrescens 栖冷克吕沃尔菌Kluyvera spp 克吕沃尔菌属某些种Kluyvera terrigena 土生克雷伯菌Kocuria kristinae 克氏库克菌Kocuria roseus (=Micrococcus roseus) 玫瑰色库克菌(=玫瑰色微球菌)Kocuria varians (=Micrococcus varians) 变异库克菌(=变异微球菌)Koserella trabulsii 特氏科泽菌Kytococcus sedentaruis 不动盖球菌Lactobacillus acidophilus 嗜酸乳杆菌Lactobacillus fermentium 发酵乳杆菌Lactobacillus jensenii 詹氏乳杆菌Lactococcus garvieae 格氏乳球菌Lactococcus lactis cremoris 乳酸乳球菌乳脂亚种Lactococcus lactis lactis 乳酸乳球菌乳亚种Lactococcus raffinolactis 棉子糖乳球菌Leclercia adcarboxglata 非脱羧勒克菌Leptotrichia buccalis 口腔纤毛菌Leuconostoc spp 明串珠菌属某些种Listeria grayi 格氏利斯特菌Listeria innocua 无害利斯特菌Listeria ivanovii 伊氏利斯特菌Listeria ivanovii 依氏利斯特菌Listeria monocytogenes 单核细胞增生利斯特菌Listeria seeligeri 斯氏利斯特菌Listeria spp 利斯特菌属某些种Listeria welshimeri 威氏利斯特菌Listeria welshimeri 魏氏利斯特菌Luconostoc spp 明串珠菌属某些种Microbacterium spp 微小杆菌属某些种Micrococcus luteus 滕黄微球菌Micrococcus lylae 莱拉微球菌Micrococcus lylae 里拉微球菌Micrococcus spp 微球菌属某些种Mobiluncus curtisii 克氏动弯杆菌Mobiluncus mulieris 羞怯动弯杆菌Mobiluncus spp 动弯杆菌属某些种Moellerella spp 米勒菌属某些种Moellerella wisconsensis 威斯康星米勒菌Moraxella lacunata 腔隙莫拉菌Moraxella nonliquefaciens 非液化莫拉菌Moraxella osloensis 奥斯陆莫拉菌Moraxella spp 莫拉菌属某些种Morganella morganii 摩氏摩根菌Neisseria cinerea 灰色奈瑟球菌Neisseria gonorrhoeae 淋病奈瑟球菌Neisseria lactamica 乳糖奈瑟球菌Neisseria meningitidis 脑膜炎奈瑟球菌Neisseria mucosa 粘液奈瑟球菌Neisseria polysaccharea 多糖奈瑟球菌Neisseria sicca 干燥奈瑟球菌Neisseria spp 奈瑟菌属某些种Neisseria subflava 微黄奈瑟球菌Nocardia spp 奴卡菌属某些种Ochrobactrum anthropi 人苍白杆菌Oerskovia spp 厄氏菌属某些种Oerskovia xanthineolytica 溶黄嘌呤厄菌Oligella ureolytica 解脲寡源杆菌Oligella urethralis 尿道寡源杆菌Pantoea spp 泛菌属某些种Pasteurella aerogenes 产气巴斯德菌Pasteurella gr.EF4 巴斯德菌群EF4Pasteurella haemolytica 溶血巴斯德菌Pasteurella multocida 多杀巴斯德菌Pasteurella pneumotropica 侵肺巴斯德菌Pasteurella spp 巴斯德菌属某些种Peptococcus niger 黑色消化球菌Peptostreptococcus anaerobius 厌氧消化链球菌Peptostreptococcus asaccharolyticus 不解糖消化链球菌Peptostreptococcus indolicus 产吲哚消化链球菌Peptostreptococcus indolicus 吲哚消化链球菌Peptostreptococcus magnus 大消化链球菌Peptostreptococcus micros 微小消化链球菌Peptostreptococcus prevotii 普氏消化链球菌Peptostreptococcus spp 消化链球菌属某些种Photobacterium damsela 美人鱼发光杆菌Pichia carsonii 卡氏毕赤酵母Pichia etchellsii 埃切毕赤酵母Pichia farinosa 粉状毕赤酵母Pichia ohmeri 奥默毕赤酵母Pichia spartinae 斯巴达克毕赤酵母Plesimonas shigelloides 类志贺邻单胞菌Porphyromonas asaccharolytica 不解糖卟啉单胞菌Porphyromonas endodontalis 牙髓卟啉单胞菌Porphyromonas gingivalis 牙龈卟啉单胞菌Prevotella bivia 二路普雷沃尔菌Prevotella buccae 颊普雷沃菌Prevotella buccalis 口颊普雷沃菌Prevotella denticola 栖牙普雷沃菌Prevotella disiens 解糖胨普雷沃菌Prevotella intermedia 中间普雷沃菌Prevotella loescheii 洛氏普雷沃菌Prevotella melaninogenica 产黑色普雷沃菌Prevotella oralis 口腔普雷沃菌Prevotella oris(=Bacteroides oris) 口普雷沃菌(=口拟杆菌) Propionibacterium acnes 疮疱丙酸杆菌Propionibacterium avidum 贪婪丙酸杆菌Propionibacterium granulosum 颗粒丙酸杆菌Propionibacterium propionicum 丙酸丙酸杆菌Proteus mirabilis 奇异变形杆菌Proteus penneri 彭氏变形杆菌Proteus vuigaris 普通变形杆菌Prototheca wickerhamii 魏氏原壁菌Providencia alcalifaciens 产碱普罗威登斯菌Providencia rettgeri 雷氏普罗威登斯菌Providencia rustigianii 拉氏普罗威登斯菌Providencia stuartii 斯氏普罗威登斯菌Providencia stuartii/ alcalifaciens 司氏/产碱普罗威登斯菌Pseudomonas aeruginosa 铜绿假单胞菌Pseudomonas alcaligenes 产碱假单胞菌Pseudomonas fluorescens 荧光假单胞菌Pseudomonas mendocina 门多萨假单胞菌Pseudomonas pseudoalcaligenes 假产碱假单胞菌Pseudomonas putida 恶臭假单胞菌Pseudomonas spp 假单胞菌属某些种Pseudomonas sputita 恶臭假单胞菌Pseudomonas stutzeri 施氏假单胞菌Pseudomonsa aeruginosa 铜绿假单胞菌Pseudomonsa fluorescens 荧光假单胞菌Pseudomonsa pseudomallei 类鼻疽假单胞菌Pseudomonsa putida 恶臭假单胞菌Pseudomonsa spp 假单胞菌属某些种Rahnella aquatilis 水生拉恩菌Rhodococcus spp 红球菌属某些种Rhodotorula glutinis 红酵母Rhodotorula glutinis 粘红酵母Rhodotorula minuta 小红酵母Rhodotorula mucilaginosa 粘质红酵母Rothia dentocariosa 龋齿罗菌Saccharomyces cerevisiae 酿酒酵母Saccharomyces kluyverii 克鲁费酵母Salmonella arizonae 亚利桑那沙门菌Salmonella choleraesuis 猪霍乱沙门菌Salmonella enteritidis 肠炎沙门菌Salmonella gallinarum 鸡沙门菌Salmonella paratyphi A 甲型副伤寒沙门菌Salmonella paratyphi B 乙型副伤寒沙门菌Salmonella pullorum 鸡白痢沙门菌Salmonella spp 沙门菌属某些种Salmonella typhi 伤寒沙门菌Salmonella typhimurium 鼠伤寒沙门菌Serratia ficaria 无花果沙雷菌Serratia fonticola 居泉沙雷菌Serratia liquefaciens 液化沙雷菌Serratia marcescens 粘质沙雷菌Serratia odorifera 气味沙雷菌Serratia odorifera 1 气味沙雷菌1型Serratia odorifera 2 气味沙雷菌2型Serratia plymuthica 普城沙雷菌Serratia proteamaculans 变形斑沙雷菌Serratia putrefaciens 腐败沙雷菌Serratia rubidaea 深红沙雷菌Shewanella putrefaciens 腐败希瓦菌Shigella bogdii 鲍氏志贺菌Shigella dysenteriae 痢疾志贺菌Shigella flexneri 弗氏志贺菌Shigella sonnei 索氏志贺菌Shigella spp 志贺菌属某些种Sphingobacterium multivorum 多食鞘氨醇杆菌Sphingobacterium Spiritivovum 嗜神鞘氨醇杆菌Sphingobacterium spiritovorum 食神鞘氨醇杆菌Sphingomonas paucimobilis 少动鞘氨醇单胞菌Sporobolomyces salmonicolor 赭色掷孢酵母Staphylococcus arlettae 阿尔莱特葡萄球菌Staphylococcus aureus 金黄色葡萄球菌Staphylococcus auricularis 耳葡萄球菌Staphylococcus capitis 头状葡萄球菌Staphylococcus caprae 山羊葡萄球菌Staphylococcus carnosus 肉葡萄球菌Staphylococcus chromogenes 产色葡萄球菌Staphylococcus cohnii cohnii 科氏葡萄球菌科氏亚种Staphylococcus cohnii urealyticum 科氏葡萄球菌解脲亚种Staphylococcus epidermidis 表皮葡萄球菌Staphylococcus equorum 马胃葡萄球菌Staphylococcus gallinarum 鸡葡萄球菌Staphylococcus haemolyticus 溶血葡萄球菌Staphylococcus hominis 人葡萄球菌Staphylococcus hyicus 猪葡萄球菌Staphylococcus intermedius 中间葡萄球菌Staphylococcus kloosii 克氏葡萄球菌Staphylococcus lentus 缓慢葡萄球菌Staphylococcus lugdunensis 路邓葡萄球菌Staphylococcus saccharolylicus 解糖葡萄球菌Staphylococcus saprophyticus 腐生葡萄球菌Staphylococcus schleiferi 施氏葡萄球菌Staphylococcus sciuri 松鼠葡萄球菌Staphylococcus simulans 模仿葡萄球菌Staphylococcus warneri 沃氏葡萄球菌Staphylococcus xylosus 木糖葡萄球菌Stenotrophomonas maltophilia 嗜麦寡养食单胞菌Stenotrophomonas maltophilia 嗜麦芽寡养单胞菌Stomatococcus mucilaginosus 粘滑口腔球菌Streptococcus acidominimus 少酸链球菌Streptococcus agalactiae 无乳链球菌Streptococcus alactolyticus 非解乳糖链球菌Streptococcus anginosus 咽峡炎链球菌Streptococcus bovis I 牛链球菌Ⅰ型Streptococcus bovis II 牛链球菌Ⅱ型Streptococcus canis 狗链球菌Streptococcus constellatus 星座链球菌Streptococcus downei 汗毛链球菌Streptococcus dysgalactiae 停乳链球菌停乳亚种Streptococcus dysgalactiae equlsimilis 停乳链球菌似马亚种Streptococcus equi equi 马链球菌马亚种Streptococcus equi zooepidemicus 马链球菌兽瘟亚种Streptococcus equinus 马肠链球菌Streptococcus gordonii 格氏链球菌Streptococcus gr L L群链球菌Streptococcus intermadius 中间链球菌Streptococcus mitis 缓症链球菌Streptococcus mutans 变异链球菌Streptococcus oralis 口腔链球菌Streptococcus parasanguis 副血链球菌Streptococcus penumoniae 肺炎链球菌Streptococcus porcinus 豕链球菌Streptococcus pyogenes 化脓链球菌Streptococcus salivarius salivarius 唾液链球菌唾液亚种Streptococcus salivarius thermophilus 唾液链球菌嗜热亚种Streptococcus sanguis 血链球菌Streptococcus sobrinus 表兄链球菌Streptococcus suis I 猪链球菌Ⅰ型Streptococcus suis II 猪链球菌Ⅱ型Streptococcus uberis 乳房链球菌Streptococcus vestibularis 前庭链球菌Tatumella ptyseos 痰塔特姆菌Trichosporon asahii 阿氏丝孢酵母Trichosporon asteroides 星状丝孢酵母Trichosporon inkin 墨汁丝孢酵母Trichosporon mucoides 粘性丝孢酵母Trichosporon ovoides 卵形丝孢酵母Trichosporon spp 丝孢酵母某些种Veillonella parvula 小韦荣球菌Veillonella spp 韦荣氏球菌属某些种Versinia enterocolitica 小肠结肠炎耶尔森菌Versinia pseudotuberculosis 假结核耶尔森菌Vibrio alginolyiicus 解藻朊酸弧菌Vibrio cholerae 霍乱弧菌Vibrio fluvialis 弗氏弧菌Vibrio fluvialis 河流孤菌Vibrio hollisae 霍氏弧菌Vibrio metschnikovi 梅氏弧菌Vibrio mimicus 最小弧菌Vibrio parahaemolyticus 副溶血弧菌Vibrio vulnficus 创伤弧菌Weeksella virosa 有毒威克斯菌Weeksella zoohelcum 动物溃疡威克斯菌Yersinia enterocolitica 小肠结肠炎耶尔森菌Yersinia frederiksenii 弗氏耶尔森菌Yersinia intermedia 中间耶尔森菌Yersinia kristensenii 克氏耶尔森菌Yersinia pestis 鼠疫耶尔森菌Yersinia pseudotuberculosis 假结核耶尔森菌Yersinia ruckeri 鲁氏耶尔森菌Zygosaccharomyces spp 接合酵母属某些种。
中英文对照微生物名称中英文对照微生物名称及分类需氧革兰阳性球菌特征:呈单、双、四联、链状或簇状;触酶可阳性或阴性。
凝固酶阳性者包括金黄色葡萄球菌、猪葡萄球菌、中间葡萄球菌、路邓葡萄球菌和施氏葡萄球菌聚集亚种。
名称曾用名英文中文英文中文Catalase Positive触酶阳性CatalaseAlloiococcus otitis耳炎差异球菌Kocuria varians Micrococcu varians变异微球菌Kocuria kristinae Micrococcu kristinae克里斯廷微球菌Kocuria sedentarius Micrococcu sedentarius栖息微球菌Micrococcus luteus藤黄微球菌Micrococcus lytae里拉微球菌Staphylococcus aureus spp. 金黄色葡萄球菌aureus金黄色亚种Staphylococcus auricularis耳葡萄球菌Staphylococcus capitis spp.头状葡萄球菌capitis头亚种Staphylococcus capitis spp.头状葡萄球菌ureolytics解脲亚种Staphylococcus caprae山羊葡萄球菌Staphylococcus cohnii ssp.科氏葡萄球菌孔氏葡萄球菌cohnii科氏亚种Staphylococcus cohnii ssp.科氏葡萄球菌孔氏葡萄球菌urealyticum解脲亚种Staphylococcus epidermidis表皮葡萄球菌Staphylococcus albus白色葡萄球菌Staphylococcus hamolyticus溶血葡萄球菌Staphylococcus hominis spp人葡萄球菌人型葡萄球菌hominis人亚种Staphylococcus hyicus猪葡萄球菌Staphylococcus intermedius中间葡萄球菌Staphylococcus lugdunensis路邓葡萄球菌Staphylococcus pasteuri巴氏葡萄球菌Staphylococcus sacharolyticus解糖葡萄球菌Peptococcus sacharolyticus解糖消化球菌Staphylococcus saprophyticus spp.腐生葡萄球菌micrococcus subgroup 3微球菌亚组3saprophyticus腐生亚种Staphylococcus schleiferi spp.施氏葡萄球菌coagulans凝聚亚种Staphylococcus schleiferi spp.施氏葡萄球菌schleiferi施氏亚种Staphylococcus simulans模仿葡萄球菌Staphylococcus warneri沃氏葡萄球菌华纳氏葡萄球菌Staphylococcus xylosus木糖葡萄球菌Stomatococcus mucilaginosus粘滑口腔球菌Catalase negative触酶阴性CatalaseAbiotrophia adiacens Strptococcus adjacens毗邻链球菌Nutritionally variant strptococciAbiotrophia defectiva Strptococcus defectiva软弱链球菌Nutritionally variant strptococciAbiotrophia elegans Nutritionally variant strptococciAerococcus urinae脲气球菌Aerococcus viridans浅绿气球菌Dolosigranulum pigrum懒惰狡诈球菌Enterococcus avium鸟肠球菌Strptococcus avium鸟链球菌(Group D enterococcus)D组肠球菌Enterococcus casseliflavus铅黄肠球菌Strptococcus casseliflavus铅黄链球菌(Group D enterococcus)D组肠球菌Enterococcus cecorum盲肠肠球菌Strptococcus cecorum盲肠链球菌Enterococcus dispar殊异肠球菌Enterococcus durans耐久肠球菌Streptococcus durans耐久(坚忍)链球菌(Group D enterococcus)D组肠球菌Enterococcus faecalis粪肠球菌Streptococcus faecalis粪链球菌(Group D enterococcus)D组肠球菌Enterococcus faecium屎肠球菌Streptococcus faecium屎链球菌(Group D enterococcus)D组肠球菌Enterococcus flavescens 黄色肠球菌Enterococcus gallinarum鹑鸡肠球菌Streptococcus gallinarum鸡链球菌Enterococcus mundtii蒙氏肠球菌Enterococcus pseudoavium 类鸟肠球菌Faklamia hominisFaklamia ignavaFaklamia languidaFaklamia sourekiiGemella bereri Gemella bereriaeGemella haemolysans溶血孪生球菌Neisseria haemolysans溶血奈瑟氏菌Gemella morbilorium麻疹孪生球菌Streptococcus morbilorum麻疹链球菌Peptostreptococcus morbilorum麻疹消化链球菌Gemella sanguisGlobicatella sanguis血格露比卡氏菌Salt-tolerent viridans strptococci耐盐草绿色链球菌Helcococcus kunzii孔氏创伤球菌Ignavigranum ruoffiaeLactococcus garvieae格氏乳球菌Streptococcus garvieae牛乳腺炎链球菌Lancefield group NLactococcus lactis乳酸乳球菌Leuconostoc citreum柠檬明串珠菌Leuconostoc cremoris乳脂明串珠菌Leuconostoc dextranicum葡聚糖明串珠菌Leuconostoc lactis乳明串珠菌Leuconostoc mesenteroides肠膜明串珠菌Leuconostoc pseudomesenteroides假肠膜明串珠菌Oenococcus oeni酒酒球菌Leuconostoc oenos酒明串珠菌Pediococcus acidilactici乳酸片球菌Pediococcus damnosus有害片球菌Pediococcus dextrinicus糊精片球菌Pediococcus equinus马肠片球菌Streptococcus equinus马肠链球菌Pediococcus parvulus小片球菌Pediococcus pentosaceus戊糖片球菌Streptococcus acidominimus少酸链球菌Streptococcus bovis group牛链球菌组Group D nonenterococcus D组链球菌Streptococcus bovis牛链球菌Streptococcus equi马链球菌Streptococcus alactolyticus非解乳糖链球菌Streptococcus milleri group米氏链球菌组Viridans streptococci草绿色链球菌Streptococcus anginosus咽峡炎链球菌Streptococcus constellatusStreptococcus intermedius中间链球菌Streptococcus mitis group缓症链球菌组Viridans streptococci 草绿色链球菌Streptococcus mitis缓症链球菌Streptococcus mitior温和链球菌Streptococcus sanguis II血链球菌 IIStreptococcus oralis口腔链球菌Streptococcus mutans group变异链球菌组Viridans streptococci草绿色链球菌Streptococcus cricetus大鼠链球菌Streptococcus mutans变异链球菌Streptococcus rattus 鼠链球菌Streptococcus sobrinus表兄链球菌Streptococcus pneumioniae肺炎链球菌Diplococcus pneumoniae肺炎双球菌Streptococcus pyogenes group酿脓链球菌组Streptococcus pyogenes酿脓链球菌Group A streptococci A 组链球菌Streptococcus agalactiae无乳链球菌Group B streptococci B 组链球菌Streptococcus canis狗链球菌Streptococcus dysgalactiae spp.停乳链球菌Group C streptococci C组链球菌equisimilis似马亚种Streptococcus equi马链球菌Streptococcus equi spp.zooepidemicus马链球菌兽瘟亚种Streptococcus equisimilis似(类)马链球菌Group G streptococci G组链球菌Streptococcus iniae海肠链球菌Streptococcus shiloi希氏(希利氏)链球菌 Streptococcus porcinus豕链球菌Streptococcus salivarius group唾液链球菌组Viridans streptococci草绿色链球菌Streptococcus salivarius唾液链球菌Streptococcus thermophilus嗜热链球菌Streptococcus vestibularis前庭链球菌Streptococcus sanguis group血链球菌组Viridans streptococci草绿色链球菌Streptococcus crista嵴链球菌Streptococcus gordonii格氏链球菌Streptococcus parasanguis副血链球菌Streptococcus sanguis I血链球菌IStreptococcus suis猪链球菌Vagococcus fluvialis河流漫游球菌Weissella paramesenteroides类肠膜魏斯氏菌Leuconostoc paramesenteroides类肠膜明串珠菌需氧革兰阴性球菌特征:呈单、双或簇状;触酶和氧化酶阳性。
[医学微生物学]肠杆菌科概述肠杆菌科(Enterobacteriaceae)是杆状革兰氏阴性菌的一种。
这一科菌是许多病原菌的重要成员,包括沙门氏菌、大肠杆菌、鼠伤寒沙门菌和致病性鲍曼不动杆菌等。
肠杆菌科菌还可以在医院感染中发挥重要作用。
从肠杆菌科中分离出的细菌通常具有类似的表型和基因组学,其中包括特殊的粘附因子和毒素。
肠杆菌科菌是通常生活在动物和人体内肠道内的一类细菌。
一个人的肠内生态系统通常由自身宿主免疫系统和居住在肠道内的微生物组成。
肠内微生物群落(肠道菌群)是肠道内大约400种细菌群落的总称。
大肠杆菌和其他肠道菌株是正常肠道菌群的重要成分,它们可以分解食物并生成维生素和其他重要物质,同时还可以抑制潜在的病原体。
分类肠杆菌科菌包括24个属和近200种细菌,其中大多数为人和动物病原体。
这些属包括:Escherichia、Salmonella、Klebsiella、Citrobacter、Erwinia、Enterobacter、Hafnia、Morganella、Proteus、Providencia、Serratia、Shigella、Yersinia等。
这些菌株的生态系统是复杂的,各种菌株之间存在交互作用。
许多肠杆菌属菌株都是优良的益生菌,可以帮助人体对抗潜在的病原菌,从而保持身体健康。
另一方面,有些菌株也可能是病原体,可以引起感染和疾病。
特征肠杆菌科菌通常是革兰氏阴性的、非芽孢形成的杆状菌,一般具有以下特征:•具有胞内和胞外的纤毛;•有专门的表面粘附结构,如菌毛和赖氨酸胶囊;•具有多种代谢途径和酶的活性,包括糖、酒精、氨基酸、脂肪酸等代谢途径;•能够在不同的环境中生长,包括温度、pH值、氧气含量等不同的生理条件;•可以产生多种毒素和酶,包括肠毒素、细胞外蛋白酶和溶血素等。
病原性与疾病许多肠杆菌科菌株都是潜在的病原体,其中一些可以引起严重的疾病。
各个菌属所引起的病症、感染路径和病原生物学特征都不一样,但都具有类似的生理和生化特征。
口腔生物学 oral biology生态系 ecosystem生态学 ecology微生态学 microecosystem生态连续 ecological succession小生境 niches口腔生态系 oral ecosystem正常菌丛 normal flora固有菌丛 indigenous flora获得性膜 acquired pellicle牙菌斑 dental plaque生物膜 biofilm牙石 calculus链球菌属 streptococcus变形链球菌 s.mutans血链球菌 s.sanguis乳杆菌属 Lactobacillus放线菌属 Actinomyces奈瑟菌属 Neisseria韦荣菌属 Veillonella牙周病 periodontal disease牙龈炎 gingivitis慢性牙周炎 chronic periodontitis侵袭性牙周炎 aggressive periodontitis牙菌斑生物膜 dental plaque biofilm龈上菌斑 supergingival plaque附着性龈下菌斑 attached subgingival plaque非附着性龈下菌斑 unattached subgingival plaque 福赛坦氏菌 Tannerella forsythensis牙龈卟啉单胞菌 Porphyromonas gingivalis中间普氏菌 Prevatella Intermedia伴放线嗜血菌 Haemophilus actinomycetemcomitans 具核梭杆菌 Fusobacterium nucleatum齿垢密螺旋体 Treponema denticola非特异性菌斑学说 non-specific plaque hypothesis 脂多糖 Lipopolysaccharide (LPS)内毒素 endotoxin牙龈素 gingipains白细胞毒素 leukotoxin胶原酶 collagenase角蛋白酶 keratinase基质金属蛋白酶 matrix metalloproteinase糖代谢 carbohydrate metabolism糖酵解途径 glycolysis pathway己糖二磷酸途径 Embden-Meyerhof-Parac磷酸戊糖途径 Hexoses-Monophosphate细胞内多糖 intracellular polysaccharide 细胞外多糖 extracellular polysaccharide 葡糖基转移酶 glucosyltransferase果糖基转移酶 frucosyltransferase右旋糖酐 dextran葡聚糖 glucan变聚糖 mutan丙酮酸 pynivate乳酸 lactic acid磷灰石 apatite氟 fluoride氟磷灰石 fluorapatite羟磷灰石 hydroxyapatite牙本质涎蛋白 dentin sialoprotein DSP二水磷酸二钙 brushite磷酸八钙 octacalcium phosphate晶体结构 crystal structures微量元素 trace element脱矿 demineralization再矿化 remineralization表层下脱矿 subsurface demineralization釉牙本质界 amelodentinal junction釉牙骨质界 amelocemental junction釉原蛋白 amelogenin胶原 collagen非胶原蛋白 non-collagenous protein ,NCPs 牙本质磷蛋白 dentin phosphoproteins ,DPP 分子克隆技术 molecular cloning technology 基因文库 gene library限制性内切酶 retriction endoneuclease DNA连接酶 DNA ligase质粒 plasmid噬菌体 bacteriophage转化 transformation转染 transfection转导 transduction分子杂交 molecular hybridization聚合酶链反映 polymerase chain reaction变性 denaturation退火 annealing延伸 extensionDNA聚合酶 DNA polymerase蔗糖依赖性黏附 sucrose-dependant adherence葡聚糖结合区 glucan-binding domain葡聚糖结合蛋白 glucan binding protein,GBF果聚糖酶 fructanase,Fru分子致病 molecular pathogenesis微生物毒力因子 microbial virulence factors精氨酸-牙龈素 arginine-gingipains,Rgps赖氨酸-牙龈素 lysine-gingipain,Kgps宿主因子 host factors细胞因子 cytokines遗传因子 genetic factors寡核苷酸探针 oligonucleotide probe核糖体核糖核酸(核糖体RNA) ribosomal RNA,rRNA 固有牙槽骨 alveolar bone proper密质骨 cortical bone松质骨 sponge bone成骨细胞 osteoblast破骨细胞 osteoclast骨细胞 osteocyte前列腺素 prostaglandin内部信号系统 internal signal system白细胞介素-1 interleukin-1,IL-1肿瘤坏死因子 tumor necrosis factor,TNF转化因子 transforming growth factor,TGF胰岛素样生长因子 insulin-like growth factor,IGF 立即早期基因 rapid early gene骨移植 bone graft体外 in vitro体内 in vivo细胞培养 cell culture贴壁细胞 anchorage-dependent cells悬浮细胞 suspension cells原代培养 primary culture次代培养 Sub culturing细胞冻存 cell cryopreservation免疫组化 immunocytochemistry组织工程 tissue engineering干细胞 stem cells采样 sampling涂片 smear运输 transport分散 dispersion稀释 dilution接种 inoculation分离 isolation培养 incubation革兰染色 Gram staining接触法则pH touch pH electrode method 学没有子但是有鱼试验 limitus test。
课程名称:生理学姓名:张建华学号: 114120304学院:生命科学学院专业、班级:11应生B班艰难梭菌致病及诊治进展摘要:艰难梭菌是一种革兰阳性厌氧芽胞梭菌,是人类肠道感染的主要致病菌,以肠道病理损伤及菌群失调为主的感染性疾病。
使用抗菌药物后可导致艰难梭菌过度生长,分泌大量毒素A(肠毒素)和毒素B(细胞毒素),通过毒素介导致病。
毒素A启动细胞损伤后,毒素B即可侵入肠黏膜,引起细胞病变,导致一系列与感染相关的临床表现。
少数强毒株艰难梭菌还可以产生二元毒素,该毒素可以导致细胞骨架破坏,增强毒素A和毒素B的作用导致严重病变。
研究发现,人和动物艰难梭菌之间具有同源性,成为人类感染艰难梭菌的传染源。
对艰难梭菌产生毒素的致病机理进行综述,为治疗艰难梭菌感染提供依据。
关键词:艰难梭菌;发病;诊断;治疗1. 艰难梭细菌艰难梭菌(Clostridiumdifficile)是动物和人肠道中的正常菌群,也是抗生素相关性腹泻病原体。
艰难梭菌感染(C.difficileinfection,CDI)和艰难梭菌相关性腹泻(C.difficile-associateddi-arrhea,CDAD)是由肠道产毒性艰难梭菌芽胞杆菌过度增殖并释放毒素引起的。
艰难梭菌是马、牛、猪肠道中的病原菌,在仔猪的疾病中,艰难梭菌的感染率高达90%[2]。
本菌引起动物以发热、腹痛、水样腹泻及伪膜性肠炎为主要症状。
在人类还可导致低蛋白血症、电解质紊乱、败血症、中毒性巨结肠、麻痹性肠梗阻及" 拇指纹" 症,甚至出现死亡。
实验室检查可见白细胞增多、C-反应蛋白增高和清蛋白降低。
[1]1.1 发病原因艰难梭菌是一种条件致病菌。
正常情况下,少量艰难梭菌存在于肠道正常菌群中,肠道其他益生菌可抑制其过度繁殖,并降解其产生的毒素,而未表现出致病性。
但长期滥用抗生素(尤其是广谱青霉素类、头孢菌素类等)后,肠道正常菌群被抑制,肠道菌群平衡被破坏,耐药的艰难梭菌大量繁殖、产生毒素而致病。
transcription terminator Rho of Clostridium botulinum肉毒梭状芽胞杆菌的转录终结者p因子(Cb-Rho)candidate prion-forming domain候选朊病毒形成域(cPrD)N-terminal insertion domain氨基端插入域(NID)无朊病毒形式酵母菌朊病毒形成蛋白品种([PSI–] strains)有朊病毒形式酵母菌朊病毒形成蛋白品种([PSI+] strains)酵母菌朊病毒形成蛋白(Sup35)酵母菌朊病毒形成蛋白氨基端朊病毒形成域(Sup35NM)酵母菌朊病毒形成蛋白羧酸端基(Sup35C)A bacterial global regulator formsa prionAndy H. Yuan and Ann Hochschild*//Prions are self-propagating protein aggregates that act as protein-based elements of inheritance in fungi. Although prevalent in eukaryotes, prions have not been identified in bacteria.Here we found that a bacterial protein, transcription terminator Rho of Clostridiumbotulinum (Cb-Rho), could form a prion.We identified a candidate prion-forming domain(cPrD)in Cb-Rhoand showed that it conferredamyloidogenicity on Cb-Rho and couldfunctionally replace the PrD of a yeast prion-forming protein. Furthermore, its cPrD enabledCb-Rho to access alternative conformations in Escherichia coli—a soluble form[that terminated transcription efficiently]and an aggregated, self-propagating prion form[thatwas functionally compromised].The prion form caused genome-wide changes in the transcriptome.Thus, Cb-Rho functions as a protein-based element of inheritance in bacteria, suggesting that the emergence of prions predates the evolutionary[split between eukaryotes and bacteria].//First described as the protein-based causative agent[of the fatal transmissible spongiformencephalopathies (1)], prions have alsobeen uncovered in fungi, where they act asprotein-based elements of inheritance that confer new phenotypes on cells that harbor them(2, 3). Fungal prions are formed by proteins[thatcan access alternative conformations, includinga self-perpetuating amyloid fold (the prion form)that is characteristically heritable (4)].At least adozen prion-forming proteins with diversefunctionshave been uncovered in budding yeast (4),to which prions have been shown to confer growthadvantages under specific conditions (3). Nonpathogenic,[prion-like proteins ]have also beendescribed in mammals (5), Aplysia (6), Drosophila(6), and, most recently, Arabidopsis (7). Althoughbacteria have been shown to propagatea yeast prion (8, 9), it is not known if bacterialprions exist.//We used a previously described hidden Markovmodel–based algorithmtrained on a set of yeastprion-forming proteins (10, 11) to mine ~60,000bacterial genomes for proteins containing candidateprion-forming domains (cPrDs) (table S1).Among [the proteins identified by this analysis]was the transcription termination factor Rhoof Clostridium botulinum E3 strain Alaska E43(Cb-Rho), [which contains a 68–amino acidresidue cPrD ](residues 74 to 141, fig. S1) (12). Rho is ahighly conservedhexameric helicase[that loadsonto nascent transcripts and couplesadenosine5′-triphosphate hydrolysis to RNA translocation],resulting in the termination of transcription by RNA polymerase (13).Phyletic analysis[ofbacterial Rho orthologs]revealed that many Rhoproteins contain an N-terminal insertion domain(NID) (14).The Cb-Rho cPrD was found to belocated within an NID(Fig. 1A), and, notably,many Rho orthologs from [distantly related bacteria]contain similarly situated cPrDs (fig. S2).//A characteristic[of most prion-forming proteins]is their ability to assemble as amyloid aggregates(3, 4). Therefore, we tested Cb-Rho for amyloidogenicity using [an E. coli–based secretionassay ][that detects extracellularamyloid](15).Both[the 68-residue cPrD of Cb-Rho ]and [a 248-residue fragment of Cb-Rho][that encompasses the cPrD [in the structurally well-defined Rho N-terminal domain (NTD) (13)]]had amyloidformingpropensities by this test (Fig. 1, A to C,and fig. S3A).These Cb-Rho domains also formedamyloid-like material [when fused to monomericyellow fluorescent protein (mYFP)]and producedin the E. coli cytoplasm, as did a truncated NTD fragment retaining the complete cPrD (NTDD1-73); however, an NTD variant [lacking thecPrD](NTD D1-141) did not (Fig. 1, A and D, andfig. S3B). Similarly, [full-length Cb-Rho ]and [Cb-RhoD1-73]formed amyloid-like material in the E. coli cytoplasm, but excess E. coli-Rho and the threeCb-Rho variants [that lacked the cPrD ]did not(Fig. 1, A and E, and fig. S3C).Thus, the cPrD confers amyloid-forming potential on Cb-Rho.Next, we asked whether the Cb-Rho cPrDcould functionally replace the PrD of the yeastprion-forming protein Sup35, an essential translationrelease factor.Yeast strains containingSup35[in its nonprion form ([psi–] strains)]display normal translation termination, whereas strains containing Sup35[in its prion form ([PSI+]strains)]exhibit stop codonreadthrough, whichis detectable as a heritablecolony-color phenotype(4).Sup35 has both [an N-terminal PrD(Sup35NM) that can be functionally replacedby heterologous PrDs ]and[a C-terminal moiety(Sup35C)withtranslation release activity](11).We replaced Sup35NM with several Cb-Rhofragments (cPrD, NTD, or NTD D1-73) and then constructed three yeast strains, each containing[one of the three resultingCb-Rho–Sup35C chimeras]as the sole source of translation releaseactivity.In each case, the cells exhibited a [psi–]-like phenotype[that could undergo conversion to a stable [PSI+]-like phenotype (Fig. 2, A and B)],[the propagation of which was dependent on the chaperone Hsp104 (Fig. 2C), [which mirrored thedependence of[Sup35 and other yeast prions]on Hsp104 (4)]].Cells containing any one of threeCb-Rho NTD–Sup35C chimera variants [thatlacked the cPrD ]exhibited [psi–]-like phenotypesonly (Fig. 2, A and B).Thus, Cb-Rho cPrD canfunctionally substitute for Sup35NM.Additionally,our finding [that the Cb-Rho cPrD–Sup35Cchimera exhibited stable [PSI–]-like and [PSI+]-like phenotypes in yeast ]enabled us to demonstrate that Cb-Rho aggregates [produced in bacteria]were infectious when introduced into yeast cells(fig. S5). //We then asked whether Cb-Rho could interconvert between nonprion and self-perpetuatingprion conformations in E. coli cells, with conversionto the prion form causing decreased Rhoactivity.To detect Rho activity, we used a reportergene construct in which the Rho-dependent terminatortR1 is placed between a phage promoterand the lacZ gene (Fig. 3A). Decreased Rho activityin a strain harboring this reporter should resultin increased expression of lacZ and cause the colonies to appear blue on indicator medium.Althoughwe were unable to replace the E. coli rhogene, an essential gene, with the Cb rho gene(supplementary materials and methods), we could construct a strain with a chromosomally encoded Cb-Rho NTD–E. coli-Rho CTD (C-terminal domain)chimera in place of E. coli-Rho.This strain exhibiteda slow-growth phenotype, which we could ameliorate by supplementing the chromosomallyencoded Rho chimera with excessplasmid-encodedRho chimera (Cb-Rho NTD D1-73–E. coli-RhoCTD) (Fig. 3A and supplementary materials andmethods).Cells containing this plasmid gave riseto both pale blue and blue colonies, where palecolor indicated high Rho activity and blue colorindicated low Rho activity (Fig. 3B).This phenotypic heterogeneity suggested that the plasmidencoded Rho chimera was capable of accessingalternative conformations: a soluble, nonprionconformation (pale colonies) and an aggregated,prion conformation (blue colonies).//Additional findings fulfilled key predictionsof the hypothesis that alternative protein conformations,including a self-perpetuating prionform, were responsible for the pale and bluecolony-color phenotypes:(i) Plasmid DNA originating from either blue or pale colonies revealed no sequence differences within or surroundingthe chimeric rho gene, and the plasmids behaved indistinguishably whenretransformed into naïve reporter strain cells (Fig. 4A);(ii) Cell lysates prepared from overnight culturesinoculated withblue colonies contained Rho protein aggregates,but those prepared from cultures inoculated withpale colonies contained little aggregated material(Fig. 3C and fig. S6); (iii) Cell cultures of blueand pale colonies produced predominantly blueand pale colonies, respectively, when plated on indicator medium, and this bias was even more pronounced when blue and pale colonies were resuspended and replated without interveningliquid growth, a procedure that enabled us to estimate the probability of spontaneous loss(<0.8% per cell per generation) and appearance(<0.2% per cell per generation) of the Rho prion(Fig. 4A and supplementary materials and methods);(iv) The blue colony-color phenotype (i.e.,the Rho prion) could be propagated for ≥120generations, and its maintenance depended oncontinued synthesis of the Rho chimera (Fig. 4Band supplementary materials and methods);(v)Reminiscent of the effect of Hsp104 overproductionon [PSI+] yeast cells (4), the blue colonycolorphenotype was “cured” by overproductionof the disaggregase ClpB (the bacterial ortholog of Hsp104) (Figs. 3C and 4C); (vi) Transcription profiling on cells[descended fromeither blueor pale parent colonies]revealedgenome-wide readthrough[of Rho-dependent terminators specificallyin cells derived from blue colonies (Fig. 3D,figs. S7 and S8, and table S2) ](16).Thus, Cb-Rhocan undergo conversion toa self-propagating prionconformation in E. coli cells, eliciting genomewidechanges in the transcriptome. //We also observed Cb-Rho prion behavior withoutprotein overproduction by constructing astrain encoding Cb-Rho NTD D1-73–E. coli-Rho CTD at the native chromosomal rho locus. Theresulting cells were healthy and yielded bothblue and pale colonieswhen plated on indicatormedium (fig. S9).Blue colonies spontaneously gave rise to pale colonies at a low frequency(fig. S9, B and C), and the blue colony-color phenotypewascured by transient ClpB overproduction(fig. S9B and supplementary materialsand methods). Moreover, pale colonies gave riseto blue colonies upon transient exposure to 5%ethanol, a stress condition known to confer a fitnessadvantage to E. coli cells carrying a reducedfunctionrho allele (fig. S9B and supplementarymaterials and methods) (17).//The identification of Cb-Rho as a bacterialprion-forming protein establishes protein-based heredity in the bacterial domain of life, suggestingthat the emergence of prion-dependent phenomena predates the divergence of Bacteria and Eukaryota. Moreover, the presence of cPrDs inRho proteins of bacteria representing at leastsix phyla, including the dominantconstituents of the human gut microbiota, suggests that the impact of bacterial prion-based phenomena maybe far-reaching.Rho and Sup35 prion formationhave an intriguing similarity.Whereasformation of the Sup35 prion triggers genome-wide changesin the proteome due to stop codon readthrough(18), formation of the Rho prion triggers genome-widechanges in the transcriptome due to terminator readthrough. Prionsmay represent a sourceof epigenetic diversity in bacteria that can contributeto bacterial fitness in a variety of settings,for example, by facilitating immune evasion inthe context of infection(19) or enabling antibiotictolerance in quasi-dormant“persister” cells(20).Moreover, because prion formation typicallyresults in a reduced-function phenotype,it is notable that adaptive null mutations inbacteria are common, often facilitating survival in response to environmental challenge (21).。
细菌分类---1细菌分类1 酸杆菌门(Acidobacteria)1.1 酸杆菌纲(Acidobacteria)1.2 全噬菌纲(Holophagae)2 放线菌门(Actinobacteria)(⾼G+C⾰兰⽒阳性菌)2.1 放线菌纲(Actinobacteria)3 产⽔菌门(Aquificae)3.1 产⽔菌纲(Aquificae)4 拟杆菌门(Bacteroidetes)4.1 拟杆菌纲(Bacteroidetes)4.2 黄杆菌纲(Flavobacteria)4.3 鞘脂杆菌纲(Sphingobacteria)4.4 纲未定5 ⾐原体门(Chlamydiae)5.1 ⾐原体纲(Chlamydiae)6 绿菌门(Chlorobi)6.1 绿菌纲(Chlorobia)7 绿弯菌门(Chloroflexi)7.1 厌氧绳菌纲(Anaerolineae)7.2 暖绳菌纲(Caldilineae)7.3 绿弯菌纲(Chloroflexi)8 产⾦菌门(Chrysiogenetes)8.1 产⾦菌纲(Chrysiogenetes)9 蓝藻门(Cyanobacteria)9.1 蓝藻纲(Cyanobacteria)10 脱铁杆菌门(Deferribacteres)10.1 脱铁杆菌纲(Deferribacteres)11 异常球菌-栖热菌门(Deinococcus-Thermus)11.1 异常球菌纲(Deinococci)12 ⽹团菌门(Dictyoglomi)12.1 ⽹团菌纲(Dictyoglomi)13 纤维杆菌门(Fibrobacteres)13.1 纤维杆菌纲(Fibrobacteres)14 厚壁菌门(Firmicutes)(低G+C⾰兰⽒阳性菌)14.1 芽孢杆菌纲(Bacilli)14.2 梭菌纲(Clostridia)14.3 热⽯杆菌纲(Thermolithobacteria)15 梭杆菌门(Fusobacteria)15.1 梭杆菌纲(Fusobacteria)16 芽单胞菌门(Gemmatimonadetes)16.1 芽单胞菌纲(Gemmatimonadetes)17 黏胶球形菌门(Lentisphaerae)17.1 黏胶球形菌纲(Lentisphaerae)18 硝化螺旋菌门(Nitrospirae)18.1 硝化螺旋菌纲(Nitrospira)19 浮霉菌门(Planctomycetes)19.1 浮霉菌纲(Planctomycetacia)20 海绵杆菌门(Poribacteria)*21 变形菌门(Proteobacteria)21.1 α-变形菌纲(Alphaproteobacteria)21.2 β-变形菌纲(Betaproteobacteria)21.3 δ-变形菌纲(Deltaproteobacteria)21.4 ε-变形菌纲(Epsilonproteobacteria)21.5 γ-变形菌纲(Gammaproteobacteria)22 螺旋体门(Spirochaetes)22.1 螺旋体纲(Spirochaetes)23 柔膜菌门(Tenericutes)23.1 柔膜菌纲(Mollicutes)24 热脱硫杆菌门(Thermodesulfobacteria)24.1 热脱硫杆菌纲(Thermodesulfobacteria)25 热微菌门(Thermomicrobia)25.1 热微菌纲(Thermomicrobia)26 热袍菌门(Thermotogae)26.1 热袍菌纲(Thermotogae)27 疣微菌门(Verrucomicrobia)27.1 丰祐菌纲(Opitutae)27.2 疣微菌纲(Verrucomicrobiae)28 门未定28.1 纤线杆菌纲(Ktedonobacteria)酸杆菌门(Acidobacteria)酸杆菌纲(Acidobacteria)酸杆菌⽬(Acidobacteriales)酸杆菌科(Acidobacteriaceae)酸杆菌属(Acidobacterium) (Edaphobacter)(Terriglobus)全噬菌纲(Holophagae)⽯鳖杆菌⽬(Acanthopleuribacterales)⽯鳖杆菌科(Acanthopleuribacteraceae)⽯鳖杆菌属(Acanthopleuribacter)全噬菌⽬(Holophagales)全噬菌科(Holophagaceae)地发菌属(Geothrix)全噬菌属(Holophaga)放线菌门(Actinobacteria)(⾼G+C⾰兰⽒阳性菌)放线菌纲(Actinobacteria)酸微菌亚纲(Acidimicrobidae)酸微菌⽬(Acidimicrobiales)酸微菌亚⽬(Acidimicrobineae)酸微菌科(Acidimicrobiaceae)酸微菌属(Acidimicrobium)(Iamiaceae)(Iamia)放线菌亚纲(Actinobacteridae)放线菌⽬(Actinomycetales)放线菌亚⽬(Actinomycineae)放线菌科(Actinomycetaceae)放线棒菌属(Actinobaculum)放线菌属(Actinomyces)隐秘杆菌属(Arcanobacterium)(Falcivibrio)动弯杆菌属(Mobiluncus)(Varibaculum)(Actinopolysporineae) (Actinopolysporaceae) (Actinopolyspora)(Catenulisporineae)(Actinospicaceae)(Actinospica) (Catenulisporaceae) (Catenulispora)棒杆菌亚⽬(Corynebacterineae)棒杆菌科(Corynebacteriaceae) (Bacterionema)(Caseobacter)棒杆菌属(Corynebacterium) (Turicella)迪茨⽒菌科(Dietziaceae)迪茨⽒菌属(Dietzia)分枝杆菌科(Mycobacteriaceae)分枝杆菌属(Mycobacterium) (含结核杆菌)诺卡⽒菌科(Nocardiaceae)⼽登⽒菌属(Gordonia) (Micropolyspora)(Millisia)诺卡⽒菌属(Nocardia)红球菌属(Rhodococcus)斯科曼⽒菌属(Skermania) (Williamsia)(Smaragdicoccus) (Segniliparaceae)(Segniliparus)束村⽒菌科(Tsukamurellaceae)束村⽒菌属(Tsukamurella)弗兰克⽒菌亚⽬(Frankineae)酸热菌科(Acidothermaceae)酸热菌属(Acidothermus)弗兰克⽒菌科(Frankiaceae)弗兰克⽒菌属(Frankia)地嗜⽪菌科(Geodermatophilaceae)芽球菌属(Blastococcus)地嗜⽪菌属(Geodermatophilus) (Modestobacter) (Kineosporiaceae) (Cryptosporangium)(Kineococcus)(Kineosporia)(Nakamurellaceae)(Humicoccus)(Nakamurella)(Quadrisphaera)孢鱼菌科(Sporichthyaceae)孢鱼菌属(Sporichthya)糖霉菌亚⽬(Glycomycineae)糖霉菌科(Glycomycetaceae)糖霉菌属(Glycomyces) (Stackerbrandtia)微球菌亚⽬(Micrococcineae)获⼭⽒菌科(Beutenbergiaceae)获⼭⽒菌属(Beutenbergia)乔治菌属(Georgenia)萨勒河菌属(Salana)博⼽⾥亚湖菌科(Bogoriellaceae)博⼽⾥亚湖菌属(Bogoriella)短杆菌科(Brevibacteriaceae)短杆菌属(Brevibacterium)纤维素单胞菌科(Cellulomonadaceae)纤维素单胞菌属(Cellulomonas)厄⽒菌属(Oerskovia)(Tropheryma)(Dermabacteraceae) (Brachybacterium) (Dermabacter) (Dermacoccaceae) (Demetria) (Dermacoccus) (Kytococcus) (Dermatophilaceae) (Dermatophilus) (Kineosphaera) (Intrasporangiaceae) (Arsenicicoccus) (Humihabitans) (Intrasporangium) (Janibacter) (Knoellia)(Kribbia) (Lapillicoccus) (Ornithinicoccus) (Ornithinimicrobium) (Oryzihumus) (Serinicoccus) (Terrabacter) (Terracoccus) (Tetrasphaera) (Jonesiaceae) (Jonesia) (Microbacteriaceae) (Agreia) (Agrococcus) (Agromyces) (Aureobacterium) (Clavibacter) (Cryobacterium) (Curtobacterium) (Frigoribacterium) (Frondicola) (Gulosibacter) (Labedella) (Leifsonia) (Leucobacter) (Microbacterium) (Microcella) (Mycetocola) (Okibacterium) (Plantibacter) (Pseudoclavibacter) (Rathayibacter) (Rhodoglobus) (Salinibacterium) (Subtercola) (Yonghaparkia) (Zimmermannella)微球菌科(Micrococcaceae) (Acaricomes)节杆菌属(Arthrobacter) (Citricoccus) (Kocuria)微球菌属(Micrococcus) (Nesterenkonia) (Renibacterium)罗⽒菌属(Rothia)⼝腔球菌属(Stomatococcus)刘志恒菌属(Zhihengliuella) (Promicromonosporaceae) (Cellulosimicrobium) (Isoptericola) (Myceligenerans) (Promicromonospora) (Xylanibacterium) (Xylanimonas) (Rarobacteraceae) (Rarobacter) (Sanguibacteraceae)⾎杆菌属(Sanguibacter) (Yaniaceae)(Yania)科未定(Actinotalea)(Demequina) (Phycicoccus)(Ruania)微单孢菌亚⽬(Micromonosporineae)微单孢菌科(Micromonosporaceae) (Actinocatenispora) (Actinoplanes) (Amorphosporangium) (Ampullariella)(Asanoa)(Catellatospora) (Catenuloplanes) (Couchiolanes) (Dactylosporangium) (Krasilnikovia)(Longispora) (Luedemannella)微单孢菌属(Micromonospora) (Pilimelia) (Planopolyspora) (Polymorphospora) (Salinispora)(Spirilliplanes) (Verrucosispora) (Virgisporangium)丙酸杆菌亚⽬(Propionibacterineae) (Nocardioidaceae) (Actinopolymorpha) (Aeromicrobium) (Friedmanniella)(Hongia)(Kribbella)(Marmoricola)(Micropruina) (Nocardioides) (Pimelobacter) (Propionicicella) (Propionicimonas)丙酸杆菌科(Propionibacteriaceae)河⼝微菌属(Aestuariimicrobium) (Arachnia)(Brooklawnia) (Granulicoccus)江⽒菌属(Jiangella) (Luteococcus)(Microlunatus)丙酸杆菌属(Propionibacterium) (Propioniferax) (Propionimicrobium) (Tessaracocccus) (Pseudonocardineae) (Actinosynnemataceae) (Actinokineospora) (Actinosynnema) (Lechevalieria) (Lentzea) (Saccharothrix) (Umezawaea) (Pseudonocardiaceae) (Actinoalloteichus) (Actinobispora) (Amycolata) (Amycolatopsis) (Crossiella)(Faenia) (Goodfellowia) (Kibdelosporangium) (Kutzneria) (Prauserella) (Pseudoamycolata) (Pseudonocardia) (Saccharomonospora) (Saccharopolyspora) (Streptoalloteichus) (Thermobispora) (Thermocrispum)链霉菌亚⽬(Streptomycineae)链霉菌科(Sterptomycetaceae) (Actinopycnidium) (Actinosporangium) (Chainia) (Elytrosporangium)北⾥菌属(Kitasatoa)北⾥孢菌属(Kitasatospora) (Microellobosporia) (Streptacidiphilus)链霉菌属(Streptomyces) (Streptoverticillium) (Streptosporangineae) (Nocardiopsaceae) (Nocardiopsis) (Streptomonospora) (Thermobifida) (Streptosporangiaceae) (Acrocarpospora) (Herbidospora) (Microbispora) (Microtetraspora) (Nonomuraea) (Planobispora) (Planomonospora) (Planotetraspora) (Sphaerisporangium) (Streptosporangium) (Thermopolyspora) (Thermomonosporaceae)珊瑚状放线菌属(Actinocorallia)(Actinomadura) (Excellospora) (Spirillospora) (Thermomonospora)双歧杆菌⽬(Bifidobacteriales)双歧杆菌科(Bifidobacteriaceae) (Aeriscardovia) (Alloscardovia)双歧杆菌属(Bifidobacterium) (Gardnerella) (Metascardovia) (Parascardovia) (Scardovia)科未定(Coriobacteridae) (Coriobacteriales) (Coriobacterineae) (Coriobacteriaceae)奇异菌属(Atopobium) (Collinsella) (Coriobacterium) (Cryptobacterium) (Denitrobacterium) (Eggerthella)(Olsenella)(Slackia)红⾊杆菌亚纲(Rubrobacteridae)红⾊杆菌⽬(Rubrobacterales)红⾊杆菌亚⽬(Rubrobacterineae) (Conexibacteraceae) (Conexibacter) (Patulibacteraceae) (Patulibacter)红⾊杆菌科(Rubrobacteraceae)红⾊杆菌属(Rubrobacter) (Solirubrobacteraceae) (Solirubrobacter) (Thermoleophilaceae) (Thermoleophilum)球形杆菌亚纲(Sphaerobacteridae)球形杆菌⽬(Sphaerobacterales)球形杆菌亚⽬(Sphaerobacterineae)球形杆菌科(Sphaerobacteraceae)球形杆菌属(Sphaerobacter)产⽔菌门(Aquificae)产⽔菌纲(Aquificae)产⽔菌⽬(Aquificales)产⽔菌科(Aquificaceae)产⽔菌属(Aquifex) (Calderobacterium) (Hydrogenivirga) (Hydrogenobacter) (Hydrogenobaculum) (Thermocrinis)除硫杆菌科(Desulfurobacteriaceae) (Balnearium)除硫杆菌属(Desulfurobacterium)热弧菌属(Thermovibrio) (Hydrogenothermaceae) (Hydrogenothermus)(Persephonella)(Sulfurihydrogenibium)拟杆菌门(Bacteroidetes)拟杆菌纲(Bacteroidetes)拟杆菌⽬(Bacteroidales)拟杆菌科(Bacteroidaceae)(Acetomicrobium)(Anaerophaga)(Anaerorhabdus)拟杆菌属(Bacteroides)(Pontibacter)紫单胞菌科(Porphyromonadaceae)(Barnesiella)(Capsularis)(Dysgonomonas)(Hallella)(Odoribacter)(Oribaculum)(Paludibacter)(Parabacteroides)紫单胞菌属(Porphyromonas) (多译作“卟啉单胞菌”,但porphyro-应来源于希腊语“紫⾊”)(Proteiniphilum)(Tannerella)(Xylanibacter)普雷沃⽒菌科(Prevotellaceae)普雷沃⽒菌属(Prevotella) (或译作“普⽒菌”)理研菌科(Rikenellaceae)(Alistipes)(Alkaliflexus)(Marinilabilia)(Petrimonas)理研菌属(Rikenella) (注:Riken是⽇语“理化学研究所”简称)科未定(Acetofilamentum)(Acetothermus)黄杆菌纲(Flavobacteria)黄杆菌⽬(Flavobacteriales)蟑螂杆状体科(Blattabacteriaceae)蟑螂杆状体属(Blattabacterium)(Cryomorphaceae)(Algoriphagus)(Brumimicrobium)(Crocinitomix)(Cryomorpha)(Fluviicola)李时珍菌属(Lishizhenia)(Owenweeksia)黄杆菌科(Flavobacteriaceae)(Actibacter)(Aequorivita)(Algibacter)(Aquimarina)(Arenibacter)伯杰菌属(Bergeyella)(Bizionia)碳酸噬胞菌属(Capnocytophaga) (注:多译作“⼆氧化碳噬纤维菌属”)噬纤维素菌属(Cellulophaga)⾦黄杆菌属(Chryseobacterium)(Cloacibacterium)(Coenonia)(Costertonia) (Croceibacter)独岛菌属(Dokdonia)东海菌属(Donghaeana) (Elizabethkingia) (Empedobacter) (Epilithonimonas) (Flaviramulus)黄杆菌属(Flavobacterium) (Formosa)泥滩杆菌属(Gaetbulibacter)泥滩微菌属(Gaetbulimicrobium) (Galbibacter) (Gelidibacter)(Gillisia)(Gilvibacter)⾰兰菌属(Gramella) (Kaistella)(Kordia)(Krokinobacter) (Lacinutrix)列⽂虎克菌属(Leeuwenhoekiella) (Lutibacter)(Maribacter) (Mariniflexile) (Marixanthomonas) (Mesonia)(Muricauda)(Myroides)(Nonlabens)(Olleya) (Ornithobacterium) (Persicivirga)(Pibocella)极地杆菌属(Polaribacter)冷弯菌属(Psychroflexus) (Psychroserpens) (Riemerella) (Robiginitalea) (Salegentibacter) (Sandarakinotalea) (Sediminibacter) (Sediminicola)世宗菌属(Sejongia) (Stanierella) (Stenothermobacter) (Subsaxibacter) (Subsaximicrobium) (Tamlana) (Tenacibaculum) (Ulvibacter)(Vitellibacter) (Wautersiella) (Weeksella) (Winogradskyella)丽⽔菌属(Yeosuana) (Zeaxanthinibacter)周⽒菌属(Zhouia) (Zobellia)王祖农菌属(Zunongwangia)鞘脂杆菌纲(Sphingobacteria)鞘脂杆菌⽬(Sphingobacteriales)泉发菌科(Crenotrichaceae)(Balneola)(Chitinophaga)泉发菌属(Crenothrix)(Rhodothermus)(Salinibacter)(Terrimonas)(Toxothrix)(Flammeovirgaceae)(Flammeovirga)(Flexithrix)(Perexilibacter)(Persicobacter)(Rapidithrix)(Sediminitomix)(Thermonema)屈挠杆菌科(Flexibacteraceae)(Adhaeribacter)(Aquiflexum)(Arcicella)(Belliella)(Chimaereicella)(Cyclobacterium)噬胞菌属(Cytophaga) (注:⽬前多称此属为“噬纤维菌属”,此处依拉丁⽂)(Dyadobacter)(Echinicola)(Effluviibacter)(Emticicia)(Fabibacter)(Flectobacillus)屈挠杆菌属(Flexibacter)(Hongiella)(Hymenobacter)(Larkinella)(Leadbetterella)(Marinicola)(Meniscus)(Microscilla)(Niastella)(Persicitalea)(Reichenbachiella)(Rhodonellum)(Roseivirga)(Runella)(Spirosoma)⽣孢噬胞菌属(Sporocytophaga)腐螺旋菌科(Saprospiraceae)(Aureispira)(Haliscomenobacter)(Lewinella)腐螺旋菌属(Saprospira)鞘脂杆菌科(Sphingobacteriaceae)(Mucilaginibacter)(Olivibacter)(Parapedobacter)(Pedobacter)(Pseudosphingobacterium)鞘脂杆菌属(Sphingobacterium)科未定(Niabella)纲未定(Flavisolibacter)(Fulvivirga)(Prolixibacter)(Segetibacter)⾐原体门(Chlamydiae)⾐原体纲(Chlamydiae)⾐原体⽬(Chlamydiales)⾐原体科(Chlamydiaceae)⾐原体属(Chlamydia)嗜⾐体属(Chlamydophila)副⾐原体属(Parachlamydiaceae)新⾐原体属(Neochlamydia)副⾐原体属(Parachlamydia)芯卡体科(Simkaniaceae)芯卡体属(Simkania) (注:⼈名缩写简称,此处⽤⾳译)棍⾐原体属(Rhabdochlamydia)*华诊体科(Waddliaceae)华诊体属(Waddlia) (注:WADDL为“华盛顿动物病诊断实验室”缩写)绿菌门(Chlorobi)绿菌纲(Chlorobia)绿菌⽬(Chlorobiales)绿菌科(Chlorobiaceae)臂绿菌属(Ancalochloris)绿棒菌属(Chlorobaculum)绿菌属(Chlorobium)绿爬菌属(Chloroherpeton)暗⽹菌属(Pelodictyon)突柄绿菌属(Prosthecochloris)绿弯菌门(Chloroflexi)厌氧绳菌纲(Anaerolineae)厌氧绳菌⽬(Anaerolineales)厌氧绳菌科(Anaerolineaceae)厌氧绳菌属(Anaerolinea)(Bellilinea)纤绳菌属(Leptolinea)(Levilinea)长绳菌属(Longilinea)暖绳菌纲(Caldilineae)暖绳菌⽬(Caldilineales)暖绳菌科(Caldilineaceae)暖绳菌属(Caldilinea)绿弯菌纲(Chloroflexi)绿弯菌⽬(Chloroflexales)绿弯菌科(Chloroflexaceae)绿弯菌属(Chloroflexus)绿线菌属(Chloronema)太阳发菌属(Heliothrix)玫瑰弯菌属(Roseiflexus)颤绿菌科(Oscillochloridaceae)颤绿菌属(Oscillochloris)爬管菌⽬(Herpetosiphonales)爬管菌科(Herpetosiphonaceae)爬管菌属(Herpetosiphon)产⾦菌门(Chrysiogenetes)产⾦菌纲(Chrysiogenetes)产⾦菌⽬(Chrysiogenales)产⾦菌科(Chrysiogenaceae)产⾦菌属(Chrysiogenes)蓝藻门(Cyanobacteria)蓝藻纲(Cyanobacteria)注:⽬前有三套蓝藻分类系统,分别为NCBI、Bergey's⼿册及Cavalier-Smith(2002年,仅分⾄⽬)。
Ecological Engineering 87(2016)91–97Contents lists available at ScienceDirectEcologicalEngineeringj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e c o l e ngShortcommunicationEndophytic culturable bacteria colonizing Lavandula dentataL.plants:Isolation,characterization and evaluation of their plant growth-promoting activitiesS.I.A.Pereira,C.Monteiro,A.L.Vega,P.M.L.Castro ∗CBQF –Centro de Biotecnologia e Química Fina –Laboratório Associado,Escola Superior de Biotecnologia,Universidade Católica Portuguesa/Porto,Rua Arquiteto Lobão Vital,Apartado 2511,4202-401Porto,Portugala r t i c l ei n f oArticle history:Received 28April 2015Received in revised form 5September 2015Accepted 17November 2015Available online 1December 2015Keywords:Endophytic bacteria DiversityIndol-3-acetic acid LavenderPlant growth promotiona b s t r a c tAromatic plants such as lavender are stirring the attention of many researchers due to their content in bioactive secondary metabolites that can be used in traditional medicine.However,information regarding naturally occurring lavender associated bacterial endophytes (BE)is limited.To the best of our knowledge,this is the first study which aims to assess the phylogenetic diversity of the culturable endophytic bacteria of Lavandula dentata cultivated under organic management and to evaluate their potential as plant growth promoting (PGP)agents.BE were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA gene sequencing.Endophytes were further characterized for the ability to produce several PGP substances,like ammonia,siderophores,indol-3-acetic acid,and hydrogen cyanide and for the ability to solubilize phosphate.Plant cell-wall degrading enzymes were also determined.Densities of BE were higher in roots (log 6.39CFU g −1fresh weight)than in shoots (log 5.56CFU g −1fresh weight).Phylogenetic analysis showed that BE were affiliated to two major groups:␥-Proteobacteria (50%)and Firmicutes (31.6%)and a small part belonged to ␣-(7.9%)and -Proteobacteria (10.5%),being Pseudomonas and Bacillus the most highly represented genera.Higher bacterial diversity was found in the lavender roots,with endophytes belonging to 6different genera (Pseudomonas ,Variovorax ,Rhizobium ,Caulobacter,Bacillus and Paenibacillus ),than in shoots where only 3genera (Bacillus ,Pseudomonas and Xanthomonas )were found.Overall,BE showed ability to produce extracellular enzymes and multiple PGP traits,suggesting their potential use as efficient bioinoculants in sustainable cultivation of medicinal and aromatic plants.©2015Elsevier B.V.All rights reserved.1.IntroductionLavandula species (Lamiaceae)are endemic to the Mediter-ranean region,Arabian Peninsula,Canary Islands,and India (Upson,2002),being widely cultivated worldwide,due to their economic value for cosmetic and pharmaceutical industries and also for orna-mental purpose (Bakkali et al.,2008;Muyima et al.,2002).Bioactive secondary metabolites such as essential oils are extracted from various aromatic plants and in particular those extracted from Lavandula dentata stand out for their use in popular medicine as antidiabetic,antihypertensive,and antiprotozoal agent (Al-Musayeib et al.,2012),explaining the growing interest of the pharmaceutical industries in these natural compounds.Lavender species can be propagated by seeds or by woody stem cuttings.The propagation through seeds is usually slow,plants∗Corresponding author.E-mail address:plcastro@porto.ucp.pt (P.M.L.Castro).show a large variation in growth and in oil composition,and the genetic uniformity of the resulting plants is not guaranteed (Zuzarte et al.,2010).For these reasons,vegetative propagation is preferred to reproduction by seeds.Propagation by cuttings is fast,does not require special techniques and methods and is less expensive than in vitro micropropagation (Zuzarte et al.,2010).However,the poor rooting capacity of cuttings is often observed.In order to overcome this problem,plant growth regulators like the indole-3-butyric acid (IBA)and indole-3-acetic acid (IAA)are commonly used and showed to be efficient in increasing the adventitious root forma-tion and the rooting capacity of cuttings (Bona et al.,2010;Kasem and El-baset,2014).However,chemical application raises environ-mental concerns and increases production costs thus the use of sustainable practices in the production of medicinal and aromatic plants is imperative.Plant growth promoting rhizobacteria (PGPR)have been used as bioinoculants for improving plant growth in a wide range of environments and crop species (Pereira and Castro,2014a;Pereira et al.,2015).Several authors also reported that PGPR induced root/10.1016/j.ecoleng.2015.11.0330925-8574/©2015Elsevier B.V.All rights reserved.92S.I.A.Pereira et al./Ecological Engineering87(2016)91–97formation in stem cuttings of several aromatic plants,namely in Mentha piperita(Kaymak et al.,2008)and in Lavandula angustifolia (Kasem and El-baset,2014).However,very little is known about the effects of bacterial endophytes(BE)on the rooting capacity of cuttings.Endophytic bacteria are defined as those that colonize the inner tissues of healthy plants without causing symptoms of disease or detrimental effect on their host(Schulz and Boyle,2006).Similarly to rhizobacteria,BE promote plant growth by several mechanisms, including phosphate solubilization,nitrogenfixation,production of siderophores and ammonia and through the production of wide range of phytohormones,such as auxins,cytokinins and gibberellic acids(Pereira and Castro,2014b;Verma et al.,2001).Endophytic bacteria have the advantage of proliferating within the plant tissue thus facing less competition for nutrients and being protected from high-stress environment of the soil(Sturz et al.,2000).Endophytes have been isolated from a wide range of plant species and tissues suggesting their ubiquitous existence in higher plants.However, only a few of all the plants existing on earth have ever been studied relative to their bacterial endophytic pool(Strobel and Daisy,2003), increasing the probability tofind new and beneficial endophytes with potential to be applied in biotechnology.The microbiome of medicinal and aromatic plants is extremely important since there are increasing evidences that the spectrum of bioactive metabolites may be related to the activity of associated BE(Emiliani et al.,2014). However,little attention has been paid to the BE from aromatic and medicinal plants and there is a lack of reports in this research area.The aim of the present study was to isolate and charac-terize BE from tissues(root and shoot)of L.dentata plants growing under organic management.We further intended to assess the phylogenetic diversity and the phenotypic character-ization of the culturable BE;to evaluate their ability to produce plant growth promoting(PGP)substances,such as IAA,ammonia, hydrogen cyanide(HCN),siderophores and extracellular enzymes (lipases,cellulases,proteases,pectinases)and to solubilize phos-phate,in order to indicate BE with potential to be used as bioinoculants in vegetative propagation of aromatic and medicinal plants.2.Material and methods2.1.Enumeration and isolation of culturable bacterial endophytesTo isolate representative BE four healthy L.dentata L.plants grown under organic management were collected at random from the“Cantinho das Aromáticas”located in Vila Nova de Gaia, Portugal(GPS–41◦07 30.00 N;8◦38 40.82 W).Plant surface ster-ilization was performed according to Pereira and Castro(2014b). The success of the surface disinfection process was evaluated by plating100l of water from thefinal rinse on Trypticase Soy Agar (TSA;Pronadisa)agar medium and incubated at30◦C for3days. No bacterial growth was found.For bacterial enumeration1g of roots and shoots were homog-enized in9ml of sterile phosphate buffered saline(PBS g l−1: Na2HPO4, 1.44;KH2PO4,0.24;KCl,0.20;NaCl,8.00;pH7.4). Serial dilutions were made in duplicate,and0.1ml of each dilution was spread onto TSA and Plate Count Agar(PCA; Merck)media.Plates were incubated for7days at30◦C and the number of colony forming units was(CFU)determined. Different bacterial colonies were isolated based on size,morphol-ogy and color,from TSA and PCA media,using a streak-plate procedure.Isolates were purified and further phenotypically characterized.2.2.Random amplified polymorphic DNA(RAPD)and DNA sequencing analysisBacterial isolates were grouped according to species sim-ilarity,based on RAPD profiles produced with primer M13 (5 GAGGGTGGCGGTTCT-3 ).DNA extraction and RAPD analysis were performed according to the methods described in Pereira and Castro(2014b).RAPD amplification products were run on a1.5% agarose gel stained with SYBR Safe(Invitrogen,UK)for135min at80V.RAPD patterns were compared using Bionumerics soft-ware(Applied Maths,St-Martens-Laten,Belgium)and clustered according to their similarities.Isolates displaying unique RAPD pro-files were subsequently identified by16S rRNA gene sequencing analysis.16S rDNA amplification was performed with universal primers,27F and1492R as previously described by Pereira and Castro(2014b).The PCR products were purified using a GRS PCR& Gel Band Purification Kit(Grisp)and sequencing was performed by Macrogen Inc.(Netherlands).Sequence editing and inspection were performed using BioEdit program7.0version and the sequence similarity search was performed using the EzTaxon sever.For phylogenetic analyses,the sequences were aligned by using the CLUSTALW(Thompson et al.,1994).Tree constructions were per-formed with MEGA5.0,using the neighbor-joining method(Kimura two-parameter distance optimized criteria).The robustness of the phylogenetic tree was confirmed by using bootstrap analysis based on1000resamplings of the sequences.The16S rRNA sequences of the BE were deposited in GenBank database under accession numbers KP407086to KP407123.Simpson’s(1−D)and Shannon’s (H)diversity indices were calculated based on the percentage of different bacterial genera in both plant compartments.2.3.Plant growth promotion(PGP)traitsThe amount of IAA produced by BE was determined according to Gordon and Weber(1951).Briefly,an aliquot of500l of super-natant obtained from bacterial cultures grown in the presence of l-tryptophan(1%)was mixed with350l of Salper reagent.The absorbance of pink color developed after30min of incubation in dark was read at530nm.The IAA concentration was determined using a calibration curve of pure IAA as a standard.Detection of siderophore production was carried out by inocu-lating the BE on Chrome Azurol S medium(Schwy and Neilands, 1987).The development of a yellow to orange halo around the colonies after incubation at30◦C for72h indicated a positive result for siderophore production.The detection of HCN produc-tion was made by amending nutrient agar with4.4g glycine l−1 and streaking the isolates on this modified agar plates.On the top of each plate,a sterilizedfilter paper(Whatman No.1)soaked in 2%sodium carbonate prepared in0.5%picric acid solution was placed.Plates were incubated at30◦C for4days after which development of orange to red color indicated HCN production (Ahmad et al.,2008).For assessing the ability to produce ammo-nia,fresh cultures were inoculated into10ml of peptone water and incubated at30◦C for48h;following this,0.5ml of Nessler’s reagent(Sigma–Aldrich)was added to each tube and develop-ment of yellow to brown color was considered as a positive result for ammonia production(Cappuccino and Sherman,1992).For phosphate solubilization assay,fresh cultures were inoculated into National Botanical Research Institute Phosphate(NBRIP)medium supplemented with0.5%tricalcium phosphate(Nautiyal,1999). The presence of a clearing halo around bacterial colonies was con-sidered positive for phosphate solubilization.Bacterial endophytes were screening for their ability to produce extracellular enzymes(proteases,cellulase,pectinase and lipases) according to the methods described in Pereira and Castro(2014b).S.I.A.Pereira et al./Ecological Engineering87(2016)91–97933.Results and discussionIn the last years,several studies have focused their attention on aromatic and medicinal plants due to the presence of distinct bioac-tive secondary metabolites that can be used in traditional medicine. Despite the great interest in medicinal plants,very little is known about the associated BE.To the best of our knowledge,this work is thefirst to assess the phylogenetic diversity of the culturable endo-phytic bacterial populations of L.dentata plants cultivated under organic management and to evaluate their plant growth promoting traits.In this study,the number of endophytic culturable bacteria var-ied significantly among plant organs.The colony forming units in roots varied between log6.21CFU g−1fresh weight(FW)(for TSA medium)and log6.39CFU g−1FW(for PCA medium)and were higher if compared to shoot where bacterial counts ranged from log5.31CFU g−1FW(for TSA)to log5.56CFU g−1FW(for PCA).Sim-ilar results were obtained for Echinacea purpurea and Echinacea angustifolia where the lowest bacterial counts were determined in the aboveground tissues,while the highest bacterial numbers were detected in roots(Chiellini et al.,2014).A similar trend was observed by Aravind et al.(2008)in black pepper(Piper nigrum) plants.However,several authors reported that population density of endophytes in aromatic and medicinal plants seems to be high-est in aerial than in the belowground tissues.Emiliani et al.(2014) and El-Deeb et al.(2013)showed that leaves had higher numbers of endophytic bacteria than roots in L.angustifolia and Plectranthus tenuiflorus plants,respectively.Based on the distinct colony characteristics a total of56BE were isolated from the plant tissues of L.dentata plants growing under organic management.However,according to RAPD analysis only 38different profiles were recognized,corresponding to27bacte-rial strains from roots(LR)and11strains from shoots(LS)(Table1). The higher numbers of bacterial counts found in lavender roots, as well as the higher number of endophytes recovered from this tissue,may reflect the intimate contact of roots with soil rhizo-sphere,which facilitate the entry of bacteria into the root tissues (Kobayashi and Palumbo,2000).In addition,the endophytic bacte-rial population densities reported in the present study were higher than the earlier reports in aromatic and medicinal plants such as P.nigrum(Aravind et al.,2008)and L.angustifolia(Emiliani et al., 2014).These results may be related to the management practices used for the cultivation of lavender plants,since organic manage-ment seems to promote microbial activity in rhizosphere(Reilly et al.,2013),increasing the bacterial pool that can enter into plant tissues.One isolate of each cluster was chosen for16S rRNA partial gene sequence(Fig.1).As shown in Table1,all BE showed high similarities(98–100%)with their closest related species.Phyloge-netic analyses based on16S rRNA gene sequences showed that BE isolated from lavender tissues belonged to two main groups:␥-Proteobacteria(50%)and Firmicutes(31.6%),being a small portion affiliated to␣-Proteobacteria(7.9%)and-Proteobacteria(10.5%). Overall,BE belonged to7different genera,being Pseudomonas (47%)and Bacillus(29%)the better represented in lavender plants (Table1).A similar trend was already described by several authors for other aromatic and medicinal plants.Emiliani et al.(2014) reported that51%of the BE isolated from L.angustifolia tissues belonged to Pseudomonas genus,while Vendan et al.(2010)showed a predominance of the genus Bacillus in ginseng plants.In fact,both genera have been identified as frequently occurring endophytes in several plant species(Hallmann and Berg,2006).The results also showed that BE colonized differently lavender tissues.In roots,where higher bacterial diversity was found,endo-phytes belonged to6different genera(Pseudomonas,Variovorax, Rhizobium,Caulobacter,Bacillus and Paenibacillus),while in shoots 91%of the endophytic isolates were affiliated to Bacillus and Pseu-domonas and only one isolate belonged to Xanthomonas genus. Some of these genera have already been described in other aro-matic and/or medicinal plants.Cho et al.(2007)isolated63different endophytic strains belonging to13different genera including Bacil-lus and Paenibacillus from the interior of ginseng tissues.Emiliani et al.(2014)also isolated endophytes affiliated to Rhizobium,Pseu-domonas,and Bacillus genera from L.angustifolia plants.However, to the best of our knowledge BE belonging to Caulobacter and Variovorax genera were never detected in lavender plant compart-ments.The differences among the culturable bacterial populations in both lavender organs were also highlighted by the diversity indices calculated based on genera distribution,since Simpson’s and Shannon’s indices were higher in roots(D=0.74and H=1.45, respectively)if compared to shoots(D=0.56and H=0.86,respec-tively).The distribution of BE in roots and shoots of L.dentata plants may be related to the distinct anatomical and nutritional condi-tions found in both plant compartments,leading to the creation of specific ecological niches for endophytic growth.According to Gaiero et al.(2013)endophyte distribution within plants depends on a combination of skills to colonize and the allocation of plant resources.In addition,according to Compant et al.(2010)the secre-tion of cell-wall degrading enzymes by endophytes is an important trait for tissue colonization and bacterial spreading inside plants. In this study,the production of extracellular enzymes such as cellulases,pectinases,proteases and lipases by BE was assessed and the results are shown in Table2.Bacterial endophytes had higher ability to produce pectinases(68%)and proteases(79%) than cellulases(50%)and lipases(58%).In general,endophytic bacteria from shoots showed higher ability to produce plant cell wall-degrading enzymes,especially pectinases and proteases,sug-gesting that endophytic colonization of shoots may be closely related to BE capacity to produce extracellular enzymes.Verma et al.(2001)also reported cellulase and pectinase activities in dif-ferent isolates suggesting their potential for inter-and intracellular colonization.Rooting of stem cutting is widely used in horticulture for the propagation of aromatic and medicinal plants,however poor roo-ting is often observed(Kasem and El-baset,2014).In order to overcome this problem synthetic auxins are often applied at stim-ulating the adventitious root formation on cuttings(Bona et al., 2010),however due to the continuous increase of environmen-tal footprint it is urgent tofind eco-friendly alternatives.Although several studies have reported the beneficial effect of BE and PGPR inoculation in several economically important crops,like maize (Pereira and Castro,2014a),carrot and potatoes(Surette et al., 2003),little information is available for aromatic and medicinal plants.Screening results of PGP traits of the lavender BE are shown in Table2.All endophytic strains were able to synthesize IAA in the presence of the precursor l-tryptophan,with levels ranging from 7.0to74.7mg l−1.Several BE(21%)produced more than40mg l−1 of IAA and most of them were affiliated to Pseudomonas genus. Bacterial endophytes isolated from ginseng plants also showed ability to synthesize IAA even though at lower levels(Vendan et al., 2010).The application of PGPR in order to minimize the use of syn-thetic auxins was already reported by Kasem and El-baset(2014) and Kaymak et al.(2008)who showed that the inoculation of PGPR in L.dentata cuttings and M.piperina,respectively improved rooting performance.However,so far no studies are available concerning the PGP of BE isolated from aromatic and medicinal plants and their ability to increase stem cutting establishment in soils.Additionally to auxin production,all endophytic strains were able to produce ammonia and siderophores.According to Idris et al.(2004)siderophore production among endophytes may be aS.I.A.Pereira et al./Ecological Engineering87(2016)91–9795Fig.1.Neighbor-joining phylogenetic tree based on partial16S rRNA sequences,showing the relationships between sequences of representative strains of bacterial endo-phytes and some of their closest phylogenetic relatives.Bootstrap values are shown at nodes.Acidilobus saccharovorans(NR115208.1)was used as outgroup.Bar indicates 0.05substitutions per nucleotide position.96S.I.A.Pereira et al./Ecological Engineering87(2016)91–97Table2Characterization of bacterial endophytes for multiple plant growth promoting(PGP)traits:NH3,siderophore,IAA,HCN and extracellular enzymes:cellulase,pectinase, protease and lipase production and phosphate solubilization ability.Strain Closest relatives NH3Siderophores P solubilization IAA(mg l−1)HCN Extracellular enzymesCellulase Pectinase Protease LipaseT20T40T80LR1-1Pseudomonas brassicacearumsubsp neoaurantiaca+++20.1±1.84+−−−−−−LR1-2Rhizobium nepotum++−27.8±2.22+−−−−−−LR1-5Pseudomonas moorei+++++46.8±3.39++−−−−+−LR1-6B Variovorax boronicumulans++−60.5±4.19−+−−+++LR1-7Variovorax soli+++23.1±1.73−−−−+−+LR1-9Pseudomonas graminis++−51.4±3.58+−+−+−−LR1-11Bacillus cereus biovar toyoi++−25.8±2.99+++++++++LR1-12Caulobacter vibrioides++−34.1±1.82++++++−−LR1-13Variovorax boronicumulans++−40.2±3.66+−−−+++LR1-16Pseudomonas brassicacearumsubsp neoaurantiaca++−33.4±2.52++−−−+−−LR2-1Bacillus thuringiensis++− 6.3±0.47++−−+++++LR2-2Pseudomonas k ilonensis++++−26.0±2.26++−−+++−+LR2-3Pseudomonas jessenii++++−17.4±2.55++−−+++−+LR2-4Bacillus cereus biovar toyoi++−25.5±0.70++−−++++LR2-6Bacillus cereus biovar toyoi++++−7.3±1.27+++−++++LR2-9Pseudomonas punonensis++−9.8±1.10+++++++++LR2-10Variovorax boronicumulans++−11.7±1.26++−++++++LR2-11Paenibacillus kribbensis−+−7.3±1.43++++++++−LR3-1Pseudomonas frederiksbergensis+++8.9±0.55++++++++−+LR3-2Pseudomonas fuscovaginae+++21.2±1.87+++++++−−LR3-3Bacillus cereus biovar toyoi++++−10.2±0.64+++++++++LR3-6Pseudomonas fuscovaginae+++−8.3±1.41++++++−−−LR3-7Bacillus cereus+++++7.4±1.17+++−+++++−LR3-8Bacillus aerophilus+++10.2±1.37++++++++LR3-9Bacillus drentensis+++10.2±1.18++++++−−−LR3-10Pseudomonas frederiksbergensis+++35.4±3.95++−++++−+LR3-11Rhizobium grahamii++−7.0±0.50++−+++++−LS1-1Pseudomonas graminis+++66.3±8.56+++++−+−LS1-2Bacillus aryabhattai+++18.4±1.48+++++++−−−LS1-4Bacillus cereus biovar toyoi++−19.2±1.36++−++++++LS1-5Pseudomonas graminis+++14.1±2.42++++++−+−LS2-1Pseudomonas congelans++−74.7±8.20+++++++−−LS2-2Pseudomonas graminis++−47.9±3.64++++++++−LS2-3Pseudomonas lutea+++++45.7±3.57++++++−+−LS3-1Bacillus cereus biovar toyoi++−9.7±1.80+++−++++++LS3-2Pseudomonas lutea+++17.5±1.94++++++−−−LS3-5Pseudomonas koreensis++−8.7±1.13++−++++−−LS3-8Xanthomonas vesicatoria++−18.8±1.50+−+++++++IAA is expressed as means±SE(n=5–12).(−)negative,(+)positive/weak,(++)intermediate,(+++)strong production.general phenotype,since endophytes have to compete with plant cells for Fe supply.Several BE also showed ability to solubilize phos-phate,which is of great importance to enhance P availability in soils during the initial colonization.In this work,several potential human pathogens were isolated from lavender tissues,namely the strains LR1-11,LR2-1,LR2-4,LR2-6,LR3-3,LR3-7,LS1-4and LS3-1that are members of the Bacillus cereus group of bacteria.These BE were found in both plant organs,but with higher incidence in roots.This is an issue of concern,since many genera including Burkholderia,Enterobacter, Bacillus and S tenotrophomonas have been identified as colonizers of the plant rhizosphere but some members can also successfully col-onize human organs and tissues causing diseases(Berg et al.,2005). Consequently,the selection of bacterial endophytes to be applied as bioinoculants in plant cultures should take in consideration the risk of pathogenicity to ensure that they do not inadvertently posea threat to human health.4.ConclusionsBacterial endophytes seem to colonize differently lavender tissues.Beyond the higher numbers of BE found in the roots,phy-logenetic analysis also showed clear differences between plant organs.In roots,a high diversity of genera was observed and BE were affiliated to Pseudomonas,Variovorax,Rhizobium,Caulobacter, Bacillus and Paenibacillus,while in shoots isolates belonged to Bacil-lus,Pseudomonas and Xanthomonas genera.The BE isolated in this study showed several plant growth promoting traits which suggest their potential for plant growth promotion.The use of such BE as efficient bioinoculants may constitute an interesting alternative to the application of chemical compounds,for sustainable cultivation of medicinal and aromatic plants.AcknowledgmentsThis work was supported by National Funds through FCT –Fundac¸ão para a Ciência e a Tecnologia under the project PTDC/AGR/CFL/111583/2009,project PEst-OE/EQB/LA0016/2011 and Fundo Social Europeu(III Quadro Comunitário de Apoio). Sofia Pereira and Cristina Monteiro had the support of FCT grants SFRH/BPD/65134/2009and SFRH/BPD/80885/2011,respectively. ReferencesAhmad,F.,Ahmad,I.,Khan,M.S.,2008.Screening of free-living rhizospheric bacte-ria for their multiple plant growth promoting activities.Microbiol.Res.163, 173–181.S.I.A.Pereira et al./Ecological Engineering87(2016)91–9797Al-Musayeib,N.M.,Mothana,R.A.,Matheeussen,A.,Cos,P.,Maes,L.,2012.In vitro antiplasmodial,antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region.BMC Com-plem.Altern.Med.12,49–55.Aravind,R.,Kumar,A.,Eapen,S.J.,Ramana,K.V.,2008.Endophytic bacterialflora in root and stem tissues of black pepper(Piper nigrum L.)genotype:isolation, identification and evaluation against Phytophora capsici.Lett.Appl.Microbiol.48,58–64.Bakkali,F.,Averbeck,S.,Averbeck,D.,Idaomar,M.,2008.Biological effects of essen-tial oils–a review.Food Chem.Toxicol.46,446–475.Berg,G.,Eberl,L.,Hartmann,A.,2005.The rhizosphere as a reservoir for opportunistic human pathogenic bacteria.Environ.Microbiol.7,1673–1685.Bona,C.M.,Biasi,L.A.,Lipski,B.,Masetto,M.A.M.,Deschamps,C.,2010.Adven-titious rooting of auxin-treated Lavandula dentata cuttings.Ciência Rural40, 1210–1213.Cappuccino,J.C.,Sherman,N.,1992.Microbiology:A Laboratory Manual,third ed.Benjamin/Cummings Pub.Co.,New York,pp.125–179.Chiellini,C.,Maida,I.,Emiliani,G.,Mengoni,A.,Mocali,S.,Fabiani,A.,Biffi,S.,Maggini, V.,Gori,L.,Vannacci,A.,Gallo,E.,Firenzuoli,F.,Fani,R.,2014.Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia.Int.Microbiol.17,165–174.Cho,K.M.,Hong,S.Y.,Lee,S.M.,Kim,Y.H.,Kahng,G.G.,Lim,Y.P.,Kim,H.,Yun,H.D., 2007.Endophytic bacterial communities in ginseng and their antifungal activity against pathogens.Microb.Ecol.54,341–351.Compant,S.,Clément,C.,Sessitsch,A.,2010.Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role,colonization,mechanisms involved and prospects for utilization.Soil Biol.Biochem.42,669–678.El-Deeb,B.,Fayez,K.,Gherbawy,Y.,2013.Isolation and characterization of endo-phytic bacteria from Plectranthus tenuiflorus medicinal plant in Arabia desert and their antimicrobial activities.J.Plant Interact.8,56–64.Emiliani,G.,Mengoni,A.,Maida,I.,Perrin,E.,Chiellini,C.,Fondi,M.,Gallo,E.,Gori, L.,Maggini,V.,Vannaci,A.,Biffi,S.,Firenzuoli,F.,Fani,R.,2014.Linking bacterial endophytic communities to essential oils:clues from Lavandula angustifolia Mill.Evid-Based Compl.Alt.Med.2014,1–16.Gaiero,J.R.,Mccall,C.A.,Thompson,K.A.,Day,N.J.,Best,A.S.,Dunfield,K.E.,2013.Inside the root microbiome:bacterial root endophytes and plant growth pro-motion.Am.J.Bot.100,1738–1750.Gordon,S.A.,Weber,R.P.,1951.Colorimetric estimation of indoleacetic acid.Plant Physiol.26,192–195.Hallmann,J.,Berg,G.,2006.Spectrum and population dynamics of bacterial root endophytes.In:Schulz,B.,Boyle,C.,Sieber,T.N.(Eds.),Microbial Root Endo-phytes.Springer-Verlag,Berlin,pp.15–31.Idris,R.,Trifonova,R.,Puschenreiter,M.,Wenzel,W.W.,Sessitsch,A.,2004.Bacte-rial communities associated withflowering plants of the Ni hyperaccumulator Thlaspi goesingense.Appl.Environ.Microbiol.70,2667–2677.Kaymak,H.C.,Yarali,F.,Guvenc,I.,Donmez,M.F.,2008.The effect of inoculation with plant growth rhizobacteria(PGPR)on root formation of mint(Mentha piperita L.)cuttings.African J.Biotechnol.7,4479–4483.Kasem,M.M.,El-baset,M.M.A.,2014.A comparative study to improve rooting of English lavender stem cuttings.Afr.J.Agric.Res.9,3632–3637.Kobayashi,D.Y.,Palumbo,J.D.,2000.Bacterial endophytes and their effects on plants and uses in agriculture.In:Bacon,C.W.,White,J.F.(Eds.),Microbial Endophytes.Marcel Dekker Inc.,New York,pp.199–233.Muyima,N.Y.O.,Zulu,G.,Bhengu,T.,Popplewell,D.,2002.The potential application of some novel essential oils as natural cosmetic preservatives in an aqueous cream formulation.Flavour Fragr.J.17,258–266.Nautiyal,V.,1999.An efficient microbiological growth medium for screening phos-phate solubilizing microorganisms.Microbiol.Lett.170,265–270.Pereira,S.I.A.,Castro,P.M.L.,2014a.Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils.Ecol.Eng.73,526–535. Pereira,S.I.A.,Castro,P.M.L.,2014b.Diversity and characterization of culturable bac-terial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils.Environ.Sci.Pollut.Res.21,14110–14123. Pereira,S.I.A.,Barbosa,L.V.,Castro,P.M.L.,2015.Rhizobacteria isolated from a metal polluted area enhance plant growth in zinc and cadmium contaminated soil.Int.J.Environ.Sci.Technol.12,2127–2142.Reilly,K.,Cullen,E.,Lola-Luz,T.,Stone,D.,Valverde,J.,Gaffney,M.,Brunton,N., Grant,J.,Griffiths,B.S.,2013.Effect of organic,conventional and mixed cultiva-tion practices on soil microbial community structure and nematode abundance in a cultivated onion crop.J.Sci.Food Agric.93,3700–3709.Schulz,B.,Boyle,C.,2006.What are endophytes?In:Schulz,B.,Boyle,C.,Sieber,T.N.(Eds.),Microbial Root Endophytes.Springer-Verlag,Berlin,pp.1–13.Schwy,B.,Neilands,J.B.,1987.Universal chemical assay for the detection and deter-mination of siderophores.Anal.Biochem.160,47–56.Strobel,G.,Daisy,B.,2003.Bioprospecting for microbial endophytes and their natural products.Microbiol.Mol.Biol.Rev.67,491–502.Sturz,A.V.,Christie,B.R.,Nowak,J.,2000.Bacterial endophytes:potential role in developing sustainable systems of crop production.Crit.Rev.Plant Sci.19,1–30. Surette,M.A.,Sturz, A.V.,Lada,R.R.,Nowak,J.,2003.Bacterial endophytes in processing carrots(Daucus carota L.var.sativus):their localization,population density,biodiversity and their effects on plant growth.Plant Soil253,381–390. Thompson,J.D.,Higgins,D.G.,Gibson,T.J.,1994.CLUSTALW:improving the sensi-tivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res.22, 4673–4680.Vendan,R.T.,Yu,Y.J.,Lee,S.H.,Rhee,Y.H.,2010.Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion.J.Microbiol.48, 559–565.Verma,S.C.,Ladha,J.K.,Tripathi,A.K.,2001.Evaluation of plant growth promot-ing and colonization ability of endophytic diazotrophs from deep water rice.J.Biotechnol.91,127–141.Upson,T.,2002.The Taxonomy of Genus Lavandula.Taylor and Francis,London. Zuzarte,M.R.,Dinisa, A.M.,Cavaleiro, C.,Salgueiro,L.R.,Canhoto,J.M.,2010.Trichomes,essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae).Ind.Crop.Prod.32,580–587.。