当前位置:文档之家› 详细分析开关三极管和加速电容的原理及作用

详细分析开关三极管和加速电容的原理及作用

详细分析开关三极管和加速电容的原理及作用

详细分析开关三极管和加速电容的原理及作用

?1、由于电荷存储效应,晶体管BE之间有一接电容,与Rb构成RC电路,时间常数较大影响了晶体管的导通和截至速度(即开关速度)。

?

?

?2、加速电容作用。

?

?

?(1) 控制脉冲低电平时,电路达到稳态时,晶体管截至,电容两端电压为零。

?

?

?(2)控制脉冲高电平到来时,由于电容电压不能突变,电容需继续保持零,这样,晶体管基极B电压突变到高电平,使晶体管迅速导通;电容被充

电到脉冲电平电压;进入到稳态,电容电压为脉冲电平电压。

?

?

?(3)此后,当控制脉冲低电平到来时,由于电容电压不能突变,需继续保持脉冲电平电压,因此,基极电压从零(实际为be压降)跳变到负的脉冲

电平电压,时得晶体管迅速从饱和状态转到截至状态;此后,电容通过R放电,达到稳态时,两端电压为零。

?

三极管的工作原理及其开关电路设计

三极管的工作原理 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。 但三极管厉害的地方在于:它可以通过小电流去控制大电流。 放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。 如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 结构与操作原理 三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集 极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体, 和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中 性的p型区和n型区隔开。

三极管开关电路工作原理解析

三极管开关电路工作原理解析 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(C utoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C 极与E 极间约呈断路状态,IC = 0,VCE = VCC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,I B 的值适中(VBE = 0.7 V),I C =h F E I B 呈比例放大,Vce = Vcc -Rc I c = V cc - Rc hFE I B可被IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B -E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc ,I c 与IB 无关了,因此时的IB大过线性放大区的IB 值,Ic

图3、截止态如同断路线图图4、饱和态如同通路 实验:三极管的开关作用 简单三极管开关:电路如图5,电阻RC是LED限流用电阻,以防止电压过高烧坏LED(发光二极管),将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对的VOUT 以及LED 的亮度。当三极管开关为断路时,VOUT =VCC =12 V,LED 不亮。当三极管开关通路时,VOUT = 0.2V ,LED 会亮。改良三极管开关:因为三极管由截止区过度到饱和区需经过线性区,开关的效果不会有明确的界线。为使三极管开关的效果明确,可串接两三极管,电路如图六。同样将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对应的VOUT 以及LED 的亮度。

三极管工作原理介绍

三极管工作原理介绍,NPN和PNP型三极 管的原理图与各个引脚介绍 三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。 PNP与NPN两种三极管各引脚的表示: 三极管引脚介绍

NPN三极管原理图: PNP三极管原理图:

常见的三极管为9012、s8550、9013、s8050.单片机应用电路中三极管主要的作用就是开关作用。 其中9012与8550为pnp型三极管,可以通用。 其中9013与8050为npn型三极管,可以通用。 区别引脚:三极管向着自己,引脚从左到右分别为ebc,原理图中有箭头的一端为e,与电阻相连的为b,另一个为c。箭头向里指为PNP(9012或8550),箭头向外指为NPN(9013或8050)。 如何辨别三极管类型,并辨别出e(发射极)、b(基极)、c (集电极)三个电极 ①用指针式万用表判断基极b 和三极管的类型:将万用表欧姆挡置“R &TI mes; 100”或“R&TI mes;lk”处,先假设三极管的某极为“基极”,并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大(约为几千欧至几十千欧),则假设的基极是正确的,且被

三极管开关电路

三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的 回路上。 Vcc 團1基本的三极管开关 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off) 区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturati on) 。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838 电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为:

三极管放大、开关、判断管脚的原理

三极管的工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E 的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,

三极管开关电路工作原理解析

三极管开关电路工作原理解析图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3种工作区域:截止区(CutoffRegion)、线性区(Activ eR egion)、饱和区(SaturationRegion)。三极管是以B极电流IB作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB趋近于0(VBE 亦趋近于0),C极与E极间约呈断路状态,IC=0,VCE=VCC。若三极管是在线性区,B-E接面为顺向偏压,B-C接面为逆向偏压,IB的值适中(VBE=0.7V),IC=hF 三极管开关电路工作原理解析 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(Cutoff Region)、线性区(Activ e Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C 极与E 极间约呈断路状态,IC= 0,VCE = VCC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,IB 的值适中(VBE = 0.7 V),I C =h F E I B 呈比例放大,Vce = Vcc -Rc I c = V cc - Rc hFE IB可被IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B-E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc ,Ic 与IB 无关了,因此时的IB大过线性放大区的IB 值,Ic<hFE IB 是必然的。三极管在截止态时C-E 间如同断路,在饱和态时C-E 间如同通路(带有0.2 V 电位降),因此可以作为开关。控制此开关的是IB,也可以用VBB 作为控制的输入讯号。图三、四分别显示三极管开关的通路、断路状态,及其对应的等效电路。 图1 NPN 三极管共射极电路图2 共射极电路输出特性曲

三极管原理及应用

三极管原理及应用 半导体从字面上理解为介于导体和绝缘体之间的物质,但是它可以通过人为控制在导体 和绝缘体之间变化,如今的大部分电子产品都有半导体的身影。 本征半导体通过掺杂衍生出了P型(空穴多)和N型(自由电子多)半导体,P型半导体 中有多余空穴(共价键上空岀的位置),N型半导体中有多余自由电子(共价键填满后多岀的自由 电子)。P型和N型半导体本身并没有电,但当他们相接触时,由于两边的空穴和自由电子有浓度差会产生扩散运动,导致N型半导体中多余的自由电子会扩散到P型半导体的空穴中,使得P区因得到电子而带负电,N区因失去电子而带正电,这样就在PN结产生由N区 指向P区的内建电场。随着扩散的进行,内建电场越来越强,而自由电子由于受到内建电场的作用力会产生向N区的漂移运动,最终电子的扩散运动和漂移运动势均力敌达到平衡,通常该内建电场电压约为0.7V。平衡后的PN结如图一所示。 ①①① 1 T 1 f亠 、 內电场育向 半导体的一个应用就是三极管,它属于电流控制器件,通过控制基极电流达到控制集电 极电流的目的。以NPN型三极管为例,它是由两个PN结对向放置构成,如图二所示。 发射极 图二 集电极 N1 + V N: E 基极

当三个电极都未加电压时,内部两个PN结都处于平衡状态,PN结就相当于一道关闭 的门,使得没有电流能够通过;而当在BE间加正向电压时,此时外加的电压会抵消一部分 内建电场,使得自由电子向P区的扩散运动得以加强,向N区的漂移运动减弱,这时只有 一小部分电流可以流过;当外加电场大于内建电场时,电子不再向N区漂移反而是向P区 漂移,这时PN结处于完全打开状态,类似于短路,就可以流过更多的电流,这就是三极管 BC之间也有一个PN结,当在BC间也加一个正向电压时,即BE BC之间的PN结都处 于正向偏置,但由于两个PN结是对向布置的,内建电场的方向也是相反的,因此自由电子由发射极穿过BE的PN结到达基区后就穿不过BC的PN结了,导致无法有电流流过CE此时的工作区域即为饱和区。如果在BC之间加反向电压,那么流经到基区的自由电子紧接着 就会在电场的作用下流到集电区(基区掺杂浓度低且很薄,所以没有太多的电子与空穴复合形成基级 电流,大部分都被收集到集电区),这个时候就会有电流流过CE之间,基级电流控制着BE间PN 结的开启程度,进而控制着流经CE间的电流,由此得来小电流控制大电流的能力,此区域 即为放大区。如果基级电流为零,即BE间的PN结都没有打开,自然就没有电流流过,此 区域即为截止区。三极管的输出特性如图四所示。

三极管开关电路分析及Rb计算13页word

1.输入电压Vin,输入电阻Rin,三极管导通电压取0.6V,三极管电流放大倍数是B,输出电阻(在C极的电阻)是Rout。这 样很好计算了: 5V / Rout = A, A / B = C,所以C是你最小的基极电流。 如果你的输入电压Vin也用5V,那么(5 - 0.6)/C = Rin,你就可以选Rin了,为使三极管可靠饱和,选(5 - 0.6)/Rin > C 就可以了。 2.先求I先求Ic=Vc/Rc Ib=Ic/B 基极电阻 Rb=(Vb-Vbe)/Ib c=Vc/Rc Ib=Ic/B 基极电阻 Rb=(Vb-Vbe)/Ib 举例: 已知条件:输入Vi=5V,电源电压Vcc=5V,三极管直流放大系数beta=10. 查规格书得,集-射饱和电压Vcesat=0.2V,此时集电极电流Ic=10mA(或其它值),则集电极电阻Rc=(Vcc-Vcesat)/Ic = (5-0.2)/10 = 480 欧。则Ib=Ic/beta=10/10=1 mA,基极限流电阻Rb=(Vi-Vbe)/Ib=(5-0.6)/1=4.4K,取为4.2K。 这时要注意,输入高电平为5V是理想情况,有可能在2.5V(输入的一半)以上就为高了,这时我们以5V输入而得到的基极电流很可能不够,因此要重新

计算。以2.5V为逻辑电平的阈值来计算,则Rb==(Vi-Vbe)/Ib=(2.5-0.6)/1=1.9K,取为1.8K,或2K。 如何使三极管工作于开关状态? 晶体三极管的实际开关特性决定于管子的工作状态。晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。 如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区; 要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流iE=0,这时晶体三极管处于截止状态,相当于开关断开。集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。说明三极管截止时,iB并不是为0,而等于-ICBO。基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC =ICEO还是较大的。晶体管进入截止状态,晶体管基极与发射极之间加反向电压,这时只存在集电极反向饱和电流ICBO,iB =-ICBO,iE=0,为临界截止状态。进一步加大基极电压的绝对值,当大于VBO时,发射结处于反向偏置而截止,流过发射结的电流为反向饱和电流IEBO,这时晶体管进入截止状态iB = -(ICBO+ IEBO),iC= ICBO。发射结外加正向电压不断升高,集电极电流不断增加。同时基极电流也增加,随着基极电流iB 的增加基极电位vB升高,而随着集电极电流iC的增加,集电极电位vC却下降。

三极管工作原理分析,精辟、透彻,看后你就懂

三极管工作原理分析,精辟、透彻,看后你就懂三极管工作原理分析,精辟、透彻,看后你就懂 随着科学技的发展,电子技术的应用几乎渗透到了人们生产生活的方方面面。晶体三极管作为电子技术中一个最为基本的常用器件,其原理对于学习电子技术的人自然应该是一个重点。三极管原理的关键是要说明以下三点: 1、集电结为何会发生反偏导通并产生Ic,这看起来与二极管原理强调的PN结单向导电性相矛盾。 2、放大状态下集电极电流Ic为什么会只受控于电流Ib而与电压无关;即:Ic 与Ib之间为什么存在着一个固定的放大倍数关系。虽然基区较薄,但只要Ib为零,则Ic即为零。 3、饱和状态下,Vc电位很弱的情况下,仍然会有反向大电流Ic的产生。 很多教科书对于这部分内容,在讲解方法上处理得并不适当。特别是针对初、中级学者的普及性教科书,大多采用了回避的方法,只给出结论却不讲原因。即使专业性很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。这些问题集中表现在讲解方法的切入角度不恰当,使讲解内容前后矛盾,甚至造成讲还不如不讲的效果,使初学者看后容易产生一头雾水的感觉。笔者根据多年的总结思考与教学实践,对于这部分内容摸索出了一个适合于自己教学的新讲解方法,并通过具体的教学实践收到了一定效果。虽然新的讲解方法肯定会有所欠缺,但本人还是怀着与同行共同探讨的愿望不揣冒昧把它写出来,以期能通过同行朋友的批评指正来加以完善。 一、传统讲法及问题:

传统讲法一般分三步,以NPN型为例(以下所有讨论皆以NPN型硅管为例),如示意图A。1.发射区向基区注入电子;2.电子在基区的扩散与复合;3.集电区收集由基区扩散过来的电子。”(注1) 问题1:这种讲解方法在第3步中,讲解集电极电流Ic的形成原因时,不是着重地从载流子的性质方面说明集电结的反偏导通,从而产生了Ic,而是不恰当地侧重强调了Vc的高电位作用,同时又强调基区的薄。这种强调很容易使人产生误解。以为只要Vc足够大基区足够薄,集电结就可以反向导通,PN结的单向导电性就会失效。其实这正好与三极管的电流放大原理相矛盾。三极管的电流放大原理恰恰要求在放大状态下Ic与Vc在数量上必须无关,Ic只能受控于Ib。 问题2 :不能很好地说明三极管的饱和状态。当三极管工作在饱 和区时,Vc的值很小甚至还会低于Vb,此时仍然出现了很大的反向饱和电流Ic,也就是说在Vc很小时,集电结仍然会出现反向导通的现象。这很明显地与强调Vc的高电位作用相矛盾。问题3:传统讲法第2步过于强调基区的薄,还容易给人造成这样的误解,以为是基区的足够薄在支承三极管集电结的反向导通,只要基区足够薄,集电结就可能会失去PN结的单向导电特性。这显然与人们利用三极管内部两个PN结的单向导电性,来判断管脚名称的经验相矛盾。既使基区很薄,人们判断管脚名称时,也并没有发现因为基区的薄而导致PN结单向导电性失效的情况。基区很薄,但两个PN结的单向导电特性仍然完好无损,这才使得人们有了判断三极管管脚名称的办法和根据。 :在第2步讲解为什么Ic会受Ib控制,并且Ic与Ib之间为什么会存在问题4 着一个固定的比例关系时,不能形象加以说明。只是从工艺上强调基区的薄与掺杂度低,不能从根本上说明电流放大倍数为什么会保持不变。

谈谈三极管的开关功能

谈谈三极管的开关功能 三极管的工作机理本质上就是通过be之间的电流来控制ce之间的电流。所以b极叫基极也叫控制极。本科生们关于三极管的一个粗糙的印象是三极管有放大作用,至于放大什么东西,可能有相当一部分人也含糊不清。我们这里说的放大,当然是指be间的电流来控制gemfield倍于它的流经ce之间的电流,这个gemfield,通常是100左右。形象的说,Ic就是将Ib放大100倍所得的电流。 三极管的工作有三种状态,即截止状态、线性放大状态、饱和状态。其实我本人是非常不喜欢这三个名字的。只是另起炉灶的话,会浪费更多的精力,也就罢了。不过深刻了解了这三种工作状态,以后便可以真正做到胸有成竹,从而看透电路中万变不离其宗的三级管用法。 那就先说截止状态吧。在描述三极管工作条件时,经常会蹦出正偏或者反偏这类词语,比如集电结反偏。这些词语也是令我很讨厌的一类词语,仿佛就是一个个骗子,将初始时我们对于森林的好奇最终引向了弥漫着雾气的杂草丛生的沼泽地带。所以我先费些笔墨来解释一下这个词语。所谓正偏,即两极间加的电压与PN结的导通方向一致,如本例中的2n5550 安森美NPN硅管,对于b、e构成的发射结来说,b极电位高于e极电位,就叫发射结正偏,相反则叫反偏!而对于b、c构成的集电结来说,b极电位高于c极电位,就叫集电结正偏,相反就叫反偏。 那么这个2n5550三极管什么时候处于截止状态呢?我们说当我们打开三极管的钥匙——be间的电压,有一个开启的电压,大约在0.5到0.6v之间。注意是b比e高0.5到0.6v,也就是说当b的电位比e 的电位高不出这个电压时,比如是0.4v或者0.1v或者-0.1v,我们就说三极管陷入了截止状态。这个时候,从c流向e的电流很小——只有1微安以下,因为我们还不具备开启三极管的钥匙。在multisim 10的电路仿真中,当ce间的电压为5v,Vbe钥匙电压为0.4v时,流经ce电流(Ic)为800多纳安。ce之间5v 这个还算可以的电压才仅仅产生了Ic纳安级渺小的电流。只能说ce间的电阻太大了。所以说,这个时候的ce间电阻很大,我们把它近似于开路。 所以对截止状态做个总结时,我们就说当be这把开启钥匙没有达到开启电压时(0.5到0.6)时,ce开路。这时的三极管你可以说它是装饰物,也可以说它是石头,甚至你把它从电路中拿走也没关系。这就是第一个我们要阐述的三极管的官员状态——我在休息,什么也不做。 不过不幸的是,下面还有一大段话要啰嗦。这些谆谆教诲对于三极管的任意一种工作状态都是适用的: 截止状态也不是说因为不用工作,所以就没有什么参数限制了。这是不对的,就像官员上班时间也在休息,甚至都有人在打麻将,ok,这是没关系的,反正也不会丢掉乌纱帽。但你不能放火烧房子,这个就不行了。同样,三极管在be的电位差不足前面提到的那个钥匙电压时不工作,但是be之间的电位差也不能太低了。比如,是一个很大的负值,这就是说e的电位反而比b的电位高很多。我们都知道三极管的be之间像一个pn结,那么毫无疑问也有一个反向耐压值。所以这块儿也有一个这样的值,就是说发射极的电位不能比基极高出那么多的一个值,是多少呢?对于2N5550来说,是6v,也就是说当Vbe<-6v时,三极管的发射结可能会被反向击穿。

三极管作为开关电路的设计及应用

第一节基本三极管开关基本电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上, 图1 基本的三极管开关 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。838电子 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源) 当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕

三极管开关电源的原理及其应用

三极管开关原理[2009年05月21日] 2009-05-21 22:09 图1 NPN 三极管共射极电路图2 共射极电路输出特性曲 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(Cutoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (V BE亦趋近于0),

C 极与E 极间约呈断路状态,I C = 0,V CE = V CC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,IB 的值适中(V BE = 0.7 V),I C =h F E I B呈比例放大,Vce = Vcc -Rc I c = V cc - Rc h FE I B可被I B操控。若三极管在饱和区,I B很大,V BE= 0.8 V,V CE = 0.2 V,V BC = 0.6 V,B-C 与B-E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc,Ic与I B无关了,因此时的I B大过线性放大区的I B值,Ic

三极管的工作原理

三极管,全称应为半导体三极管,也称晶体管、晶体三极管,是一种电流控制电流的 半导体器件其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器?件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中 间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。三极管是电流 放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们 仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。下图是各种常用三极管的实物图和符号。 【实物图】 如圏所示是几种常见三极管实物圏? NPN三极管符号 、三极管的电流放大作用 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电3替国宜卅兰园曾丸別塞三幔辔

流叫做基极电流lb ;把从集电极 C 流至发射极 E 的电流叫做集电极电流 Ic 。这两个电流 的方向都是流出发射极的,所以发射极 E 上就用了一个箭头来表示电流的方向。三极管的 放大作用就是:集电极电流受基极电流的控制(假设电源 能够提供给集电极足够大的电流 的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例 关系:集 电极电流的变化量是基极电流变化量的 3倍,即电流变化被放大了 3倍,所以 我们把3叫做三极管的放大倍数(3 —般远大于1,例如几十,几百)。如果我们将一个 变化的小信号加到基极跟发射 极之间,这就会引起基极电流 lb 的变化,lb 的变化被放大 后,导致了 Ic 很大的变化。如果集电极电流 Ic 是流过一个电阻 R 的,那么根据电压计算 公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出 来,就得到 了放大后的电压信号了。 二、 三极管的偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先 是由于三极管BE 结的非线性(相当于一个二极管),基极电流必须在输入电压 大到一定程 度后才能产生(对于硅管,常取) 。当基极与发射极之间的电压小于时,基极电流就可以认 为是0。但实际中要放大的信号往往远比 要小,如果不加偏置的话,这么小的信号就不足 以引起基极电流的改变(因为小于时,基极电流都是 0)。如果我们事先在三极管的基极上 加上一 个合适的电流(叫做偏置电流,上图中那个电阻 Rb 就是用来提供这个电流的,所 以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小 信号就 会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因 就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小 的信号无效(因为没有偏置时集电极电流为 0,不能再减小了)。而加上偏置,事先让集电 极有一定的电流,当输入的基极电流变小时,集电极 电流就可以减小;当输入的基极电流 增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 三、 开关作用 下面说说三 极管的饱和情 况。像上面那样 的图,因为受到 电阻Rc 的限制 (Rc 是固定值, 那么最大电流为 U/Rc ,其中U 为 电源电压),集电 极电流是不能无 限增加下去的。 当基极电流的增 大,不能使集电 极电流继续增大 时,三极管就进 入了饱和状态。 一般判断三极管 是否饱和的准则 是:lb* 3〉 Ic 。 进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为 一个开关闭 合了。这样我们就可以拿三极管来当作开关使用:当基极电流为 0时,三极管集电极电流 为0 (这叫做三极管截止),相当于开关断开;当基极电流很 大,以至于三极管饱和时, 相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把 它叫做开关管。 R2 470 C2 R1 10K > VI * S3050 接输入 GNE

开关三极管主要失效分析

开关三极管主要失效分析 1、先介绍下耗散功率,三极管工作时,由于电流热效应,会消耗一定的功率,这就是耗散功率。耗散功率主要由集电极耗散功率组成:PT≈VceIc即PT≈PCM,下面分析开关三极管失效的几种情况: 1)由于三极管的工作电流受温度的影响很大,因此当三极管工作时,耗散功率转化为热,使集电结结温升高,集电结结电流进一步加大,会造成恶性循环使三极管烧毁。这种情况叫热击穿。使三极管不发生热击穿的最高工作温度定义为最高结温。 2)当三极管未达到最高结温时,或者未超过最大耗散功率时,由于材料的缺陷和工艺的不均匀性,以及结构原因造成的发射区电流加紧效应,使得三极管的工作电流分布不均匀。当电流分布集中在某一点时,该点的功耗增加,引起局部温度增高,温度的增高反过来又使得该处的电流进一步增大,从而形成“过热点”,其温度若超过金属电极与半导体的共熔点,造成三极管烧毁。另一方面,局部的温升和大电流密度会引起局部的雪崩(击穿),此时的局部大电流能使三极管烧通,使击穿电压急剧降低,电流上升,最后导致三极管烧毁。这种情况就是所谓的二次击穿。 二次击穿是功率开关管失效的重要原因,三极管二次击穿的特性曲线如图6所示。为保证三极管正常工作,提出了安全工作区SOA的概念。

SOA示意图如图案所示,它由集电极最大电流Icm线、击穿电压BVceo线、集电极最大耗散功率Pcm 线和二次击穿功耗Psb线组成。由于使用时工作电流和最大电压的设计都不会超过三极管的额定值,因此,正常情况下,集电极耗散功率和二次击穿特性就是造成三极管失效烧毁的主要因素 2、既然分析了开关三极管的失效主要因素,那么下面再讨论一下怎么减少失效。很明显降低三极管的失效重要的是要尽量降低三极管工作时的功率、改善二次击穿特性,这两者其实是相关的。由二次击穿的发生机理可知,温度上升,导致三极管HFE增大,开关性能变差,二次击穿特性变差(更容易发生二次击穿);温度的升高,也使得三极管的实际耗散功率参数变差,三极管的安全工作区变小了。反过来,由于三极管的耗散功率主要和三极管的热阻有关,耗散功率小,实际上也就是其所能承受的电流电压低,散热性能差,同样也影响到了二次击穿特性。 因此,防止工作时三极管温升过高、提高三极管的耗散功率,是提高三极管质量的最有效办法。 1)热阻三极管工作中,当PN结温度超过允许最高结温时,三极管消耗的功率就是三极管的集电极最大耗散功率。由于一定材料的最高结温是一定的,因此,提高三极管的散热性能,就是提高三极管的耗散功率,同时,散热性能好,管子的温升就低,也降低了二次击穿的可能性,这是提高二次击穿特性的重要因素。热阻作为大功率管的一个重要参数,代表了三极管的散热能力。热阻与耗散功率的关系为:Pcm=(Tjm-Ta)/RT其中Tjm为最高结温,Ta为环境温度,RT为热阻。可见,当最高结温和环境温度一定时,耗散功率的大小取决于热阻的大小。在开关电源中作开关的三极管,应选用热阻尽可能低的管子。除了三极管芯片本身之外,后工序装配的材料、工艺和质量对热阻的影响也非常大。 2)开关参数三极管工作于饱和和截止状态,因此三极管的开关参数对其工作情况有重大的影响。三极管的开关参数有4个:延迟时间td、上升时间tr、储存时间ts和下降时间tf,如图8所示的开关波形图.管子由截止到饱和时,过渡时间受延迟时间和上升时间的影响,由饱和到截止时,过渡时间受存储时间和下降时间的影响。三极管在不同工作状态时消耗的功率为:

三极管开关原理与场效应管开关原理(看过就全懂了).

三极管开关原理与场效应管开关原理(看过就全懂了) 2009-07-06 02:35 BJT的开关工作原理: 形象记忆法: 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。它只是把电源的能量转换成信号的能量罢了。但三极管厉害的地方在于:它可以通过小电流控制大电流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小

阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。 如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果水流处于可调节的状态,这种情况就是三极管中的线性放大区。 如果那个小的阀门开启的还不够,不能打开大阀门,这种情况就是三极管中的截止区。 如果小的阀门开启的太大了,以至于大阀门里放出的水流已经到了它极限的流量,这种情况就是三极管中的饱和区。但是你关小小阀门的话,可以让三极管工作状态从饱和区返回到线性区。 如果有水流存在一个水库中,水位太高(相应与Uce太大),导致不开阀门江水就自己冲开了,这就是二极管的反向击穿。PN结的击穿又有热击穿和电击穿。当反向电流和反向电压的乘积超过PN结容许的耗散功率,直至PN结过热而烧毁,这种现象就是热击穿。电击穿的过程是可逆的,当加在PN结两端的反向电压降低后,管子仍可以恢复原来的状态。电击穿又分为雪崩击穿和齐纳击穿两类,一般两种击穿同时存在。电压低于5-6V的稳压管,齐纳击穿为主,电压高于5-6V的稳压管,雪崩击穿为主。电压在5-6V之间的稳压管,两种击穿程度相

三极管原理全总结

1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue发射极正偏。总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。 NPN和PNP主要是电流方向和电压正负不同。 NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。 PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC

2、三极管的三种工作状态:放大、饱和、截止 (1)放大区:发射结正偏,集电结反偏。对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。 (2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。即饱和 导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。 (3)截止区:发射结反偏,集电结反偏。由于两个PN 结都反偏,使三极 管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。这时的三极管c、e 极相当于开路。可以看成是一个开关的断开。 3、三极管三种工作区的电压测量 如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表 测基极与射极间的电压Ube。 饱和状态 eb有正偏压约0.65V左右,ce电压接近0V. 放大状态 eb有正偏压约0.6V,ce电压大于0.6V小于电源电压. 截止状态 eb电压低于0.6V,ce电压等于或接近电源. 在实际工作中,可用测量BJT各极间电压来判断它的工作状态。NPN型硅管的典型数据是:饱和状态Ube=0.7V,Uce=0.3V;放大区Ube=0.7V;截止区Ube=0V。这是对可靠截止而言,实际上当Ube<0.5V时,即已进入截止状态。对于PNP管,其电压符号应当相反。 截止区:就是三极管在工作时,集电极电流始终为0。此时,集电极与发射极间电压接近电源电压。对于NPN型硅三极管来说,当Ube在0~0.5V 之间时,Ib很小,无论Ib怎样变化,Ic都为0。此时,三极管的内阻(Rce)很大,三极管截止。当在维修过程中,测得Ube低于0.5V或Uce接近电源电压时,就可 知道三极管处在截止状态。

三极管开关电路详解

一 三极管只做开关作用,不需要调整输出电压。驱动功率大的设备。也不是很大,1A就行。哪种方法能最大利用三极管效率,哪种方法三极管发热最小?用补充的驱动好不好?R选 多少合适?还有别的好办法吗?负载是电磁阀。 答:1、特点不同,要看前后级的关系,第一种是跟随输出,输入阻抗高,输出阻抗小, 当前级是高压小电流的时候好,并且输出电压是受控前级电压,可做限幅开关,输出是电 压源。第二种是反向共射集电极输出,适合前级是低压大电流,输出是阻抗高,也是电流源,当负载变化时,电流不变。如果前级是低阻,如TTL,适合第二种。补充的电路是二 者的结合,光耦的漏电流容易被放大,所以要加R大约2K左右(看光耦的参数),如是 继电器线圈,当释放电压低时,容易误动作,电流优点是可给线圈提快速建立电压。本例 中如是继电器,属电流驱动,最好用集电极输出,但也要有R。 补充:你是驱动电磁阀啊,又要晶体管功耗低,补充的驱动管子压降很大,只能是第二种,把阀接到集电极上,并且1A的驱动电流要再加一级组成复合管 2、第二种更好,这表现在两个方面: 首先,三极管的集电结比发射结更结实不易损坏,所以一般用集电极作为功率输出端; 其次,用共发射极放大器可以利用的电源电压幅度为电源电压-0.3V(集电结饱和电压),而用射极跟随器可以利用的电源电压幅度为电源电压-0.3V-0.7V(集电结饱和电压和发射 结导通电压),显然前者对电源利用的效率更高。 建议你采用第二种,集电器输出方式的电路负载特性好,很多自控图纸中多是把继电器的 线圈作为集电极负载。无基流时,集电极几乎无电流。再者,集电极输出的动态特性好

二 利用三极管饱和导通和截止的的特性,本身就可以实现接通和断开的功能,但由于它的带载功率有限,所以需配继电器扩流,并且可以扩充触点的数量,该电路是PNP三极管,所以采用集电极接低电平方式输出,P37为上拉电阻,当基极没有输入脉冲或电压时,基极为高电平,因为这是反极性三极管,所以平时是截止的,只有基极输入低电平,降低基极电压,这时三极管导通,继电器线圈得电吸合,原常闭触点断开,常开触点吸合,完成设备的接通与断开功能。图中二极管反向接在线圈两端,是保护线圈不受反峰电压的冲击,对继电器起到保护作用。

关于三极管工作于开关状态的原理解析

关于三极管工作于开关状态的原理解析 晶体三极管的实际开关特性决定于管子的工作状态。晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区; 要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流iE=0,这时晶体三极管处于截止状态,相当于开关断开。集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。说明三极管截止时,iB并不是为0,而等于-ICBO。基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC =ICEO还是较大的。晶体管进入截止状态,晶体管基极与发射极之间加反向电压,这时只存在集电极反向饱和电流ICBO,iB =-ICBO,iE=0,为临界截止状态。进一步加大基极电压的绝对值,当大于VBO时,发射结处于反向偏置而截止,流过发射结的电流为反向饱和电流IEBO,这时晶体管进入截止状态iB = -(ICBO+ IEBO),iC= ICBO。发射结外加正向电压不断升高,集电极电流不断增加。同时基极电流也增加,随着基极电流iB 的增加基极电位vB升高,而随着集电极电流iC的增加,集电极电位vC却下降。当基极电流iB增大到一定值时,将出现vBE =vCE的情况。这时集电结为零偏,晶体管出现临界饱和。 如果进一步增大iB ,iB增大,使得集电结由零偏变为正向偏置,集电结位垒降低,集电区电子也将注入基区,从而使集电极电流iC随基极电流iB的增大而增大的速度减小。这时在基区存储大量多余电子-空穴对,当iB继续增大时,iC基本维持不变,即iB失去对iC的控制作用,或者说这时晶体管的放大能力大大减弱了。这时称晶体管工作于饱和状态。一般地说,在饱和状态时饱和压降VBE(sat)近似等于0.7V,VCE(sat)近似等于0.3V。由图4.2.1(a)可看出,集电极电流iC的增加受外电路的限制。由电路可得出iC的最大值为ICM= VCC/ RC。晶体管进入饱和状态,基极电流增大,集电极电流变化很小,即iC=ICS=(VCC-VBE(sat))/RC晶体管处于临界饱和时的基极电流为IBS=ICS/β=(VCC-VBE(sat))/βRC 基极电阻增大,驱动电流不足,特别是晶体管从放大区进入饱和区时时间太长,开关晶体管发热烧坏,因此此电阻的计算为:Rb《=Hfe*(Vb-0.7)/Icm 在简易自动控制电路中,将介绍一些模拟实验电路,利用一些物理现象产生的力、热、声、光、电信号,实现自动控制,以达到某种控制效果。

相关主题
文本预览
相关文档 最新文档