当前位置:文档之家› 高聚物结构与性能的答案

高聚物结构与性能的答案

高聚物结构与性能的答案
高聚物结构与性能的答案

高聚物结构与性能

试题参考答案

一、名词解释(2.5×12 =30分)

构型:由化学键决定的原子基团间的空间排列方式

分子链柔顺性:高分子链能够改变其构型的性质

高斯链:又名高斯线团,是末端距分布符合Gauss分布函数的线团。

熔限:高分子晶体的熔融发生在一个温度范围内,称为熔限。

多分散指数:描述高分子的分子量多分散性大小的参数,通常是Mw/Mn或Mz/Mw

取向:高分子的链段、整链或其晶体结构沿外力方向所作的优先排列。

粘弹性:高分子固体的力学性质兼具纯弹性和纯粘性的特征,称为粘弹性。

溶度参数:定义为(CED)1/2,用于指导非极性聚合物的溶剂选择。

冷拉:高分子材料在拉伸条件下,发生应力屈服,出现细颈、细颈扩展所导致的大形变行为。

增韧:即增加聚合物材料韧性,所采用的技术路线有弹性体和刚性粒子增韧力学损耗:高分子材料在动态力学条件下,应力与应变出现滞后所导致的机械能损耗

银纹:由于应力或环境因素的影响,聚合物表面所产生的银白色条纹

二、简答题(8×5=40 分)

1.分别写出顺丁橡胶、聚丙烯、聚异丁烯、聚甲醛、聚氯乙烯的结构式,比较其玻璃化温度的高低,并说明原因。

2.高聚物熔体的流动机理是什么?其流动行为上有什么特征?

答:流动机理:高分子链的重心移动采用高分子链段的协同跃迁的方式完成,通常称为“蠕动”。

熔体流动的特征有三:

1,高粘度,缘自高分子巨大的分子量;

2,剪切变稀:高分子链受剪切作用时,发生构象变化。

3,弹性效应:高分子流动变形中包含可逆的构象变化,导致其表现出Barus效应、爬杆效应等现象。

3.何为θ溶液?θ条件下,Huggins参数取何值?此时溶液中高分子链的构象有何特征?

答:处于θ状态,即高分子链段间作用等于高分子链段与溶剂分子作用的状态的高分子溶液,称为θ溶液。

此时,Huggins参数为1/2;溶液中高分子链的构象与同温度条件下的高聚物本体的非晶区构象相同。

4.请说明聚乙烯、尼龙-66和交联顺丁橡胶溶解行为上的差异。

答:PE:非极性、结晶性,需要在高温下采用非极性溶剂溶解;

Nylon-66:极性、结晶性,常温下采用极性溶剂溶解;

交联顺丁:只有熔胀过程,而不溶解

5.试从结晶热力学的角度分析天然橡胶的拉伸结晶现象。

答:天然胶NR,主体成分是顺式聚异戊二烯,具有规整性,可以结晶。

晶体的熔点:Tm=△H / △S。由于NR柔顺性大,结晶中的熵变巨大,导致熔点低,常温下不能结晶;

拉伸条件下,NR分子链的构象变化,结晶的熵变减小,使熔点高于室温,所以NR在拉伸条件下可以结晶。

三、高分子科学中采用哪些参数表征高分子的分子量大小及其分布?分子量大小对高聚物

的力学性能和流变性质各有什么影响?(15分)

答:分子量大小:

分子量分布:

分子量对性能的影响:

1,力学性质:分子量的增大使力学强度增高,达到一定限度后,分子量继续增大对力学强度无明显影响;但材料的韧性随分子量的增大持续增加。

2,流变性质:分子量增大使高分子熔体的粘度增大

四、什么是蠕变和应力松弛?画出描写线性高分子蠕变行为和应力松弛的力学模型和曲线,并写出其相应的方程。(15分)

答:蠕变:在一定温度和恒定应力作用下,材料的形变随时间逐渐增大的现象;

应力松弛:在一定温度和恒定应变条件下,材料的应力所时间逐渐减小的现象。

《材料结构与性能》习题

《材料结构与性能》习题 第一章 1、一25cm长的圆杆,直径2.5mm,承受的轴向拉力4500N。如直径拉细成2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图1.27所示一均一材料试样上的A点处的应力场和应变场。 4、一瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),计算上限及下限弹性模量。如该瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的关系。并注出:t=0,t=∞以及t=τε(或τσ)时的纵坐标。

6、一Al2O3晶体圆柱(图1.28),直径3mm,受轴向拉力F ,如临界抗剪强度τc=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时计算在滑移面上的法向应力。 第二章 1、求融熔石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm;弹性模量值从60到75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ=1.56J/m2;理论强度。如材料中存在最大长度为的裂,且此裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式:

与 是一回事。 4、一瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图2.41所示。如果E=380GPa,μ=0.24,求KⅠc值,设极限载荷达50㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。此钢材的屈服强度为1400MPa,计算塑性区尺寸r0及其与裂缝半长c的比值。讨论用此试件来求KⅠc值的可能性。 6、一瓷零件上有以垂直于拉应力的边裂,如边裂长度为:①2mm;② 0.049mm;③2μm,分别求上述三种情况下的临界应力。设此材料的断裂韧性为 1.62 MPa·m2。讨论诸结果。

《高分子材料》课后习题参考

1绪论 Q1.总结高分子材料(塑料和橡胶)在发展过程中的标志性事件: (1)最早被应用的塑料 (2)第一种人工合成树脂 (3)是谁最早提出了高分子的概念 (4)HDPE和PP的合成方法是谁发明的 (5)是什么发现导致了近现代意义橡胶工业的诞生? 1.(1)19世纪中叶,以天然纤维素为原料,经硝酸硝化樟脑丸增塑,制得了赛璐珞塑料,被用来制作台球。(2)1907年比利时人雷奥·比克兰德应用苯酚和甲醛制备了第一种人工合成树脂—酚醛树脂(PF),俗称电木。(3)1920年,德国化学家Dr. Hermann Staudinger首先提出了高分子的概念(4)1953年,德国K.Ziegler以TiCl4-Al(C2H5)3做引发剂,在60~90℃,0.2~1.5MPa条件下,合成了HDPE;1954年,意大利G.Natta以TiCl3-AlEt3做引发剂,合成了等规聚丙烯。两人因此获得了诺贝尔奖。(5)1839年美国人Goodyear发明了橡胶的硫化,1826年英国人汉考克发明了双辊开炼机,这两项发明使橡胶的应用得到了突破性的进展,奠定了现代橡胶加工业的基础。 Q2.树脂、通用塑料、工程塑料的定义。 化工辞典中的树脂定义:为半固态、固态或假固态的不定型有机物质,一般是高分子物质,透明或不透明。无固定熔点,有软化点和熔融范围,在应力作用下有流动趋向。受热、变软并渐渐熔化,熔化时发粘,不导电,大多不溶于水,可溶于有机溶剂如乙醇、乙醚等,根据来源可分成天然树脂、合成树脂、人造树脂,根据受热后的饿性能变化可分成热定型树脂、热固性树脂,此外还可根据溶解度分成水溶性树脂、醇溶性树脂、油溶性树脂。 通用塑料:按塑料的使用范围和用途分类,具有产量大、用途广、价格低、性能一般的特点,主要用于非结构材料。常见的有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)。 工程塑料:具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并在此条件下长时间使用的塑料,可作为结构材料。又可分为通用工程塑料(如聚酰胺PA,聚碳酸酯PC)和特种工程塑料(如聚酰亚胺PI,聚苯硫醚PPS)。Q3.弹性体、天然橡胶、合成橡胶,通用橡胶、特种橡胶的定义。 弹性体:是一类线形柔性高分子聚合物。特点:①在外力作用下可产生大的形变②除去外力后能迅速恢复原状 天然橡胶:指从植物(巴西橡胶树,银菊,橡胶草)中获得的橡胶,主要成分顺式聚1,4-异戊二烯。 合成橡胶(synthetic rubber):以合成高分子化合物为基础的具有可逆形变的高弹性材料,包括通用合成橡胶和特种合成橡胶。 通用橡胶:主要指用于轮胎制造和民用产品方面的橡胶,产量占合成橡胶的50%以上,包括顺丁橡胶,丁苯橡胶,乙丙橡胶,丁基橡胶,丁腈橡胶,氯丁橡胶。特种橡胶:指具有特殊性能和特殊用途能适应苛刻条件下使用的合成橡胶,包括硅橡胶,氢化丁腈橡胶,氟橡胶,丙烯酸酯橡胶,氯醚橡胶等。

聚合物的相容性-高分子物理化学(高聚物结构和性能)论文

聚合物的相容性 高莉丽PB02206235 摘要:从共混来研究聚合物的基本特点,相容性的表征方法和测定方法。 关键词:相容,共聚,溶度参数,Huggins-Flory相互作用参数。 聚合物共混物是指两种或两种以上聚合物的混合物,正如合金一样,共混高聚物可以使材料得到单一的等聚物所不具有的性能,因此其合成具有很重要的意义。聚合物之间的相容性是选择适宜共混方法的重要依据,也是决定共混物形态结构和性能的关键因素。以下就聚合物之间相容性的基本特点,相容性的表征参数和测定方法进行简单的阐述。 从热力学角度来看,聚合物的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。若两种聚合物可以任意比例形成分子水平均匀的均相体系,则是完全相容;如硝基纤维素-聚丙烯酸的甲脂体系。若是两种聚合物仅在一定的组成范围内才能形成稳定的均相体系,则是部分相容。如部分相容性很小,则为不相容,如聚苯乙烯-聚丁二烯体系。 相容与否决定于混合物的混合过程中的自由能变化是否小于0。即要求△G=△H-T△S<0.对于聚合物的混合,由于高分子的分子量很大,混合时熵的变化很小,而高分子-高分子混合过程一般都是吸热过程,即△H为正值,因此要满足△G<0是困难的。△G往往是正的,因而绝大多数共混高聚物都不能达到分子水平的混合,或者是不相容的,形成非均相体系。但共混高聚物在某一温度范围内能相容,像高分子溶液一样,有溶解度曲线,具有最高临界相容温度(UCST)和最低临界相容温度(LCST),这与小分子共存体系存在最低沸点和最高沸点类似。大部分聚合物共混体系具有最低临界相容温度,这是聚合物之间相容性的一个重要特点。 还应指出,聚合物之间的相容性还与分子量的分布有关。一般,平均分子量越大,聚合物之间的相容性就越小。 以上定性地描述了影响相容性的一些因素,那么在实际中如何判断聚合物之间的相容性呢?最常用的判据是溶度参数和Huggins-Flory相互作用参数。 1.溶度参数 对于非极性分子体系,混合过程无热效应或吸热。由Hildebrand的推导,混合焓 △Hm =Vm(∑12/1-∑22/1)2&1&2 ∑1,∑2分别为溶剂与高聚物的内聚能密度,&1,&2分别为溶剂与高聚物的体积分数,Vm为混合后的总体积。 定义溶度参数δ=∑2/1,则上式可写为: △Hm =Vm(δ1-δ2)2&1&2 当δ1与δ2越接近,则△H越小,△G越小,越有利于相容,据此可以根据溶度参数来选择聚合物的溶剂,但以上溶度参数仅考虑了分子之间的色散力,仅适用于非极性分子的情况。当聚合物之间有强的极性作用或氢键时上述规则不适用。鉴于这种情况,采用三维溶度参数。即假定液体的蒸发能为色散力、偶极力和氢键三种力的贡献,这三种力对蒸发能的贡献分别为Ea, Ep和Ed。即 E=Ea+Ep+Ed.于是有:δ2=δ2 a +δ2 p +δ2 d 仅当两种聚合物的δa,δp和δn都分别相近是才能很好地溶解。如PVC的δ值与氯仿和四氢呋喃的δ值都很相近,但PVC与氯仿的δp和δn相差较大,所以两者不相容,PVC与四氢呋喃的δp,δa,δn都相近,所以可以很好地相容。 2 Huggins-Flory作用参数Χ1,2

材料结构与性能试题及详细答案

一、名词解释(分) 原子半径,电负性,相变增韧、气团 原子半径:按照量子力学地观点,电子在核外运动没有固定地轨道,只是概率分布不同,因此对原子来说不存在固定地半径.根据原子间作用力地不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径.通常把统和双原子分子中相邻两原子地核间距地一半,即共价键键长地一半,称作该原子地共价半径();金属单质晶体中相邻原子核间距地一半称为金属半径();范德瓦尔斯半径()是晶体中靠范德瓦尔斯力吸引地两相邻原子核间距地一半,如稀有气体.资料个人收集整理,勿做商业用途 电负性:等人精确理论定义电负性为化学势地负值,是体系外势场不变地条件下电子地总能量对总电子数地变化率.资料个人收集整理,勿做商业用途 相变增韧:相变增韧是由含地陶瓷通过应力诱发四方相(相)向单斜相(相)转变而引起地韧性增加.当裂纹受到外力作用而扩展时,裂纹尖端形成地较大应力场将会诱发其周围亚稳向稳定转变,这种转变为马氏体转变,将产生近地体积膨胀和地剪切应变,对裂纹周围地基体产生压应力,阻碍裂纹扩展.而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性.资料个人收集整理,勿做商业用途 气团:晶体中地扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用地结果使溶质原子富集于层错区内,造成层错区内地溶质原子浓度与在基体中地浓度存在差别.这种不均匀分布地溶质原子具有阻碍位错运动地作用,也成为气团.资料个人收集整理,勿做商业用途 二、简述位错与溶质原子间有哪些交互作用.(分) 答:从交互做作用地性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类.弹性交互作用:位错与溶质原子地交互作用主要来源于溶质原子与基体原子间由于体积不同引起地弹性畸变与位错间地弹性交互作用.形成气团,甚至气团对晶体起到强化作用.弹性交互作用地另一种情况是溶质原子核基体地弹性模量不同而产生地交互作用.资料个人收集整理,勿做商业用途 化学交互作用:基体晶体中地扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用地结果使溶质原子富集于层错区内,造成层错区内地溶质原子浓度与在基体中地浓度存在差别,具有阻碍位错运动地作用.资料个人收集整理,勿做商业用途 静电交互作用:晶体中地位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子地费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分地费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用.资料个人收集整理,勿做商业用途 三、简述点缺陷地特点和种类,与合金地性能有什么关系(分) 答:点缺陷对晶体结构地干扰作用仅波及几个原子间距范围地缺陷.它地尺寸在所有方向上均很小.其中最基本地点缺陷是点阵空位和间隙原子.此外,还有杂质原子、离子晶体中地非化学计量缺陷和半导体材料中地电子缺陷等.资料个人收集整理,勿做商业用途 在较低温度下,点缺陷密度越大,对合金电阻率影响越大.另外,点缺陷与合金力学性能之间地关系主要表现为间隙原子地固溶强化作用.资料个人收集整理,勿做商业用途 四、简述板条马氏体组织地组织形态、组织构成与强度与韧性地关系.(分) 答:板条马氏体地组织形态主要出现在低碳钢中,由许多成条排列地马氏体板条组成,大致平行地马氏体条组成地领域为板条束.每个晶粒内一般有个板条束,束地尺寸约为μ.一个马氏体板条束又由若干个板条组成,这些板条具有相同地惯习面,位向差很小,而板条束之间

高聚物结构与性能的答案

高聚物结构与性能 试题参考答案 一、名词解释(2.5×12 =30分) 构型:由化学键决定的原子基团间的空间排列方式 分子链柔顺性:高分子链能够改变其构型的性质 高斯链:又名高斯线团,是末端距分布符合Gauss分布函数的线团。 熔限:高分子晶体的熔融发生在一个温度范围内,称为熔限。 多分散指数:描述高分子的分子量多分散性大小的参数,通常是Mw/Mn或Mz/Mw 取向:高分子的链段、整链或其晶体结构沿外力方向所作的优先排列。 粘弹性:高分子固体的力学性质兼具纯弹性和纯粘性的特征,称为粘弹性。 溶度参数:定义为(CED)1/2,用于指导非极性聚合物的溶剂选择。 冷拉:高分子材料在拉伸条件下,发生应力屈服,出现细颈、细颈扩展所导致的大形变行为。 增韧:即增加聚合物材料韧性,所采用的技术路线有弹性体和刚性粒子增韧力学损耗:高分子材料在动态力学条件下,应力与应变出现滞后所导致的机械能损耗 银纹:由于应力或环境因素的影响,聚合物表面所产生的银白色条纹 二、简答题(8×5=40 分) 1.分别写出顺丁橡胶、聚丙烯、聚异丁烯、聚甲醛、聚氯乙烯的结构式,比较其玻璃化温度的高低,并说明原因。

2.高聚物熔体的流动机理是什么?其流动行为上有什么特征? 答:流动机理:高分子链的重心移动采用高分子链段的协同跃迁的方式完成,通常称为“蠕动”。 熔体流动的特征有三: 1,高粘度,缘自高分子巨大的分子量; 2,剪切变稀:高分子链受剪切作用时,发生构象变化。 3,弹性效应:高分子流动变形中包含可逆的构象变化,导致其表现出Barus效应、爬杆效应等现象。 3.何为θ溶液?θ条件下,Huggins参数取何值?此时溶液中高分子链的构象有何特征? 答:处于θ状态,即高分子链段间作用等于高分子链段与溶剂分子作用的状态的高分子溶液,称为θ溶液。 此时,Huggins参数为1/2;溶液中高分子链的构象与同温度条件下的高聚物本体的非晶区构象相同。 4.请说明聚乙烯、尼龙-66和交联顺丁橡胶溶解行为上的差异。 答:PE:非极性、结晶性,需要在高温下采用非极性溶剂溶解; Nylon-66:极性、结晶性,常温下采用极性溶剂溶解; 交联顺丁:只有熔胀过程,而不溶解 5.试从结晶热力学的角度分析天然橡胶的拉伸结晶现象。 答:天然胶NR,主体成分是顺式聚异戊二烯,具有规整性,可以结晶。 晶体的熔点:Tm=△H / △S。由于NR柔顺性大,结晶中的熵变巨大,导致熔点低,常温下不能结晶; 拉伸条件下,NR分子链的构象变化,结晶的熵变减小,使熔点高于室温,所以NR在拉伸条件下可以结晶。

材料性能期中答案

1、What is the definition for Materials Properties (MP )?How do we classify materials properties?And please list some classification for MP.(材料特性(MP )的定义是什么?我们如何分类材料特性,请列出一些MP 的分类。) 答:MP :Materials ’Response to External Stimulus. 材料性能:材料在给定的外界条件下的行为。 怎样分类:根据材料对外界刺激做出的响应的类型进行分类。 分类:复杂性能(使用性能,工艺性能,复合性能) 化学性能(抗渗入性,耐腐蚀性等) 力学性能(刚度强度韧性等) 物理性能(热学光学磁学电学性能) 2. What is the core relationship between materials science and engineering? In order to obtain desired materials properties, what should we consider first to do with the materials? (材料科学与工程的核心是什么关系?为了获得所需的材料性能,我们应该首先考虑的材料的什么?) 答:材料科学与工程学的核心关系是性能(课件上面那个三角形的图) 为了提高对于材料性能的期望,我们首先要研究材料的结构与性能的关系,即研究材料学。 3. What is the most determinant for Materials mechanical properties? Why?(材料力学性能的决定因素是什么?为什么呢?) 答:材料的力学性能主要指材料在力的作用下抵抗变形和开裂的性能,影响材料力学性能的最重要的因素是材料的结构。这些结构包括:subatomic-atomic-molecular-nano-micro-macro.由于材料的结构决定了材料的屈服强度,塑性韧性,刚度等性质,所以材料的结构对材料的力学性能影响最大。 4. what is strength of materials? Please try to identify the difference yield strength ,tensile strength ,fatigue strength and theoretical fracture strength? (材料的强度是什么?请尝试找出屈服强度,拉伸强度,疲劳强度和理论断裂强度的差异?)(中文ppt) 材料在载荷作用下抵抗变形和破坏的能力就是材料的强度。 屈服强度代表材料开始产生明显塑性变形的抗力 疲劳强度是材料在承受大小和方向同时间做周期性变化的交变应力时,往往在远小于强度极限甚至小于屈服极限的应力作用下就发生断裂。 理论断裂强度是无缺陷材料的理论预测值, 其中E 为杨氏模量,为解理面的表面能,a 为材料内部原子间的距离 5.Please describe yielding phenomena for materials, and its practical/engineering meaning. As long as there are no yielding phenomena for some materials, how do we determine the yield strength? (请描述为材料的屈服现象(书上p16),其实际/工程意义。有一些材料没有屈服现象,我们如何确定的屈服强度?) 屈服现象是材料开始产生明显塑性变形的标志,对应图中bd 段, 2 1)(a E c s γσ≈

高聚物结构与性能

1.聚合物表面改性 聚合物表面改性方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。 (1)化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。 化学氧化法是通过氧化反应改变聚合物表面活性。常用的氧化体系有:氯酸-硫酸系、高锰酸-硫酸系、无水铬酸-四氯乙烷系、铬酸-醋酸系、重铬酸-硫酸系及硫代硫酸铵-硝酸银系等,其中以后两种体系最为常用。 化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等。 聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。 (2)光化学改性主要包括光照射反应、光接枝反应。 光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。 光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应。 (3)表面改性剂改性 采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。 (4)力化学处理是针对聚乙烯、聚丙烯等高分子材料而提出来的一种表面处理和粘接方法,该方法主要是对涂有胶的被粘材料表面进行摩擦,通过力化学作用,使胶黏剂分子与材料表面产生化学键结合,从而大大提高了接头的胶接强度。力化学粘接主要是通过外力作用下高分子键产生断裂而发生化学反应,包括力降解、力化学交联、力化学接枝和嵌段共聚等。(5)火焰处理就是在特别的灯头上,用可燃气体的热氧化焰对聚合物表面进行瞬时处理,使其表面发生氧化反应而达到表面改性的效果。热处理是将聚合物暴露在热空气中,使其表面氧化而引入含氧基团。 (6)偶联剂是一种同时具有能分别与无机物和有机物反应的两种性质不同官能团的低分子化合物。其分子结构最大的特点是分子中含有化学性质不相同的两个基团,一个基团的性质亲无机物,易于与无机物表面起化学反应;另一个基团亲有机物,能与聚合物起化学反应,生成化学键,或者能互相融合在一起。偶联剂主要包括硅烷偶联剂、钛酸酯偶联剂两大类,其作用机理同表面活性剂的改性机理相同。 (7)辐照改性是聚合物利用电离辐射(直接或间接的导致分子的激发和电离)来诱发一些物理化学变化,从而达到改性的目的。等离子体表面改性是通过适当选择形成等离子体的气体种类和等离子体化条件,对高分子表面层的化学结构或物理结构进行有目的的改性。2.哪些物质能形成液晶,判断、表征 形成液晶物质的条件: (1)具有刚性的分子结构。 (2)分子的长宽比。棒状分子长宽比>4左右的物质才能形成液晶态;盘状分子轴比<1/4左右的物质才能呈现液晶态。 (3)具有在液态下维持分子的某种有序排列所必需的凝聚力。这种凝聚力通常是与结构中的强极性基团、高度可极化基团、氢键等相联系的。 液晶相的判断:各种液晶相主要是通过它们各自的光学形态即织构来识别的,即在正交偏光显微镜下可观察到各种不同的由双折射产生的光学图像,这些图像是由“畴”和向错构成的。

聚合物结构与性能题目

《聚合物结构与性能》习题集考试为开卷考试,但只能带课本,不能带任何资料,就是希望大家完全掌握下列知识,做合格高分子专业研究生! 一、提高聚合物样品电镜下稳定性的方法 对样品进行支撑: 1.大目数电镜铜网,如 400目铜网; 2.无定型材料作支持膜:硝化纤维素(火棉胶),聚乙烯醇缩甲醛(PVF),或无定型碳;碳支持膜:通过真空蒸涂的办法,将碳沉积在光洁的载玻片或新剥离云母片表面,然后漂在蒸馏水表面,转移至铜网上。 二、提高聚合物样品成像衬度的方法有几个? (1)染色:将电子密度高的重金属原子渗入聚合物的某些区域通过提高其电子密度来增大衬度的。从最终效果上染色分正染色和负染色。从作用机制上染色分化学反应和物理渗透。从手段上分直接染色和间接染色。 最常用的染色剂有:四氧化锇(OsO4)、四氧化钌(RuO4) 四氧化锇(OsO4)染色:四氧化锇染色是利用其与-C=C-双键以及-OH和-NH2基团间的化学反应,使被染色的聚合物含有重金属锇,从而使图像的衬度提高。 四氧化钌(RuO4)染色:四氧化钌染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透速率,使不同

聚合物或同一聚合物的不同部位含有不同量的重金属钌,从而使图像的衬度提高。 (2)晶粒方向: 为得到清晰的衬度,可调整晶体样品的取向,使得除透射电子束外,只出现一个很强的衍射束,一般称为双光束情况 (3)调整样品厚度; (4) 结构缺陷; (5)一次电子与二次电子相位 三、何为橡胶的高弹性?高弹性的本质是什么?什么化学结构和聚集态结构的高分子能够作为橡胶材料?请用应力应变曲线表达出橡胶、塑料、有机纤维三者的区别。 橡胶的高弹性:小应力下的大形变、外力除去后可以恢复; 高弹性的本质是熵弹性。橡胶弹性是由熵变引起的,在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小,当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,分子链由伸展再回复卷曲状态,因而形变可逆。 具有橡胶弹性的化学结构条件: (1)由长分子链组成 (2)分子链必须有高度的柔性 (3)分子链必须结合在一个交联网络之中 第一个条件是熵弹性的本源;第二个条件是分子链迅速改变构想的可能;第三个条件保证了可恢复性,这是橡胶材料不同于单分子链之处。 (4)具有橡胶弹性的凝聚态结构:无定形态。(橡胶的聚集态是指很多生胶分子聚集在一起时分子链之间的几何排列方式和堆砌

聚合物共混改性考试试题及答案

聚合物共混改性考试试卷 一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST 相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容;

高分子材料成型加工课后部分习题参考答案

2.分别区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”,“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2~3例。 答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。通用塑料有:PE,PP,PVC,PS等; 工程塑料:是指拉伸强度大于50MPa,冲击强度大于6kJ/m2 ,长期耐热温度超过100℃的,刚性好、蠕变小、自 润滑、电绝缘、耐腐蚀等,可代替金属用作结构件的塑料。工程塑料有:PA,PET,PBT,POM等; 工程塑料是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃以上,主要运用在工业上”。 热塑性塑料:加热时变软以至流动,冷却变硬,这种过程是可逆的,可以反复进行。聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚,氯化聚醚等都是热塑性塑料。(热塑性塑料中树脂分子链都是线型或带支链的结构,分子链之间无化学键产生,加热时软化流动、冷却变硬的过程是物理变化;) 热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。正是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。这种材料称为热固性塑料。(热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三维的网状结构,不仅不能再熔触,在溶剂中也不能溶解。)酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料,都是热固性塑料。 简单组分高分子材料:主要由高聚物组成(含量很高,可达95%以上),加入少量(或不加入)抗氧剂、润滑剂、着色剂等添加剂。如:PE、PP、PTFE。 复杂组分高分子材料:复杂组分塑料则是由合成树脂与多种起不同作用的配合剂组成,如填充剂、增塑剂、稳定剂等组成。如:PF、SPVC。 用天然或合成的聚合物为原料,经过人工加工制造的纤维状物质。可以分类两类 1)人造纤维:又称再生纤维,以天然聚合物为原料,经过人工加工而改性制得。如:粘胶纤维、醋酸纤维、蛋白质纤维等 2)合成纤维:以石油、天然气等为原料,通过人工合成和纺丝的方法制成。如:涤纶、尼龙、腈纶、丙纶、氨纶、维纶等 3.高分子材料成型加工的定义和实质。 高分子材料成型加工是将聚合物(有时还加入各种添加剂、助剂或改性材料等)转变成实用材料或制品的一种工程技术。 大多数情况下,聚合物加工通常包括两个过程:首先使原材料产生变形或流动,并取得所需要的形状,然后设法保持取得的形状(即硬化),流动-硬化是聚合物工过程的基本程序。 高分子材料加工的本质就是一个定构的过程,也就是使聚合物结构确定,并获得一定性能的过程。 第一章习题与思考题 2.请说出晶态与非晶态聚合物的熔融加工温度范围,并讨论两者作为材料的耐热性好坏。 答:晶态聚合物:Tm~Td;非晶态聚合物:Tf~Td。 对于作为塑料使用的高聚物来说,在不结晶或结晶度低时,最高使用温度是Tg,当结晶度达到40%以上时,晶区互相连接,形成贯穿整个材料的连续相,因此在Tg以上仍不会软化,其最高使用温度可提高到结晶熔点。熔点(Tm):是晶态高聚物熔融时的温度。表征晶态高聚物耐热性的好坏。 3.为什么聚合物的结晶温度范围是Tg~Tm 答:T>Tm 分子热运动自由能大于内能,难以形成有序结构 T

材料结构与性能试题及详细答案

《材料结构与性能》试题 一、名词解释(20分) 原子半径,电负性,相变增韧、Suzuki气团 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径(r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。 电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。 二、简述位错与溶质原子间有哪些交互作用。(15分) 答:从交互做作用的性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类。 弹性交互作用:位错与溶质原子的交互作用主要来源于溶质原子与基体原子间由于体积不同引起的弹性畸变与位错间的弹性交互作用。形成Cottrell气团,甚至Snoek气团对晶体起到强化作用。弹性交互作用的另一种情况是溶质原子核基体的弹性模量不同而产生的交互作用。 化学交互作用:基体晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别,具有阻碍位错运动的作用。 静电交互作用:晶体中的位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子的费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分的费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用。 三、简述点缺陷的特点和种类,与合金的性能有什么关系(15分) 答:点缺陷对晶体结构的干扰作用仅波及几个原子间距范围的缺陷。它的尺寸在所有方向上均很小。其中最基本的点缺陷是点阵空位和间隙原子。此外,还有杂质原子、离子晶体中的非化学计量缺陷和半导体材料中的电子缺陷等。 在较低温度下,点缺陷密度越大,对合金电阻率影响越大。另外,点缺陷与合金力学性能之间的关系主要表现为间隙原子的固溶强化作用。

高分子材料试题及答案.pdf

《高分子材料》试卷答案及评分标准 一、填空题(20分,每空1分): 1、材料按所起作用分类,可分为功能材料和结构材料两种类型。 2、按照聚合物和单体元素组成和结构变化,可将聚合反应分成 加成聚合反应和缩合聚合反应两大类。 3、大分子链形态有伸直链、折叠链、螺旋链、无规线团四种基本类型。 4、合成胶粘剂按固化类型可分为化学反应型胶粘剂、热塑性树脂溶液胶粘剂、热熔胶粘剂 三种。 5、原子之间或分子之间的系结力称为结合键或价键。 6、高分子聚合物溶剂选择的原则有极性相近、溶解度参数相近、 溶剂化原则。 7、液晶高分子材料从应用的角度分为热致型和溶致型两种。 8、制备高聚物/粘土纳米复合材料方法有插层聚合和插层复合两种。 二、解释下列概念(20分,每小题4分): 1、 材料化过程:由化学物质或原料转变成适于一定用场的材料,其转变 过程称为材料化过程或称为材料工艺过程。 2、 复合材料:由两种或两种以上物理和化学性质不同的物质,用适当的 工艺方法组合起来,而得到的具有复合效应的多相固体材料称之为复合材料。 3、 聚合物混合物界面:聚合物的共混物中存在三种区域结构:两种聚合物 各自独立的相和两相之间的界面层,界面层也称为过渡区,在此区域发生两相的粘合和两种 聚合物链段之间的相互扩散。 4、 共混法则:共混物的性能与构成共混物的组成均质材料的性能有关, 一般为其体积分数或摩尔分数与均质材料的性能乘积之和。或是倒数关系。 5、 纳米复合材料:是指复合材料结构中至少有一个相在一维方向上是纳米 尺寸。所谓纳米尺寸是指1nm~100nm的尺寸范围。纳米复合材料包括均质材料在加工过程中所析出纳米级尺寸增强相和基体相所构成的原位复合材料、纳米级尺寸增强剂的复合材料以及刚性分子增强的分子复合材料等。 三、比较下列各组聚合物的柔顺性大小,并说明理由(5分,每小题2.5分): 1、 聚丙烯与聚苯烯 聚丙烯>聚苯烯,原因:随着长链上侧基体积的增大,限制了分子链的运动,分子的柔性降低。 2、 聚乙烯、氯化聚乙烯和聚氯乙烯 聚乙烯>氯化聚乙烯>聚氯乙烯,原因:随着长链上氯原子的增加,分子间作用力增强,分子的柔性降低。 四、比较下列各组聚合物的Tg大小,并说明理由(5分,每小题2.5分): 1、 聚丙烯、聚氯乙烯、聚乙烯醇和聚丙烯腈 聚丙烯<聚氯乙烯<聚乙烯醇<聚丙烯腈,原因:随着分子链上侧基的极性增强,分子链产生的内旋转受到限制越大,是其Tg增高。 2、 聚( 3、3-二甲基—1-丁烯)、聚苯乙烯和聚乙烯基咔唑 聚(3、3-二甲基—1-丁烯)<聚苯乙烯<聚乙烯基咔唑,原因:随着分子链上侧基体积的增大,分子运动越困难,所以Tg增高。 五、按照给出条件鉴别高分子材料(6分,每小题3分): 1、 序号 密度(g/cm3) 洛氏硬度 软化温度℃ 冲击强度J/m

2010年聚合物结构分析习题集

《聚合物结构分析》基础习题 第一章绪论 1、聚合物链结构的测定方法有哪些? 2、测定聚合物聚集态结构的方法有哪些? 3、测定聚合物结晶度的方法有哪些? 4、聚合物取向度的测定方法有哪些? 5、聚合物相对分子质量的测定方法有哪些? 6、聚合物相对分子质量分布的测定方法有哪些? 7、聚合物支化度的测定方法有哪些? 8、聚合物交联度的测定方法有哪些? 9、可以根据哪几种性能的变化来研究聚合物的转变与松弛现象? 10、材料的力学性能主要包括哪几方面? 11、聚合物本体粘流行为的研究内容是什么?测试仪器有哪些? 12、材料的电学性能包括哪些?测试仪器有哪些? 13、材料的热性能包括哪些?测试仪器有哪些? 14、材料密度的测定方法有哪些? 第一篇波谱分析 1、要求记住划分成光谱区的电磁总谱,知道不同光谱法研究的是分子中的哪一种运动形式。第二章红外光谱 1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解 的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法? 对于粘稠的低聚物和黏合剂可以采用哪种方法制样? 2、红外光谱仪中常用的附件有哪些?各自的用途是什么? 3、红外光谱图的表示方法,即纵、横坐标分别表示什么? 4、记住书中表2-1中红外光谱中各种键的特征频率范围。 5、名词:红外光谱中基团的特征吸收峰和特征吸收频率,官能团区,指纹区,透过率,吸光度,红外二向色性,衰减全反射,光声效应 6、红外光谱图中,基团的特征频率和键力常数成___正比____,与折合质量成___反比____。 7、官能团区和指纹区的波数范围分别是1300-4000cm-1和400-1300cm-1。 9、论述影响吸收谱带位移的因素。 10、在红外谱图中C=O的伸缩振动谱带一般在1650-1900cm-1,该谱带通常是含C=O 聚合物的最强谱带;记住表2-2中C=O在不同分子中红外光谱图上对应的吸收谱带的位置。对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是聚丙烯酰胺、聚丙烯酸、聚丙烯酸甲酯。 12、为什么可以用红外光谱技术来判断两种聚合物的相容性?p14 13、对于伸缩振动,氢键会使基团的吸收频率下降,谱带变宽;对于弯曲振动,氢键会使基团的吸收频率升高,谱带变窄。 14、共轭效应会造成基团的吸收频率降低。 16、叙述傅立叶变换红外光谱仪工作原理。会画图2-7的原理图。

最新材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

2013年聚合物结构及性能测试试题集 2

《聚合物结构及性能测试》基础习题 第一篇波谱分析 第一章红外光谱 1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解 的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法? 对于粘稠的低聚物和黏合剂可以采用哪种方法制样? 2、红外光谱图的表示方法,即纵、横坐标分别表示什么? 3、记住书中红外光谱中各种键的特征频率范围。 6、红外光谱图中,基团的特征频率和键力常数成___正比____,与折合质量成___反比____。 7、官能团区和指纹区的波数范围分别是1300-4000cm-1和400-1300cm-1。 9、论述影响吸收谱带位移的因素。 10、在红外谱图中C=O的伸缩振动谱带一般在1650-1900cm-1,该谱带通常是含C=O 聚合物的最强谱带;对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是聚丙烯酰胺、聚丙烯酸、聚丙烯酸甲酯。 12、为什么可以用红外光谱技术来判断两种聚合物的相容性? 13、对于伸缩振动,氢键会使基团的吸收频率下降,谱带变宽;对于弯曲振动,氢键会使基团的吸收频率升高,谱带变窄。 14、共轭效应会造成基团的吸收频率降低。 16、接枝共聚物和相应均聚物的共混物的红外谱图是相同的,可以用共混物模拟接枝共聚物。 17、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。 19、写出透过率和吸光度的定义式,并标明各符号意义。 、问答题 1. 某化合物的红外谱图如下。试推测该化合物是否含有羰基 (C=O),苯环及双键 (=C=C=)?为什么? 2.简单说明下列化合物的红外吸收光谱有何不同? A. CH3-COO-CO-CH3 B. CH3-COO-CH3

相关主题
文本预览
相关文档 最新文档