当前位置:文档之家› 世代平均数的遗传分析1加性-显性模型的基因效应估计

世代平均数的遗传分析1加性-显性模型的基因效应估计

世代平均数的遗传分析1加性-显性模型的基因效应估计
世代平均数的遗传分析1加性-显性模型的基因效应估计

世代平均数的遗传分析

Ⅰ.加性-显性模型的基因效应估计

莫惠栋

A Genetic Analysis of Generation Means

Ⅰ.Estimation of Genic Effects for Additive -Dominance Model

一、 概 述

控制一个数量性状的多基因系统,其个别基因的效应,一般都不可能用孟德尔的归类法进行分析。因为这些基因的个别效应太小而又极易受环境的影响,难以划分不同基因型舰的界限。但是,一切数量性状,都有着一个特定的多基因系统(遗传作用)加环境修饰而形成的频率分布,这是在任何数量遗传实验中都可以观察到的。而频率分布,我们知道,其特征是可以用以诸如平均数、方差、协方差等统计数描述的。因此,计算这些统计数,并理解其遗传学意义(这是至关重要的),同样可对多基因控制的性状作出遗传分析。只是应注意到:(1)这类分析通常都是将多基因系统作为一个整体来处理,因而其结果是该系统中全部基因成员的一种总的或平均的性质,个别基因的作用一般不是很清楚;(2)这类分析多是依赖于“黑箱”理论的一种最佳估计,如果一系统中的各别基因皆能在细胞学上定位,并在生物化学上明了其作用方式,分析当然可以更为深入。

数量性状的遗传分析,在遗传理论和育种实践上,都有重要意义,而且又是一个相当庞大的论题。我们将从自花授粉植物世代平均数的遗传分析入手,联系我国育种实际,逐步展开讨论。

二、世代平均数的加性-显性模型

设某性状仅由一对等位基因A a -控制,其中A 对a 为增效(A 表示增效,a 表示减小),

且纯合体AA 和aa 的平均值(中亲值)为m 。则AA 和aa 的基因型值可分别记为

AA m d =+和aa m d =-,而杂合体Aa 的基因型值可记为Aa m h =+。这里,()d AA aa =-,是纯合情况下以等位基因A 替代a 的平均效应,称加性效应;h 是杂合

体Aa 的基因型值对m 的离差(其加性期望的离差),即h Aa m =-,表示了等位基因A 和

a 的交互作用,称显性效应。为简化表达,可以m 为原点记各基因型值,即,AA d Aa h

--和aa d --。这样显然可得:

(1) 若0h =或0h d =(即,,AA m d Aa m aa m d =+==-),不存在显性。 (2) 若0h d <<或0()1h d <<(即()m Aa m d <<+),为正向部分显性。

(3) 若0h d >>-或0()1h d >>-(即()m d Aa m -<<),为负向部分显性。 (4) 若||h d =或||1h d =(()Aa m d =+或()m d -),为完全显性。(A 对a 为显

性,A 对a 为隐性)

(5) 若||h d >或||1h d >(即()Aa m d >+或()m d <-),为超显性。

一般称上述(1)为加性模型,即等位基因A 对a 只有加性效应;(2)~(5)为加性-显性模型,即等位基因A 对a 除纯合时的加性效应外,在杂合时尚有显性效应。以上推断皆是就基因型而言,未考虑随机误差。

有了上述概念,就可方便地导出自花授粉植物纯系杂交后,各世代平均数的遗传分量。

例如:亲本1()AA P 和2()aa P 杂交,1F 代皆为Aa ,故1F 基因型值为1F m h =+;2F 代为

1

114

24AA Aa aa ++,故F 2基因型平均数为1111

24242()()()F m d m h m d m h

=++++-=+;F 3代为331848AA Aa aa ++,故3311

38484()()()F m d m h m d m h

=++++-=+;11F P ?的1B 代为

1122AA Aa +,故1111

12222()()B m d m h m d h =+++=++;

12F P ?的2B 代为1

12

2aa Aa +,故1111

22222()()B m d m h m d h =-++=-+;L L 等。其有关结果列于表1

“一对等位基因”栏下。

将上述模式推广于有k 对独立等位基因的多基因系统时,情况要复杂些。例如,在有A a -、B b -两对独立基因,且A 对a 、B 对b 为增效时,各种基因型的遗传分量就要写成:12AABB m d d =++,12aabb m d d =--,12AaBb m h h =++,L L 等(这里1d 和

2d 分别为A 和B 的加性效应,1h 和2h 分

别为Aa 、Bb 德显性效应)。由于微效多基因的各别基因效应在实际上不能辨别,故将多基因系统看成一个整体时,就可用参

[]i

i

d d =∑和

[](1,2,,)i i

h h i k ==∑L

来表示有关基

因的总的加性效应和显性效应。这样,大值纯系亲本1()P 平均数的遗传分量可记为

[]112k P m d d d m d =++++=+L ,小

值纯系亲本

2()

P 可记为

[]212k P m d d d m d =----=-L ,1

F 表1自花授粉植物世代平均数的遗传分量

(加性-显性模型)

世代

一对等位基因

k 对等位基因 m

d

h

m []d []h

1p 1

1

1

1

2P 1

-1 0 1

-1 0 1F

1 0 1 1 0 1 2F 1 0 1

2 1 0 12 1B

1 1

2 12 1 12 12 2B 1 12- 12 1 12- 12 3F

1 0 14 1 0 14 4F 1 0 18 1 0 18 21F P ? 1 1

2 12 1 12 12 22F P ? 1 12- 12 1 12- 12 21F F ? 1 0 12 1 0 12 1B 自交

1 1

2 14 1 12 14 B 自交

12- 14 12- 14

可记为[]112k F m h h h m h =++++=+L ,L L 等。其有关结果列于表1“k 对等位基因”栏下。注意,这里的[]d 和[]h 仍是对两纯系亲本中亲值m 的离差。但在推断显性的性质(无显性、部分显性、完全显性或超显性)时,应注意[]d 和[]h 与d 和h 是由区别的。应当分清两种情况:

(1)如果控制某一性状的有关基因在两纯系亲本中的分布是联合态的(并且各i d 近似相等的情况下,所有都是增效或减效),即在1P 和2P 上是分别集中了所有增效和减效等位基

因(如1P 为AABBCC ,2P 为aabbcc ),则势能比(potence ratio ):[][]112

211221()()h F P P d P

P -+=-和h d 一样,可用以推断显性的性质。因为在此情况下,[]]h d 反映了显性在所有位点上的平均性质。(尽管不能反映各个位点的显性性质,但可反映所有位点的平均性质)

(2)如果有关基因在两纯系亲本中的分布是分散态的,即1P 和2P 分别集中了部分增效和减效等位基因(如1P 为AABBcc ,2P 为aabbCC ;或1P 为AABBcc ,2P 为aaBBcc 等),则[][]h d 一般与每一位点上的显性性质不相干。因为在此情况下,[]d 不是一个所基因系统的所有增效基因的加性效应之和,[]h 也可能不是所有杂合基因的显性效应之和。例如,设某性状受3对等位基因控制,且1231233,2d d d h h h ======,即每一位点都属于正向部分显性。当1P 为AABBcc ,2P 为aabbCC 时,1F 为AaBbCc ,得

[][][]]3333,2226,62d h h d =+-==++===。这一[][]2h d =表明1F 代出现

了超亲的杂种优势,但各位点上的基因都没有超亲效应。同样,若出现了超亲的杂种优势也

不能肯定是由超显性造成的。

在数量遗传和植物育种试验中,控制数量性状的基因在两亲中的分布,通常都是不同程度的分散态,极少为联合态。而且,即使某一性状可能达到联合态,其余性状一般仍是不同程度的分散态。所以,[][]h d 通常是不能用来推断显性性质。

三、加性-显性模型的遗传分析

1、试验设计 在加性-显性模型下,要估计纯合体平均数m 、加性效应[]d 和显性效应[]h 3个遗传参数,因而至少要有在遗传分量中包含有m 、[]d 和[]h 的3个世代平均数

(如1P 、2P 和1F )。但这样所得的估计数误差大,且因期望平均数皆等于观察平均数,没有剩余的自由度可供测验模型的适合性。为了更精确地估计和发现在加性-显性模型中未予考虑而实际上可能存在的上位性效应,一般宜有1P 、2P 、1F 、2F 、1B 和2B 6个世代平均数。这些平均数需经三个生长季节的工作才可以获得,即:第一个生长季节,以12P P ?(或

21P P ?)获得1F ;第二个生长季节,以11P F ?、21P F ?和1F 自交,分别获得1B 、2B 和2F ,

并保留(或复制)部分1F 种子;第三个生长季节,将1P 、2P 、1F 、2F 、1B 和2B 植于可比较的环境中(环境设计一般用完全随机或随机区组),得到6个平均数计其误差方差。若希望有更广泛的信息,则可再添加2F 自交(3F )、1B 自交、2B 自交和21F P ?、22F P ?、21F F ?等世代,但这样就要到第四个生长季节才能进行比较。

2、统计分析 这一分析包含三项内容:

(1)由观察结果,应用最小平方和法求的遗传分量m 、[]d 和[]h 的估计值?m

、?d ????

和?h ????

的:设有k 个世代平均数(1,2,)i Y i k =L 及其误差方差i V 参加分析,我们可以定义A 为平均数遗传分量系数的结构矩阵(3k ?阶)、b 为未知元的三维列向量,Y 为k 个观察平均数的k 维列向量,V 为k 个平均数误差方差的对角阵,既有:

11121311

12122232221231230??,[],,diag(,,)?[]0k k k k k k X X X Y V b m X X X Y V b d V V V b h X X X Y V ??????=?? ? ? ?

? ? ? ?====== ? ? ? ? ? ? ? ?=???????

?A b Y V L M M M M L 由于各i Y 的i V 不同,在计算时各家系均应以其平均数的精确系数i f (i V 的倒数)为加权值,以使误差较大的平均数具有较小的权,误差较大的平均数具有较大的权。因而需要再

引入:

1

2112120111diag(,,,)diag(,,)0k k

k f f f f f V V V f -?? ?

?==== ? ?

?

?f V L L L 这样k 个观察平均数的方程组即可写成:

()()=fA b fY

(1)

根据最小平方和原理,在(1)的两侧同时左乘以A 的转置矩阵T

A ,即得正规方程组:

()()T T =A fA b A fY

(2)

或简写为:

=Jb k

(2‘

(2‘

)中的:

211

2

1

3

1212

22322132

333(),()T T fX fX X fX X fX Y fX X fX fX X fX Y fX X fX X fX

fX Y ????

? ?==== ? ? ? ??

???∑∑∑∑∑∑∑∑∑∑∑∑J A fA K A fY (3) 因此,列出各家系得f 、1X 、2X 、3X 和Y ,通过简单的乘、加运算。即可得(2)。砸次计算中,由于1X (m 的系数)在任一家系皆为1,故有:

2

1

11221331,,,fX

fX f fX X fX fX X fX fX Y fY =====∑∑∑∑∑∑∑∑∑

可注意应用。由(2)即可解得各遗传分量估计值:1

-=b J K (4)

(4)中的1

33()ij c -?=J

,为J 的逆阵。

(2)测验观察结果是否符合加性-显性模型:得到b 后,可进而算出根据加性-显性

模型的各家系平均数期望值列向量?Y (k 维):?=Ab Y

(5)

由于统计数2

χ系正态标准离差的平方和,因而即可得出:

22???()()()T χ=--=-∑Y Y

f Y Y f Y Y (6)

此2

χ值的自由度为(3)k -,当其2

0.05,(3)k χ-≤时,表示性状遗传是符合加性-显性模型的;如果2

0.05,(3)k χ->,则表明该性状遗传不符合加性-显性模型,需考虑用加性-显性-上位性模型,方法见下期。

这里需要注意到,以上计算实际上只是以各世代的m 、[]d 和[]h 的系数(表1所列)为1X 、2X 和3X 变数,以世代平均数为Y 变数的较为简单的三元线性回归分析。Y 变数的总变异平方和2

fy

∑被分解为回归于加性-显性模型的平方和U 和离回归平方和Q 两部

分,其值为:

2

2

2

2

2

()(()()?()i

i

i

i

i

fy fY fY f

U b fx y fx y fX Y fX fY f Q f Y Y fy U ?=-??

==-??=-=-??

∑∑∑∑∑∑∑∑∑∑∑∑

(7)

(7)中的Q 即(6)的2

χ值。

(3)测验各遗传分量m 、?d ????

和?h ????

与0的差异显著性,即测验0

:0H m =,[]0:0H d =和[]0:0H h =。根据多元分析理论,各遗传分量估计值i b 的标准误为:

i b e S (8) (8)中ij c 为1

-J 中的主对角线之素,?e σ

为离回归标准误:?e σ= (9) 所以在大样本时,由i i b u b S =

(10)

可测验上述各0H 被接受或否定。如有接受0H 的分量,应予剔除(方法见下期),以使保留的基因效应都是显著不同于0的(模型适合性测验的2

χ值及其自由度亦要根据保留的基因效应重新计算)。

这里可注意,(9)根号内的分子Q 为2

χ值,而分母则为该2

χ值的自由度数ν(在此

3k ν=-)

。根据统计理论,当在同一正态总体抽样时,2

χ的数学期望为其自由度数ν,即2

E()χν=或2

E()1χν=。因而,K.Mather 等曾建议*:当观察结果符合模型时,遗传

分量估计值的标准误可简为:i b S =

(11)

这就是假定?1e σ=。作者检查过几百组6家系资料,认为以之作为遗传分量与0的差异显著

性的近似测验,是可行的。

对实际资料进行上述分析还需注意一个前提,即模型的建立是以1P 和2P 在被研究性状上的基因组成有着真实的差异为基础的。因此,在选用两亲时,就应使用其在被研究性状上

的差异尽可能大(即基因分布尽可能接近联合态);在统计分析时,则应首先证实两亲本的平均数间是有

显著差异的。一般的说,两亲平均数的差数,应大于其差数标准误的两倍;如果不是这样,就不适于作遗传分析。因为环境误差已大到不能识别亲本差异,丧失了估计基因效应的基础。 四、 实 例

粳稻桂花黄(1P )×阿抱罗(2P )

有关6个家系的出穗期(以7月31日为0)资料列于表2。该结果的两亲差异为:

(25.744.07t =-=,为极

显著,故可进一步作基因效应的遗传分析。根据加性

-显性模型,这里的有关矩阵和向量为:

12121122112211025.71108.2?10120.0?,,1017.6?3121.419.21b m b d b h ???? ? ???- ?= ? ? ? ? ???==== ? ? ??? ? ? ? ??? ? ?=???? ? ? ? ?

-????

A b Y 23.57724

08.676472.372260.689660.4104900.12999?? ?

?

?= ? ?

? ? ???

f

为便于求得正规方程组,可将上述结果列成表3式样。由表3得到:

22

2112312

2

1

3

3

2

3

1

2

3

35.85611,32.38883, 2.679795

15.01402, 2.98733,0.070125747.945632,537.932353,59.154355

fX fX f fX fX fX X fX fX X fX fX X fX Y fY fX Y fX Y ==============∑

∑∑∑∑∑∑∑∑∑∑∑∑∑

123?35.8561115.01402 2.98733747.945632?15.0140232.388830.070125[]537.932353?2.987330.070125 2.67979559.154355[]()()

T T b m

b d b h K =?????? ? ? ?== ? ? ? ? ? ?=??????

===J A fA b A fY 在表4解得J 的逆阵1

-J 。故根据(4)和(11),得到各遗传分量估计值及其标准误为:

123?0.039042530.018037720.04305107747.94563216.95200.1976?[]0.018037720.039210050.01908169537.9323538.72990.198?0.043051070.019081690.4206551859.154355[]b m

b d b h =??--±???? ? ???==-=± ? ??? ??? ?-=?

?????102.94840.6486-?? ? ?

?±??b J K

说明这里的遗传分量?m

、?d ????

和?h ????

都是显著的。 为测验表2资料结果是否符合加性-显性模型,算得各家系平均数的期望值为:

1

231241122511226?11025.6819?1108.222116.9520?10119.90048.729910?18.42622.9484122.7912?14.06121?

?Y Y Y Y Y Y ????

?? ? ? ? ?- ? ? ??? ? ? ? ?== ? ? ? ? ? ? ? ??? ? ? ? ? ? ? ? ?

-?? ?????Y A b

观察平均数和期望平均数的离差为:

25.725.68190.01818.28.22210.022120.019.90040.0996?()17.618.42620.826221.422.7912 1.391219.214.0612 5.1388??()??????

? ? ?- ? ? ? ? ? ?-=-= ? ? ?- ? ? ? ? ? ?- ? ? ? ? ? ???????

-Y Y

Y

Y

Y Y

故2??()() 4.73T χ=--=Y Y f Y Y 。如根据(7)计算,则由表3得

2

17554.37769fY

=∑,

并有:

2

2

123

17554.37769(747.945632)35.856111952.499277

747.945632(747.945632)(35.85611)35.856110

537.932353(747.945632)(15.04102)35.85611224.182054759.154355(747.945632)(2.98733)35.85fy fx y fx y fx y =-==-==-==-∑∑∑∑611 3.16028049

=-

于是,()2016.95208.7299 2.9484224.182********.76913.160280491952.4991447.769 4.73

U Q χ?? ?

== ? ?

-??

==-= 结果同上。但这里的程序不必计算?Y

,较为简便。

以上2

4.73χ=的自由度3df =,其0.2P ≈,为不显著,为不显著。所以说明标2出

穗期性状的遗传是符合加性-显性模型的,且有?16.95200.1976m

=±,??8.72990.1980, 2.94840.6486d h ????=±=±????

,杂种的显性方向为正(即比中亲值迟熟)。

高三生物总复习 第24讲 基因突变与基因重组教案

2012高三生物总复习教案第24讲基因突变与基因重组 教学案 【考纲要求】 【考点分析】 【考点预测】 本考点是现实生活与实践生产比较密切的问题,所以也是考察的重点问题,主要考察的是基因突变的类型以及基因重组的时间关系,主要是以选择题的形式出现,另外一个重要的考点就是育种问题,主要是以大题或者是实验设计的试题出现。 【知识梳理】 一、基因突变 1、概念 2、方式 3、原因 (1)内因 (2)外因

①物理因素 ②化学因素 ③生物因素 4、基因突变的特点 ①普遍性 ②随机性 ③低频性 ④不定向性 二、基因重组 1、概念 2、发生时期 3、形式 【重点解析】 可遗传的变异形式比较 1.基因突变的类型 根据基因结构的改变方式不同,可将基因突变分为四种类型: (1)点突变:由某位点一对碱基改变造成的。其包括两种形式:转换和颠换。点突变的不同效应为:①同义突变;②错义突变;③无义突变;④终止密码突变。 (2)移码突变:某位点增添或减少1~2对碱基造成的。 (3)缺失突变:基因内部缺失某个DNA小段造成的。 (4)插入突变:基因内部增添一小段外源DNA造成的。 2.突变体的表型特性 突变对表型的最明显的效应,可分为: (1)形态突变。 (2)生化突变。 (3)致死突变。 (4)条件致死突变。 3.突变发生的时期 突变可在个体发育的任何时期发生。突变发生在生殖细胞中,通过有性生殖必然引起后代遗传变化;突变发生在体细胞中,可引起某些体细胞遗传结构上的改变。突变发生的时期

越迟,则生物表现出突变性状的部分越少。 4.基因突变的原因 基因突变是基因在诱变因素作用下,内部分子结构改变的结果。基因突变的分子机制可以概括如下表所示: 5.基因突变的特征 (1)普遍性。 (2)随机性。 (3)稀有性。 (4)多方向性:一个基因可突变为一系列异质性的等位基因----复等位基因。但每一个基因突变的方向不是漫无限制的,如毛色基因,突变一般在色素的范围内。 (5)可逆性。 (6)多害少利性:但有害的突变在一定条件下可能转化 6.基因突变与基因重组的比较 基因突变基因重组 本质基因结构改变,产生新的基因, 出现新的性状基因重新组合,产生新的基因型,使性状重新组合 发生时期细胞分裂间期DNA复制时,由于 碱基互补配对的差错(碱基对增减数第一次分裂前期,四分体的非姐妹染色体单体的交叉互换和

第四章 连锁遗传规律和性连锁参考答案

第四章连锁遗传规律和性连锁 1.试述交换值、连锁强度和基因之间距离三者的关系。 答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率,或等于交换型配子占总配子数的百分率。交换值的幅度经常变动在0~50%之间。交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞数越少。当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。 2.试述连锁遗传与独立遗传的表现特征及细胞学基础。 答:① 独立遗传的表现特征:如两对相对性状表现独立遗传且无互作,那么将两对具有相对性状差异的纯合亲本进行杂交,其F1表现其亲本的显性性状,F1自交F2产生四种类型:亲本型:重组型:重组型:亲本型,其比例分别为9:3:3:1。如将F1与双隐性亲本测交,其测交后代的四种类型比例应为1:1:1:1。如为n对独立基因,则F2表现型比例为(3:1)n的展开。 独立遗传的细胞学基础是:控制两对或n对性状的两对或n对等位基因分别位于不同的同源染色体上,在减数分裂形成配子时,每对同源染色体上的每一对等位基因发生分离,而位于非同源染色体上的基因之间可以自由组合。 ②连锁遗传的表现特征:如两对相对性状表现不完全连锁,那么将两对具有相对性状差异的纯合亲本进行杂交,其F1表现其亲本的显性性状,F1自交F2产生四种类型:亲本型、重组型、重组型、亲本型,但其比例不符合9:3:3:1,而是亲本型组合的实际数多于该比例的理论数,重组型组合的实际数少于理论数。如将F1与双隐性亲本测交,其测交后代形成的四种配子的比例也不符合1:1:1:1,而是两种亲型配子多,且数目大致相等,两种重组型配子少,且数目也大致相等。 连锁遗传的细胞学基础是:控制两对相对性状的两对等位基因位于同一同源染色体上形成两个非等位基因,位于同一同源染色体上的两个非等位基因在减数分裂形成配子的过程中,各对同源染色体中非姐妹染色单体的对应区段间会发生交换,由于发生交换而引起同源染色体非等位基因间的重组,从而打破原有的连锁关系,出现新的重组类型。由于F1植株的小孢母细胞数和大孢母细胞数是大量的,通常是一部分孢母细胞内,一对同源染色体之间的交换发生在某两对连锁基因相连区段内;而另一部分孢母细胞内该两对连锁基因相连区段内不发生交换。由于后者产生的配子全是亲本型的,前者产生的配子一半是亲型,一半是重组型,所以就整个F1植株而言,重组型的配子数就自然少于1:1:1:1的理论数了。 3.大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(l)为显性。今以带壳、散穗与裸粒、密穗的纯种杂交,F1表现如何?让F1与双隐性纯合体测交,其后代为:带壳、散穗201株,裸粒、散穗18株,带壳、密穗 20株,裸粒、密穗203株。试问,这两对基因是否连锁?交换值是多少?要使F2出现纯合的裸粒散穗 20株,至少要种多少株? 答:F1表现为带壳散穗(NnLl)。 F2不符合9:3:3:1的分离比例,亲本组合数目多,而重组类型数目少,所以这两对

人教版必修二第4节《基因是有遗传效应的DNA片段》教案

人教版必修二第4节《基因是有遗传效应的DNA片段》教案第4节基因是有遗传效应的DNA片段 一、教学目标 1. 知识方面 ⑴举例说明基因是有遗传效应的DNA片段。 ⑵说明基因和遗传信息的关系。 2. 能力方面 运用数学方法说明DNA分子的多样性和特异性。 二、教学重点和难点 1.教学重点 (1)基因是有遗传效应的DNA片段。 (2)DNA分子具有多样性和特异性。 2.教学难点 脱氧核苷酸序列与遗传信息的多样性。 三、教学方法 讨论法、演示法、阅读指导法 四、教学课时 1 五、教学过程

【典型例题】 例1.白化症病人出现白化症状的根本原因()A.病人体内缺乏黑色素

B.病人体内无酪氨酸 C.控制合成酪氨酸酶的基因不正常 D.常期见不到阳光所致 解析:白化症病人出现白化症状是因为缺乏酪氨酸酶。不能使酪氨酸转化成黑色素,而缺乏这种酶的根本原因是控制此酶合成的基因不正常造成的。即生物的一切性状都是受基因控制的。 答案:C 例2.青年科学家陈炬成功地把人的抗病毒干扰素基因“嫁接”到烟草的DNA分子上,使烟草具备了抗病毒的能力,试分析: (1)人的基因所以能接到植物体内去,物质基础是__________________________。 (2)烟草具备抗病毒能力,表明烟草体内产生了_____________,这个事实说明:人和植物体内蛋白质的合成方式_____________。 解析:人和植物的DNA都是由脱氧核苷酸组成,都是规则的双螺旋结构,这是转基因技术的物质基础;同时所有生物合成蛋白质时都共用那20种氨基酸,因此将人的基因移植到植物体内后可以在植物体内合成相应的蛋白质。 答案:(1)DNA结构基本相同(2)干扰素基本相同 例3.阅读下列报道,回答问题: 破译天书生命昭然 2000年6月26日,科学家公布了人类基因工作草图,这是人类基因组研究的重大成果,这一成果被誉为是人类“生命天书”的破译,是人类科学史上的重要里程碑。继2000年6月26日公布“基因工作草图”以后,经过几个月的努力,科学家于2001年2月 12日宣布,人类基因组共有32亿对碱基。包含了3~4万个基因。这标志着人类基因组研究工作取得了实质进展,为破译生命之谜奠定了坚实的基础。 人类“生命天书”有一“套”,这套书有24“本”。组成这套书的“文学”有四种基本“笔画”,每两个笔画形成一个“偏旁部首”,每三个“偏旁部首”形成一个“文字”。 每本“生命天书”中含有几千个关于人类生命的结构、功能、生老病死的“信息”,每条信息由几千个“文字”组成。人类基因组计划就是首先要破译这套天书中所含有的10亿个文字中的30多亿个偏旁部首的排列顺序;然后再破译书中每条信息的具体含义即具体功能。 (l)人类“生命天书”有“24本”,每“本书”是指一个______________,这套书为什么是“24本”? (2)“生命天书”中的“信息”是指一个_____________。 (3)“生命天书”中的四种“基本笔画”是指___________________。 (4)“生命天书”中的每个“偏旁部首”是指__________,它们是 ___________。 (5)“生命天书”中的每个“文字”是表示三个特定排列的_________,这个特定排列的物质为什么是三个? 【解析】通读上面的报道,报道中所说的“破译天书”实际上指对人类基因组进行了碱基对的测序工作。每本“天书”指一个染色体,因为人类体细胞中有22对常染色体,每对染色体中的两个DNA分子结构基本相同,又由于X和Y这两个性染色体中DNA分子结构有较大差异,需要各自单独测序;所以一套“生命天书”实际上是指人类体细胞中一套常染色体(22个)和X、Y这两个性染色体中共24个DNA分子。“生命天书”中的四种“基本笔画”是指含不同碱基的脱氧核苷酸,它们是A(T、C、G)碱基脱氧核苷酸,共四种。“生命天书”中的“偏旁部首”是DNA中的脱氧核苷酸对或碱基对,它们有四种,即A-T、T-A、C-G、G-C。每三个“偏旁部首”组成一个“文字”,即一个“文字”中有3个碱基对,因为DNA中含遗传信息的核苷酸链上的三个碱基可转录成信使RNA上的一个“密

第四节基因是有遗传效应的DNA片段练习答案

一、选择题 1.下列有关染色体、DNA、基因、脱氧核苷酸的说法,不正确的是 A.一个基因含有许多个脱氧核苷酸,细胞中的嘌呤碱基与嘧啶碱基数量不一定相等 B.基因是具有遗传效应的DNA片段,一个DNA分子上可含有成百上千个基因,基因型相同的个体其表现型也不一定相同 C.染色体是DNA的主要载体,G和C含量较多的DNA分子更难以解旋 D.在DNA分子结构中,与脱氧核糖直接相连的一般是一个磷酸基和一个碱基 【分析】 本题是对DNA的结构及染色体、DNA、基因、脱氧核苷酸的关系的考查,梳理有关染色体、DNA、基因、脱氧核苷酸的关系和DNA的结构,即可解答本题。 【详解】 基因的基本组成单位是脱氧核苷酸,一个基因含有许多个脱氧核苷酸。细胞中的核酸包括DNA和RNA,DNA为双链,嘌呤碱基与嘧啶碱基配对,嘌呤碱基与嘧啶碱基数量相等,RNA通常为单链结构,嘌呤碱基与嘧啶碱基数量不一定相等,A正确;基因是具有遗传效应的DNA片段,一个DNA分子上可有多个基因,表现型是基因型与环境共同作用的结果,基因型相同的个体其表现型也不一定相同,B正确;DNA主要存在于细胞核中的染色体上,所以染色体是DNA的主要载体,DNA分子中氢键越多,结构越稳定,A、T碱基对之间具有两个氢键,C、G碱基对之间有三个氢键,G和C含量较多的DNA分子更稳定,更难以解旋,C正确;在DNA分子结构中,与脱氧核糖直接相连的一般是两个磷酸和一个碱基,D错误;故选D。 2.下列关于基因的叙述,完全正确的一组是 ①基因是控制生物性状的遗传物质的基本单位 ②烟草花叶病毒的基因是有遗传效应的RNA片段 ③真核生物基因的载体包括线粒体、叶绿体和染色体 ④生物的遗传信息是指基因中的碱基序列 A.①②④B.②③④C.①③④D.①②③④ 【分析】 本题考查基因的概念,但教材概念是针对大多数生物而言,本题需要根据具体生物具体分析,考查考生的迁移运用能力。 【详解】

第21讲 基因突变和基因重组

第21讲基因突变和基因重组 考点1基因突变 一、可遗传变异和不可遗传变异 在光学显微镜下可见的可遗传变异为染色体变异, 的变异为基因突变、基因重组,只在减数分裂过程发生的变异为基因重组,真、原核生物和病毒共有的变异类型为基因突变。 二、基因突变 1.基因突变的实例:镰刀型细胞贫血症

(1)图示中a 、b 、c 过程分别代表DNA 复制、转录和翻译。突变发生在a(填字母)过程中。 (2)患者贫血的直接原因是血红蛋白异常,根本原因是发生了基 因突变,碱基对由=====A T 突变成=====T A 。 2.基因突变的概念 DNA 分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变。 3.发生时间 主要发生于有丝分裂间期或减Ⅰ分裂前的间期。 4.诱发基因突变的因素(连线) 类型 举例 引发突变原因 ①物理因素 a .亚硝酸、碱基类似物 Ⅰ.影响宿主细胞DNA ②化学因素 b .某些病毒的遗传物质 Ⅱ.损伤细胞内DNA ③生物因素 c .紫外线、X 射线 Ⅲ.改变核酸碱基 答案: 5.基因突变的特点 (1)普遍性:一切生物都可以发生。 (2)随机性:生物个体发育的任何时期和部位。 (3)低频性:自然状态下,突变频率很低。 (4)不定向性:一个基因可以向不同的方向发生突变。

(5)多害少利性:大多数基因突变对生物体是有害的,但有些基因突变,可使生物获得新性状,适应改变的环境。 6.基因突变的结果 产生一个以上的等位基因。 7.意义 (1)新基因产生的途径; (2)生物变异的根本来源; (3)提供生物进化的原始材料。 判断正误(正确的打“√”,错误的打“×”) 1.观察细胞有丝分裂中期染色体形态可判断基因突变发生的位置。(×) 2.有丝分裂前期不会发生基因突变。(×) 提示:基因突变不只发生在分裂间期。引起基因突变的因素分为外部因素和内部因素,外部因素对DNA的损伤不仅发生在间期,而是在各个时期都有;另外,外部因素还可直接损伤DNA分子或改变碱基序列,并不是通过DNA的复制来改变碱基对,所以基因突变不只发生在间期。 3.基因突变不一定会引起生物性状的改变。(√) 4.基因突变不一定都产生等位基因。(√) 提示:病毒和原核细胞的基因组结构简单,基因数目少,而且一般是单个存在的,不存在等位基因。因此,真核生物基因突变可产生它的等位基因,而原核生物和病毒基因突变产生的是一个新基因。 5.基因突变不一定都能遗传给后代。(√) 提示:基因突变如果发生在有丝分裂过程中,一般不遗传,但有些植物可能通过无性生殖传递给后代。如果发生在减数分裂过程中,可以通过配子传递给后代。 6.由基因B1突变的等位基因B2可能是由于碱基对替换或碱基

人教版必修2 基因是有遗传效应的DAN片段 作业

一、选择题 1.下列物质的层次关系由大到小的是() A.染色体→DNA→基因→脱氧核苷酸 B.染色体→DNA→脱氧核苷酸→基因 C.染色体→脱氧核苷酸→DNA→基因 D.基因→染色体→脱氧核苷酸→DNA 2.下列有关基因的说法,错误的一项是() A.每个基因都是DNA分子上的一个片段 B.DNA分子上的每一个片段都是基因 C.基因是控制生物性状的遗传物质的功能单位和结构单位 D.基因位于染色体上,在染色体上呈线性排列 3.下列关于DNA、染色体、基因的关系的叙述,不正确的是() A.染色体经复制每条染色单体上有一个DNA分子 B.每个DNA分子上有许多基因,基因是有遗传效应的DNA片段 C.基因在染色体上呈线性排列 D.基因在DNA分子双链上成对存在 4.在人类染色体DNA不表达的碱基中,有一部分是串联重复的短序列,它们在个体之间有显著的差异性,这种短序列可用于() A.生产基因工程药物B.侦查罪犯 C.遗传病的产前诊断D.基因治疗 5.最新研究表明,人类24条染色体上含有3万~4万个蛋白质编码基因。这一事实说明() A.基因是DNA上有遗传效应的片段 B.基因是染色体 C.1条染色体上有许多个基因 D.基因只存在于染色体上 6.下列有关染色体、DNA、基因、脱氧核苷酸的说法,不正确的是() A.在DNA分子结构中,与脱氧核糖直接相连的一般是一个磷酸和一个碱基 B.基因是具有遗传效应的DNA片段,一个DNA分子上可含有成百上千个基因 C.一个基因含有许多个脱氧核苷酸,基因的特异性是由脱氧核苷酸的排列顺序决定的 D.染色体是DNA的主要载体,一条染色体上含有1个或2个DNA分子 7.关于基因和染色体的叙述不正确的是() A.染色体是基因的主要载体,基因在染色体上呈线性排列 B.基因在染色体上是由萨顿提出的,而证实基因位于染色体上的是摩尔根 C.果蝇的X染色体比Y染色体短小,因此Y染色体上含有与X染色体对应的全部基因,而X染色体

《基因是有遗传效应的DNA片段》说课稿(1)改好

《基因是有遗传效应的DNA片段》说课稿 各位评委老师:大家好!今天我说课的题目是《基因是有遗传效应的DNA 片段》。我将从六部分进行说课。 一.教材分析:这节课是人教版必修二第三章第4节的内容。第三章主 要在分子水平上阐述遗传的物质基础和作用原理,本节内容既是对第三章内 容的概括与提升,又为第四章《基因的表达》作好铺垫,所以本节内容起着 概括总结与承上启下的作用。学习本节知识有利于帮助学生从分子水平上理 解遗传规律,锻炼了学生的逻辑推理能力,进一步理解数学知识在生物研究 中的重要作用。 二.教学目标:依据课标,结合本节课的内容及学生的认知特点,我确定了以下教学目标: 1.知识目标(1)说明基因和遗传信息的关系 (2)了解DNA分子的多样性和特异性。 2.能力目标(1)培养学生的逻辑思维能力,掌握整理、分析、归纳材料的方法。 (2)掌握数学知识在生物研究中的应用。 3.情感目标与价值观:通介过绍DNA技术,对学生进行科学价值观的教育 三.学情分析及教法、学法的指导 1.学情:学习本节内容以前,学生已经掌握了遗传的两大规律,明确了基 因位于染色体上,知道了DNA是主要的遗传物质以及DNA的结构和复制方 式,必然会产生这样的疑问——基因和DNA之间存在怎样的联系呢?所以本 节课是前几节课的自然延伸,学生很容易接受从而积极探究学习。 2.教法:结合学情,采用问题启发、模型建构、小组讨论等教学方法,形成师生互动、生生互动的教学氛围,帮助学生更好的理解和掌握本节知识。 3.学法:以新课程倡导的“自主-合作-探究”的学习方式为理论依据,学生通过分析整理资料、课堂探究、小组讨论等形式掌握和理解本节知识。 四.教学过程: 教学流程我设计了以下五个板块:其中新课教学是整堂课的核心环节。下面我分析一下每个板块的设计依据和预期效果。 1.复习旧知,导入新课

第四章 连锁遗传和性连锁遗传学课后答案

第四章连锁遗传和性连锁 1.试述交换值、连锁强度和基因之间距离三者的关系。 答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率,或等于交换型配子占总配子数的百分率。交换值的幅度经常变动在0~50%之间。交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞数越少。当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。 2.在大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(l)为显性。 今以带壳、散穗与裸粒、密穗的纯种杂交,F1表现如何?让F1与双隐纯合体测交,其后代为: 带壳、散穗 201株裸粒、散穗 18株 带壳、密穗 20株裸粒、密穗 203株 试问,这2对基因是否连锁?交换值是多少?要使F2出现纯合的裸粒散穗20株,至少应中多少株? 答:F1表现为带壳散穗(NnLl)。 测交后代不符合1:1:1:1的分离比例,亲本组合数目多,而重组类型数目少,所以这两对基因为不完全连锁。 交换值% =((18+20)/(201+18+20+203))×100%=8.6%

F1的两种重组配子Nl和nL各为8.6% / 2=4.3%,亲本型配子NL和nl各为(1-8.6%) /2=45.7%; 在F2群体中出现纯合类型nnLL基因型的比例为: 4.3%×4.3%=18.49/10000, 因此,根据方程18.49/10000=20/X计算出,X=10817,故要使F2出现纯合的裸粒散穗20株,至少应种10817株。 3. 在杂合体ABy/abY,a和b之间的交换值为6%,b和y之间的交 换值为10%。在没有干扰的条件下,这个杂合体自交,能产生几种类型的配子;在符合系数为0.26时,配子的比例如何? 答:这个杂合体自交,能产生ABy、abY、aBy、AbY、ABY、aby、Aby、aBY 8种类型的配子。 在符合系数为0.26时,其实际双交换值为: 0.26×0.06×0.1×100=0.156%,故其配子的比例为:ABy42.078: abY42.078:aBy2.922:AbY2.922:ABY4.922:aby4.922:Aby0.078:aBY0.078。 3.设某植物的3个基因t、h、f依次位于同一染色体上,已知t-h 相距14cM,现有如下杂交:+++/thf×thf/thf。问:①符合系数为1时,后代基因型为thf/thf的比例是多少?②符合系数为0时,后代基因型为thf/thf的比例是多少? 答:①1/8 ②1/2 5.a、b、c 3个基因都位于同一染色体上,让其杂合体与纯隐性亲本测交,得到下列结果:

基因是有遗传效应的dna片段》教学设计

《基因是有遗传效应的DNA片段》教案 张丽雯 教材分析 本节是人教版生物必修二第三章第四节,本节内容既是对本章内容的概括和提升,也为第四章“基因的表达”做铺垫。因此,基因的概念和基因、DNA、染色体的关系是本节的重点,DNA的多样性和特异性用数学方法来表现理解。教材通过四节资料分析,让学生认识基因的概念,同时通过一个探究活动,让学生了解了DNA的多样性和特异性,从分子水平上揭示生物体的多样性和特异性的物质基础。 学情分析 对高二学生来说,在前两章时认识到了基因与染色体的关系,在本章前三节中了解了DNA是主要的遗传物质,DNA的分子结构和复制,但是,对基因的本质没有确切的了解,还未能弄清基因与DNA、染色体的关系,通过资料分析和结构图的方式,引导学生观思考,总结,并得出结论。 教学目标: 1.知识目标:说明基因的概念;了解DNA分子的多样性和特异性;理解基因、DNA、染色体三者之间的关系。 2.能力目标:培养学生逻辑思维能力,掌握分析,归纳材料的方法;掌握数学知识在生物研究中的应用。 3.情感和价值目标:1.通过介绍DNA技术,对学生进行科学价值观的教育。教学重点 1.基因是有遗传效应的DNA片段 2.DNA分子具有多样性和特异性 教学难点 1.基因、DNA、染色体三者的关 2.脱氧核苷酸序列与遗传信息的多样性 教法学法 讲述、讨论与探究相结合;归纳总结资料,运用数学计算方法。 教学准备 教师准备:多媒体课件。 学生准备:用数学方法推算。 课时安排 1课时

教学过程

课后作业 课本第58页练习,基础题1、2、3 教后反思 本节课的亮点和难点是在DNA遗传信息多样性和特异性的探究活动中,利用数学中的排列组合方法解决生物学问题。但在教学过程中可能会由于时间较紧,给学生探究讨论的时间不足,提高学生兴趣和教学效果有一定的限制。

高中生物《基因是有遗传效应的DNA片段》教学设计

高中生物《基因是有遗传效应的DNA片段》教学设计 南昌市实验中学裴丽丽 一、设计指导思想 本节教材提供了多个实例,通过创设一系列的问题情境,引导学生思考,让学生从实例中逐步得出基因是DNA分子上的片段、基因具有遗传效应的结论、最终获得基因是有遗传效应的 DNA片段这一综合认识。合理组织探究活动,帮助学生借助于数学方法、利用数学思维解决生物学问题。通过分组探究实验,提高学生科学素养,培养团队合作能力。通 过小组代表发言,培养学生表达能力。 二、教材分析 《基因是有遗传效应的DNA片段》是人教版新课标教材高中生物必修2第3章中第四节内容。本节内容既是对本章内容的概括与提升,又为第4章《基因的表达》作铺垫。本节教学的核心是说明基因是有遗传效应的DNA片段,运用数学方法推算碱基排序,让学生进一步理解抽象的内容、认同DNA分子结构的多样性和特异性。本节课通过介绍DNA指纹的应用,让学生感受到理论知识的奇妙应用,充分体现STS教育。 三、学情分析 高一年级的学生具有较强的求知欲和探究欲望,比较喜欢发言,乐于探究。初中生物课本中“细胞核是遗传信息库”一节中有关遗传信息在细胞核中,DNA具有贮存遗传信息的功能,以及细胞核中的染色体是由蛋白质和DNA组成的等内容,已经使学生对有关的知识有了比较清楚的认识,为本节内容的学习打下了一定的基础。 四、教学目标 1. 知识目标 (1)举例说明基因是有遗传效应的DNA片段。 (2)说明基因和遗传信息的关系。 2. 能力目标 (1)运用数学方法说明DNA分子的多样性和特异性。 (2)掌握分析材料的方法。 3.情感态度价值观目标 通过了解人类基因组计划和DNA指纹技术的应用,培养热爱科学和爱国主义情感。 五、教学重点和难点: 1.教学重点 (1)基因是有遗传效应的DNA片段。 (2)DNA分子具有多样性和特异性。 2.教学难点: 脱氧核苷酸序列与遗传信息的多样性。 六、教学方法: 启发式教学 七、课时安排: 1课时

基因突变与疾病

第九章基因突变与疾病 基因(gene)是DNA分子上一段具有遗传功能的核苷酸序列,是细胞内遗传物质的主要结构和功能单位。基因具有如下特征:①基因能自我复制。一个基因随DNA的复制而成为两个相同的基因。②基因决定性状。DNA上某一结构基因经转录和翻译,决定某种酶和蛋白质的合成,从而表现出某一性状。③基因能发生突变。在生物进化过程中,由于多种因素的影响,基因可发生突变,基因突变是生物进化、分化的分子基础,也是某些疾病的基础,是生物界普遍存在的现象。 第一节基因突变的概念和原因 基因突变(gene mutation)是指DNA分子上核苷酸序列或数目发生改变。由一个或一对碱基发生改变引起核苷酸序列改变所致的突变,称为点突变(point mutation);把核苷酸数目改变的基因突变称为缺失性或插入性突变(deletional and insertionar mutation)。基因突变后在原有位置上出现的新基因,称为突变基因(mutant gene)。基因突变后变为和原来基因不同的等位基因,从而导致了基因结构和功能的改变,且能自我复制,代代相传。 基因突变可以发生在生殖细胞,也可发生在体细胞。发生在生殖细胞的基因突变可通过受精卵将突变的遗传信息传给下一代,并在子代所有细胞中都存在这种改变。由于子代生殖细胞的遗传性状也发生了相应的改变,故可代代相传。发生于有性生殖生物体细胞的基因突变不会传递给子代,但可传给由突变细胞分裂所形成的各代子细胞群,在局部形成突变细胞群体。通常认为肿瘤就是体细胞突变的结果。 基因突变的原因很多,目前认为与下列因素有关:

一、自发性损伤 大量的突变属于自发突变,可能与DNA复制过程中碱基配对出现误差有关。通常DNA复制时碱基配对总有一定的误配率,但一般均可通过DNA损伤的修复酶快速修正。如果少数误配碱基未被纠正或诸多修复酶某一种发生偏差,则碱基误配率就会增高,导致DNA分子的自发性损伤。 二、诱变剂的作用 诱变剂(mutagen)是外源诱发突变的因素,它们的种类繁多,主要有: (一)物理因素 如紫外线、电离辐射等。大剂量紫外线照射可引起DNA主链上相邻的两个嘧啶碱以共价键相结合。生成嘧啶二聚体,相邻两个T、相邻两个C或C与T 之间均可形成二聚体,但最容易形成的二聚体是胸苷酸二聚体(thyminedimerTT )。由于紫外线对体细胞DNA的损伤,从而可以诱发许多皮肤细胞突变导致皮肤癌。电离辐射对DNA的损伤有直接效应和间接效应。前者系电离辐射穿透生物组织时,其辐射能量向组织传递,引起细胞内大分子物质吸收能量而激发电离,导致DNA理化性质的改变或损伤;后者系电离辐射通过扩散的离子及自由基使能量被生物分子所吸收导致DNA损伤。生物组织中的水 经辐射电离后可产生大量稳定的、高活性的自由基及H 2O 2 等。这些自由基与活 性氧与生物大分子作用不但可引起DNA损伤,而且也能引起脂质和生物膜的损伤及蛋白质和酶结构与功能的异常。电离辐射使DNA损伤的作用机制主要表现在三个方面:①碱基破坏脱落与脱氧戊糖分解。②DNA链断裂。③DNA交联或DNA-蛋白质交联。 (二)化学因素 如某些化工原料和产品、工业排放物、汽车尾气、农药、食品防腐剂和添加剂等均具有致突变作用。目前已检出的致突变化合物已达6万余种。现择下列常见化学诱变剂说明对DNA损伤的机制。

基因是具有遗传效应的DNA 片段

第四节基因是有遗传效应的DNA片段 (一)教材分析 本节内容《基因是有遗传效应的DNA片段》位于位于必修二第三章第四节,主要内容有1、基因和DNA的联系;2、DNA片段中的遗传信息及基因和遗传信息的关系;3、DNA指纹技术(可以课后拓展)。 在本节之前已经学习了与遗传有关的名词“遗传因子、基因、染色体、转化因子、DNA、脱氧核苷酸、遗传物质”等,所以内容“基因和DNA的关系”是对前面内容的概括与提升,有利于学生形成遗传相关概念的体系。 本节后的第4章则涉及基因的表达、遗传信息的流动等概念,是遗传知识的进一步拓展,而这需要先理解本节内容“DNA片段中的遗传信息及基因和遗传信息的关系”。所以本章起着承上启下的重要作用。 另外拓展视野中的“DNA指纹技术“作为STS教育的内容则让学生感受到理论知识的奇妙应用。 (二)学情分析 1、通过前面知识的学习,学生掌握了孟德尔发现的基因分离定律和自由组合定律、减数分裂中染色体的变化规律、摩尔根证实的“基因在染色体上”等内容,但是对多种遗传概念仍可能存在混淆。而本节内容“1、基因和DNA的联系,对遗传知识整体的学习起到了联通的作用,可以引导学生将前三章的知识整合,尝试建构概念图,建立比较系统的遗传相关概念体系。 2、高二的学生已经具备一定的学习的基本方法,如比较分析、简易推理等,而且应该能够地进行小组协作。在内容1的学习中,可以引导学生通过小组协作的方式,完成“基因和DNA关系实例”的分析,得出相应结论。 3、学生已有一定的数学技能,在学习“2、DNA分子中的遗传信息”时,应该能够通过数学方法推算碱基排序的多样性从而理解DNA分子的多样性和特异性。 4、对于内容三“3、DNA指纹技术”,学生从平时生活的媒体信息中也都有所了解,在此基础上进行探究也并不陌生。 (三)教学目标: 1、知识目标: 1.)举例说明基因是有遗传效应的DNA片段。 2.)运用数学方法说明DNA分子的多样性和特异性。 3.)说明基因与遗传信息的关系。 2、能力目标: 1.)培养学生的分析资料能力,逻辑推理能力,总结概括能力。 2、)培养学生解决实际问题的能力。 3、情感目标: 培养学生具有崇尚科学的精神。 (四)教学策略 1、教学方法:小组合作学习与自主探究结合 能让学生乐于讨论敢于探究,能让学生在合作探究中学会交流合作,善于表达,而且能缩短自主学习的时间。

《基因是有遗传效应的DNA片段》习题

《基因是有遗传效应的DNA片段》习题 1、下列叙述中正确的是() A、细胞中的DNA都在染色体上 B、细胞中每条染色体都只有一个DNA分子 C、减数分裂过程中染色体与基因的行为一致 D、以上叙述均对 2、下列关于基因的叙述中,正确的是() A、基因是DNA的基本组成单位 B、基因全部存在于细胞核中 C、基因是遗传物质的结构和功能单位 D、基因是DNA分子上任意一个片段 3、染色体、DNA、基因三者关系密切,下列叙述中不正确的是() A、每个染色体含一个DNA分子,每个DNA分子上有很多个基因 B、复制、分离和传递,三者都能相伴随而进行 C、三者都是遗传物质,三者都能行使生物的遗传作用 D、在生物的传种接代的过程中,染色体行为决定后二者 4、下列有关遗传信息的叙述,错误的是() A、遗传信息可以通过DNA复制传递给后代 B、遗传信息控制蛋白质的分子结构 C、遗传信息是指DNA分子的脱氧核甘酸的排列顺序 D、遗传信息全部以密码子的方式体现出来 5、下列物质从结构层次看,从简单到复杂的顺序是() A、脱氧核苷酸→基因→染色体→DNA B、脱氧核苷酸→基因→DNA→染色体 C、基因→脱氧核苷酸→染色体→DNA D、基因→DNA→脱氧核苷酸→染色体 6、下列关于遗传信息的说法不确切的是() A、基因的脱氧核苷酸排列顺序就代表遗传信息 B、遗传信息的传递主要是通过染色体上的基因传递的 C、生物体内的遗传信息主要储存在DNA分子上 D、遗传信息即生物体所表现出来的遗传性状

7、人类14号染色体信息已破译,总计含87410661个碱基对,并于2003年1月4日发表在英国科学周刊《自然》杂志上,研究报告称,第14号染色体含有1050个基因和基因片段。则平均每个基因含有的碱基数为() A、83248 B、166496 C、1050 D、不能确定 8、下列哪一项不是基因的“遗传效应”() A、能控制一种生物性状的表现 B、能控制一种蛋白质的生物合成 C、能转录一种信使RNA D、在蛋白质合成中能决定一种氨基酸的位置 9、生物界这样形形色色、丰富多彩的根本原因在于() A、蛋白质的多种多样 B、DNA的分子的复杂多样 C、自然环境的多种多样 D、非同源染色体组合形式的多样 10、左图是用DNA测序仪测出的某人DNA片段的碱基排列顺序。右四幅图是DNA测序仪测出的另外四人DNA片段的碱基排列顺序,请认真比较这四幅图,其中与左图碱基排列顺序最相似的是() 11、分析下图,回答有关问题: (l)图中A是_________,C是_________,G是_________。 (2)B有4种,即:_________[]、________[]、_________[]、________[](直线上写文字,括号内写字母) (3)D与F的关系是。 (4)E与F的关系是。

连锁遗传和性连锁

第四章连锁遗传和性连锁 一、连锁与交换 1、连锁遗传及解释 (1)性状连锁遗传的发现 性状连锁遗传现象是Bateson和Punnett(1906)在香豌豆的杂交试验中首先发现的 (2)连锁遗传的解释 Bateson和Punnett未能对性状连锁遗传现象作出解释。Morgan等(1911)以果蝇为试验材料,通过大量遗传研究,对连锁遗传现象作出了科学的解释 两对基因: 眼色红眼-显性(pr+) 紫眼-隐性(pr) 翅长长翅-显性(vg+) 残翅-隐性(vg) P pr+ pr+ vg+vg+ ?prprvgvg ↓ 测交F1pr+prvg+vg♀?prprvgvg♂ ↓ Ft pr+prvg+vg 1339 prprvgvg 1195 pr+prvgvg 151 prprvg+vg 154 P pr+pr+vgvg ?prprvg+vg+ ↓ 测交F1pr+prvg+vg♀?prprvgvg♂ ↓ Ft pr+prvg+vg 157 prprvgvg 146 pr+prvgvg 965 prprvg+vg 1067 从相引组和相斥组结果看: (1)F1虽然形成四种配子,但其比例不符合1:1:1:1 (2)两种亲型配子多,两种重组型配子-少 (3)两种亲型配子数大致相等,两种重组型配子数也大致相等

Morgan解释:控制眼色和翅长的两对基因位于同一同源染色体上。减数分裂时部分细胞中同源染色体的两条非姊妹染色单体之间发生交换,形成重组型配子 2、完全连锁和不完全连锁 连锁遗传:在同一同源染色体上的非等位基因连在一起而遗传的现象 完全连锁:同一同源染色体的两个非等位基因之间不发生非姊妹染色单体之间的交换,则二者总是连系在一起而遗传的现象 不完全连锁:同一同源染色体上的两个非等位基因之间或多或少地发生非姊妹染色单体之间的交换,测交后代中大部分为亲本型,少部分为重组型的现象 3、交换及其发生机制 交换:同源染色体的非姊妹染色单体之间的对应片段的交换,从而引起相应基因间的交换与重组 100个孢母细胞内 发生有效交换者7个: 7?4=28个配子14亲型配子 14重组型配子 不发生交换者93个93?4=372个配子 372亲型配子 重组率= 14/400 = 3.5 % 某两对连锁基因之间发生交换的孢母细胞的百分数,恰恰是重组型配子(又称交换型配子)百分数的2倍 二、交换值及其测定 1、交换值 严格地讲是指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率就一个很短的交换染色体片段来说,交换值就等于重组率 在较大的染色体区段内,由于双交换或多交换常可发生,因而用重组率来估计的交换值往往偏低 交换值(%)=重组型配子/总配子数?100 (1)测交法玉米 3.6 % P CCShSh ? ccshsh

3.4_基因是有遗传效应的DNA片段_教案(人教版必修2)_

3.4 基因是有遗传效应的DNA片段教案(人教版必修2) 一、教材分析与教学设计思路: 本节内容既是对本章内容的概括与提升,又为下一章做铺垫。本节以资料分析的形式,引出“基因是有遗传效应的DNA片段”这一核心概念,所以在教学中可以围绕4 个资料分析设计问题串,引导学生思考、推理,从而自然理解基因概念的二大内涵。在“DNA片段中的遗传信息”部分以探究活动的形式,引导学生自主探究推出DNA分子储存大量的遗传信息、DNA的多样性和特异性,教材很好地体现了以学生为主体的教学思路。基于本节内容不多,采用概念图帮助学生梳理概念,进一步理解基因概念的内涵与外延,达到总结提升的目的。 二、教学目标 1.举例说明基因是有遗传效应的DNA片段。 2.运用数学方法说明DNA分子的多样性和特异性。 3.说明基因和遗传信息的关系。 4.通过交流或讨论,运用所学知识构建基因的概念图 三、教学重点和难点 1.教学重点 (1)基因是有遗传效应的DNA片段。 (2)DNA分子具有多样性和特异性。 2.教学难点 (1)脱氧核苷酸序列与遗传信息的多样性。(2)基因概念图的构建 四、教学方法: 1、利用“资料分析”,让学生通过对实例的分析和讨论来理解基因与DNA的关系。 2、合理组织探究活动,帮助学生用数学方法解决生物学问题。 3、通过交流或讨论,运用所学知识构建基因的概念图。 五、课前准备:多媒体课件;学生摘抄学过的课本中与基因有关的句子 六、教学过程

基因是DNA上的片段。) DNA分子中,有98%不能称为基因,而能称为基因,同样是DNA的一段序列,之所以能称为基因,有何特殊的作用? 阅读资料2和4(从基因的作用进行分析), 并思考以下问题: 资料2中转基因小鼠为何能发光?为何要 设置第3号小鼠? 吃得多就一定能长胖吗?资料4中的HMGIC 基因起什么作用?

第四节基因是有遗传效应的DNA片段

3.4 基因是有遗传效应的DNA片段 编写人:史小棉审核:高一生物组 寄语:太阳下辛勤劳动过的人,在树荫下吃饭,才会心安理得。 学习目标: 1.举例说明基因是有遗传效应的DNA片段。 2.应用数学方法说明DNA分子的多样性和特异性。 3.说明基因和遗传信息的关系。 学习重点: 1. 基因是有遗传效应的DNA片段。 2.DNA分子的多样性和特异性。 学习难点: 脱氧核苷酸序列与遗传信息的多样性。 学习过程: 引言:DNA分子是怎样控制遗传性状的呢?现代遗传学的研究认为,基因是决定生物性状的基本单位。那么基因与DNA有什么关系呢?基因等于DNA吗? 一、说明基因与DNA关系的实例 请大家阅读课文P55-56“资料分析”,看懂图A、B、C: 1、大肠杆菌的DNA与基因。 每个DNA 分子上有基因。所以生物体内DNA的分子数目基因数目。 2、海蛰的绿色荧光蛋白基因与转基因技术。 基因是性状遗传的基本单位。 3、人类基因组计划(HGP计划):测定24条染色体(22条常染色体+X+Y)上的碱基序列。 人类的46条染色体上碱基总数大约个碱基对,构成基因的碱基数占碱基总数的比例不超过,所以生物体内所有碱基总数与DNA分子的碱基总数。 4、小鼠体内的HMGIC基因与肥胖直接相关。 说明每个基因都是DNA分子上的小片段 基因的遗传效应是指基因中的特定的遗传信息,通过传递,在生物个体发育和传种接代过程中,控制生物的形状,从而表现出生物的遗传特性。 基因与分子的关系 DNA分子上的片段很多,并不是都能控制生物的性状,有遗传效应的DNA片段叫基因,不能控制生物性状的DNA片段不叫基因。不同的基因含有不同的遗传信息。

基因突变和基因重组

基因突变和基因重组

基因突变和基因重组 【课前复习】 在学习新课程前必须复习有关DNA的复制、基因控制蛋白质的合成、表现型与基因型的关系等知识,这样既有利于掌握新知识,又便于将新知识纳入知识系统中。 温故——会做了,学习新课才能有保障1.DNA分子的特异性决定于 A.核糖的种类B.碱基的种类 C.碱基的比例D.碱基对的排列顺序答案:D 2.基因对性状控制的实现是通过A.DNA的自我复制 B.DNA控制蛋白质的合成 C.一个DNA上的多种基因 D.转运RNA携带氨基酸 答案:B 3.下列关于基因型与表现型关系的叙述中,错误的是 A.表现型相同,基因型不一定相同B.基因型相同,表现型一定相同C.在相同生活环境中,基因型相同,表现型一定相同

D.在相同生活环境中,表现型相同,基因型不一定相同 答案:B 4.实现或体现遗传信息的最后阶段是在细胞的哪一部分中进行的 A.线粒体中B.核糖体中C.染色质中D.细胞质中 答案:B 知新——先看书,再来做一做 1.变异的类型有_________和_________两种。后者有三个来源_________、___________、___________。2.基因突变 (1)概念:由于DNA分子中发生碱基对的___________、___________或___________,而引起的基因结构的改变,就叫做基因突变。 (2)实例:镰刀型细胞贫血症 ①根本原因:控制合成血红蛋白的DNA 分子的一个___________发生改变。 ②直接原因:血红蛋白多肽链中___________被___________代替。(3)结果:基因突变使一个基因变成它的___________基因,并且通常会引起—定的___________型的变化。

基因是具有遗传效应的DNA片段

课题DNA分子的 结构 学科生物课时 1 备课时间2015.4.6 备课人李建军执教人李建军教学准备PPT课件 教学目标1、概述DNA分子结构的主要特点。 2、制作DNA分子双螺旋结构模型。 3、讨论DNA双螺旋结构模型的构建历程。 教学重点1、DNA分子结构的主要特点。 2、制作DNA分子双螺旋结构模型 教学难点DNA分子结构的主要特点。 教学过程教师活动学生活动策略与反思 导课 在通过实验证明DNA是生 物体的遗传物质后,人们更 加迫切地想知道:DNA分子是 怎样储存遗传信息的?又是 怎样决定生物性状的?要回 答这些问题,首先需要弄清 楚DNA的结构。教师指导学 生预习P47—P49,通过阅读 科学家构建DNA双螺旋结构 模型的故事,思考它带来的 启示,并尝试总结DNA双螺 旋结构模型的特点。 学生通过科学家的探索历程 一、肺炎双球菌体内转化实验 教师介绍S型菌和R型更 加菌的特点,适当的强调第 四组实验R型转化为S型菌 的过程、原理及本质,及时 释疑。 学生积极思考,理解。 二、肺炎双球菌体外转化实验 教师提问:艾弗里及同事 的实验设计思路是什么,根 据实验结果能得到什么结 论? 学生积极思考回答问题。 三、T2噬菌体侵染大肠杆菌实验 教师用动画演示T2噬菌 体侵染大肠杆菌过程,让学 生对子代噬菌体的DNA、蛋白 质是否具有放射性进行分 析,对离心管内的放射性进 行分析。并且提问:(1)保 温时间不能过短、过长的原 因。 (2)此实验设计思路是什 么,结论是什么。 对含有放射性子代噬菌体的 学生结合动画演示,积极 讨论思考问题,并尝试作出回 答。

分析,可以穿插DNA复制知识,为后面做铺垫。 四、遗传物质RNA的实验论证 教师提出有的生物没有 DNA,只有RNA,例如植物病 毒烟草花叶病毒等。提示学 生结合本节课实验方法,如 何证明烟草花叶病毒的遗传 物质——RNA。教师作出适当 的评价,并给予肯定。 学生积极讨论,思考,作出 回答。 五、作业布置

相关主题
文本预览
相关文档 最新文档