当前位置:文档之家› 电气继电器第部分保护系统

电气继电器第部分保护系统

电气继电器第部分保护系统
电气继电器第部分保护系统

中华人民共和国国家标准

电气继电器

第20部分:保护系统GB/T14598.8—1995

IEC255-20—1984

Electrical relays

Part20:Protection(protective)systems

国家技术监督局1995-07-24批准1996-08-01实施

本标准等同采用国际标准IEC255-20(1984)《电气继电器第20部分:保护系统》。

1主题内容与适用范围

本标准规定了整个保护系统及各组成部分的性能要求。

本标准适用于保护系统中的保护装置及与保护装置相连的对其性能有影响的器件。

本标准适用于下列对象:

——保护系统或其部件的制造厂;

——保护系统的用户;

——控制屏制造厂;

——电气设备安装人员;

——顾问工程师。

不同的IEC标准规定了保护系统各组成部分的技术要求,本标准各有关部分引用了这些标准。

附录A列出了某一保护系统的方框图,该图还示出了制定保护系统各组成部分技术规范的有关IEC技术委员会。

建议用户作出的决定应与涉及到的各技术委员会的规定一致,这些技术委员会对整个保护系统负责。

2术语

通用术语引用IEC50(448)国际电工词典第448章:电力系统保护。同时,本标准还引用了下列术语和定义。

2.1保护系统protection system-protective system

根据一种保护原理,为完成某项规定功能,由保护装置和其它器件组成的成套设备1]。

采用说明:

1]采用IEC50(448)的定义。

2.2加速式距离保护系统accelerated distance protection system

一种辅以通信联系的距离保护系统1],在该系统中当接到信号时,容许对任何测量区减少总的动作时间。

采用说明:

1]相继速切的距离保护不采用通讯联系。

2.3闭锁方案blocking scheme

当检测出保护区外故障时,发出使其它各端禁止跳闸信号的一种保护系统。

2.4空载分路中的电流互感器current transformers in idle shunt

与保护系统相连,但不载一次电流的电流互感器。

2.5断路器失灵保护系统circuit-breaker fail protection system

当选定的断路器跳闸失灵不能切断故障电流时,使预先规定的断路器跳闸,以切除系统故障的一种保护系统。

2.6解除闭锁方案的系统de-blocking scheme system

从保护区的每一端传送连续的闭锁信号,在任一端检测出故障电流输入时便解除闭锁的方案。

2.7方向比较保护系统direction comparison protection system

用本处取得的电压或电流为基准,比较保护区各端电流方向的一种保护系统。

2.8与信号发送系统结合的保护系统protection system associated with signallingsystem

在被保护电路的各端之间要求有通信联系的一种保护系统。

2.9区内故障电流试验internal fault current test

模拟被保护区内故障电流的试验。

2.10远方跳闸系统intertripping system

送出信号使远方的断路器直接跳闸,而不要求远方的保护装置动作。

2.11(纵联)差动导引线系统(longitudinal)differential pilot wire system

差动电流等于流入被保护区各电流代数和的一种差动保护系统。

2.12保护系统的参数parameter of a protection system

一个不受其它量变化影响的量,而且在不同的情况下可以给定不同数值的量。例如器件的特性,引线的功耗等。

2.13允许式超范围距离保护系统permissive overreach distance protection system

在故障检测中,一端保护在检测到故障发生在保护正方向时便将一个信号送至其它各端,其它端接收到该信号,则通过判定故障发生在该端保护正方向的方向继电器触点,使该端断路器跳闸的一种保护系统。

2.14允许式欠范围距离保护系统permissive underreach distance protection system

在保护区任一端的距离保护第Ⅰ段检测到故障时,便将一个信号送至其它各端,其它端接收到该信号,则通过不具有方向性的检测故障的保护触点,使该端断路器跳闸的一种保护系统。

2.15相位比较载波系统phase comparison carrier system

比较被保护区段各端电流之间相角量的一种保护系统。

2.16一次试验primary test

向作为保护系统组成部分的仪用互感器初级绕组施加电流所作的试验。

2.17保护的稳定极限protection stability limit

在除了设计规定动作之外的所有情况下,使保护不动作的任何激励电量或影响电量的极限值。

2.18剩余连接residual connection

为了要在多相系统中获得所有线电流或相电压的代数和的仪用互感器二次绕组的接法。

2.19灵敏度sensitivity

在规定条件下,恰好使继电器动作所要求的激励量的最小值。

2.20穿越性电流through-current

穿过被保护区流向该区外某一点的电流。

2.21穿越性故障试验through fault test

用于单元保护电路的一种试验,此时故障电流穿过被保护区而流向区外故障处。

3保护系统用的仪用互感器

3.1一般要求

某一给定型式的保护装置(如某一给定型式的距离保护)的制造厂,为了保证保护装置的预定性能,按照相应的IEC标准或相应的国家标准,对仪用互感器应规定其必需的技术要求。如果有必要提出特殊要求,则制造厂应按附录B或有关标准确定其内容(例如暂态过程、饱和程度等)。

所有这些要求适用于主仪用互感器,也适用于辅助仪用互感器。

3.2电流互感器

电流互感器应符合IEC185《电流互感器》标准要求,或相应的国家标准(参见附录H)1]的要求。关于暂态性能的特殊要求由制造厂和用户商定。

采用说明:

1]本标准增加附录H(参考件),列出与IEC标准相应的国家标准。

3.3电压互感器和电容式电压互感器。

电压互感器和电容式电压互感器应符合IEC186《电压互感器》或相应的国家标准(参见附录H)的要求。

4交流输入激励电路

4.1一般要求

保护装置的制造厂应提供构成交流输入激励电路所必须的资料及技术说明。

IEC255-5《电气继电器第5部分:电气继电器的绝缘试验》(参见附录H)规定,与仪用互感器直接连接的电路应能耐受至少为2kV电压的介质强度试验。因此,在仪用互感器、导线及装置之间,应进行绝缘配合。

保护系统耐受冲击电压,按IEC255-5中规定的0~1~5kV等级。

应采取措施以避免在交流导线中出现超过保护装置耐受能力的浪涌过电压能力,但是,任何可能导致电压(或电流)幅值及波形畸变的设备,应避免使用。

关于接地和屏蔽,见第11章及附录E。

4.2电压电路

对于具有电压输入量的保护装置,制造厂应说明由于某种原因,例如负载电流下二次电压消失,是否可能导致保护装置的误动作及装置是否会发出警报和(或)进行失压闭锁。

4.3电流电路

在电流互感器二次电流电路中的插入式继电器或试验连接器等,在所有插入和抽出过程中,电流电路应不会出现开路现象。当一保护系统包括某些用于短接电流互感器二次回路的特殊部件(插入式继电器、试验器件等)时,有关的IEC标准应规定这些设备的电流耐受值。在任何电流电路中,最大故障电流时的最大峰值电压应与交流导线和电流互感器二次绕组的绝缘水平一致(例如在高阻抗差动接线方案中)。

为了平衡或稳定特殊型式的保护系统,保护装置的制造厂应规定电流互感器二次负担的特殊要求(例如差动电流系统、零序电流系统等)。

5辅助电源

5.1一般要求

保护装置的制造厂应提供为确保保护装置有一个满意的辅助电源所必需的资料和技术要求,见附录C。应采取措施以避免辅助电源产生超过保护装置耐受能力的浪涌过电压,见附录E。

5.2直流辅助电源

5.2.1优选的标准额定值1]

采用说明:

1]本条原来引用的IEC255-3标准已作修改,IEC255-4已废止,本条现在按修改后的IEC255-3、IEC255-6的规定编写。

根据IEC255-3《电气继电器第3部分:它定时限或自定时限单输入激励量量度继电器》和255-6《第6部分:量度继电器和保护装置》,直流辅助电源电压优先选用的标准额定值为:24V、48V、60V、110V、125V、220V和250V。

辅助激励量工作范围的优先极限值为:额定值的80%和110%。

在由电池激励等情况下,使工作范围的极限值不同于上述优先值时,保护装置的制造厂应规定其工作范围的极限值及相应的额定值。

关于接地问题,见第11章及附录D。

5.2.2直流辅助电压的中断

有关直流辅助电压的中断要求,已在IEC255-11《电气继电器第11部分:量度继电器直流辅助激励量的中断及交流分量(纹波)》中规定。

保护装置的制造厂应说明装置是否能监视直流辅助电源的失压。

在直流辅助电源使用或中断时,或者反极性激励时保护装置不应损坏或误动作。

5.2.3直流/直流变换器

在本标准中不包括直流/直流变换器(例如用于激励并联工作的几个保护装置)的输出特性。

关于输入与输出电路之间的电隔离,见第11.3条。

当输出端子短路时或者当突然施加输入电压时,应限制输入电流。

6跳闸与合闸电路

见附录F。

6.1一般要求

跳闸电路具有多种配置方式。如果采用自动快速重合闸或慢速重合闸,而重合闸又是由保护装置启动的,则合闸电路是保护系统的一部分。

6.2跳闸及合闸触点

保护系统的跳闸及合闸触点应能闭合断路器的跳闸和合闸电流。并能在规定的时间内通过该电流。如果恰当排列(电流保持继电器、辅助触点等),这些触点则不需要断开该跳闸和合闸电流。见IEC255-0-20《电气继电器、电气继电器的触点性能》。

6.3断路器的内部电路

断路器的辅助触点、合闸和跳闸线圈的特性、闭锁特性(如果有)以及防跳特性,应符合下列IEC标准的规定:56-1高压交流断路器,第1部分:总则和术语。

56-2第2部分:额定值。

56-3第3部分:设备与制造。

56-4第4部分:型式试验与例行试验。

56-5第5部分:运行断路器的选择规则。

56-6第6部分:与查询、投标和订货一起提供的资料及运输、安装和维修的规则。

7逻辑电路

7.1一般要求

一个电站开关设备可能需要配置切换保护系统的测量和跳闸电路。这些切换电路在本标准中称为交流和直流逻辑电路,它不包括保护装置内部的逻辑电路,例如在距离保护内部的任何切换。

如果需要进行交替切换,例如切换至旁路断路器或另一组母线等,保护系统应具有适应电站这种情况的逻辑电路。为了使保护系统适应电站中的高压配电装置,通常是需要在保护装置和跳闸、合闸电路之间具有逻辑电路(直流逻辑),有时在输入激励电路中还需要具有逻辑电路(交流逻辑)。

逻辑电路的切换可以手动或自动完成。在自动切换情况下,逻辑电路由隔离开关和断路器的辅助触点控制。

7.2交流电路中的逻辑

在电流互感器和电压互感器电路(例如母线保护)中可以进行切换。见第4.3条。

7.3直流电路中的逻辑

直流逻辑切换电路应能闭合、载送和断开正常操作时的最大电流,并能在规定时间内耐受规定的短路电流。8保护系统的通信联系要求

8.1一般要求

由于多种原因,保护系统可能需要具有联系远方变电站的通信通道。

有时传送模拟量到电力线的对端,并在那里与该端的电气量相比较(例如导引线方案)。

保护系统的通信联系可以是导引线联系、电力线载波联系或无线电联系1]。

采用说明:

1]也包括光缆联系。

8.2远方跳闸方案

应采用高可靠度的信号(如编码信号),以避免因噪声(电压)而引起的误动作。

如果采用电力线载波作通信媒介,则应在非故障线上进行(信号)传送。

应当规定信号从本端至远端的最长允许传送时间。

8.3距离保护发送信号方案

8.3.1一般要求

有许多不同的发送信号方案,最常用的是:加速方案、闭锁方案、解除闭锁方案、允许式超范围方案、允许式欠范围方案、方向比较方案。

8.3.2技术要求

本条所列的技术要求适用于8.3.1条规定的所有方案:

a.保护系统不能由于噪声(电压)或因断路器与隔离开关操作引起的信号衰减而发生误动作[见IEC255-22-1《量度继电器和保护装置的电气干扰试验1MHz脉冲(衰减振荡波)干扰试验》]2]。

2]原IEC255-6已修订为量度继电器和保护装置,原标准附录C已制定单独标准IEC255-22-1。

b.当两平行线路之一发送信号时间内,不应引起非故障线路的保护系统误动作。

c.在电力线故障状态下信号传输时,电路中可能引入附加的噪声和衰减,保护系统应能接收到保护发出的信号。

d.用户应规定信号从本端传送至远端的最长允许时间。

(发信和收信继电器的要求,制造厂和用户之间应协商一致)。

8.4纵联差动导引线系统

导引线故障时,保护系统的误动或拒动取决于保护系统的设计。

可采用监视继电器来监视导引线路,导引线故障时发出警报。

当采用监视时,监视装置应能在导引线路的绝缘电阻值下降到可能引起保护系统误动作之前,检测出其降低程度。

该绝缘电阻值及允许的回路电阻和导引线电容的最大值均由制造厂规定。

8.5电力线载波联系

当使用电力线载波联系时,通常不连续发送信号1],而仅在检出故障时才允许传送信号。

采用说明:

1]允许式通常连续发监频信号。

然而,可以按整定时间自动地开启短时间的信号传送,以便能够检查出由于气候条件而引起信号通路的任何品质降低情况。

包括高频耦合设备在内允许的通道最大衰耗,应由制造厂规定。

根据采用的耦合是相对相或相对地,还根据使用哪一相以及保护区内是否存在导线换位、衰减会有所不同。

9信号指示

有关保护装置动作情况的信息要求应用适当的方法指示出来。

信号指示可以在保护装置上就地显示,也可以传送至远方的控制中心或(和)送入事件记录器。

就地信号指示应具有保持功能,等待确认的信号指示应不妨碍保护装置重复动作,甚至在确认期间也应如此。

通常由保护装置触点产生的远方信号指示的信息仅在故障持续期间获得,例如在保护复归时动合触点断开,信息的存贮是信号指示装置的功能之一。

10绝缘

10.1一次连线

如果保护系统直接由主电路中的电流和(或)电压激励或通过分流器激励而没有中间仪用互感器,则绝缘要求与主电路的额定绝缘电压有关。

10.2二次连线

如果保护系统由仪用互感器激励,则与仪用互感器直接连接的电路、在电气上分开的电路之间以及这些电路对地,至少应能耐受2kV交流有效值的介质强度试验电压历时60s。

当保护装置和主仪用互感器之间接入隔离变压器时,接在二次侧的装置所加的介质强度试验电压可由制造厂和用户之间协商降低。但不得低于500V。

10.3仪用互感器的绝缘要求

仪用互感器的绝缘要求应符合IEC185和IEC186或相应国家标准规定。

10.4继电器的绝缘要求

用于保护中的继电器的一般绝缘应符合IEC255-5标准的要求。

对于特定型式继电器,必须补充的要求已于IEC255的有关部分中规定,例如IEC255-1-00《有或无电气继电器》。

10.5直流辅助电路(包括跳闸及信号指示电路,但不包括导引线电路)的绝缘要求

向继电器供电的辅助电路的绝缘要求应符合IEC255-5的规定。跳闸电路的绝缘要求已规定于IEC56-1~56-6中。

11接地

11.1一般要求

设计接地系统和选择接地点,应考虑可能的暂态过程影响以及电力系统频繁操作的要求。除非已考虑接地和(或)屏蔽措施,否则二次电路中会出现由切换而感应出不可忽视的暂态过电压。

11.2仪用互感器

仪用互感器的二次电路应直接接地,并只在一个公共点上进行接地,该点是与每个单独的金属系统相连的。接至保护接地端子的连接线的横截面应符合国家标准。中间接入的互感器的二次电路不一定需要接地。

在附录G中给出仪用互感器接地的实例。

11.3辅助电路

保护装置内部的辅助电源可接地,也可不接地。若装置要求采用单极接地,则辅助电源和内部辅助电压(电路)之间应当隔离,例如使用直流/直流变换器。

在附录D中给出辅助电路接地实例。

11.4屏蔽

为了减少干扰影响,控制(测量、信号指示等)电缆的金属屏蔽层应当接地。对于高频,要给予特别注意,见附录E。

12通用性能和试验要求

12.1试验要求

一次侧的试验电流和电压应为正弦波,并满足下列要求:

a.多相对称系统的每个电压(任何两相之间以及每相与中性点之间的电压)与这些电压的平均值之差应不大于1%。

b.相电流与系统电流平均值之差应不大于1%。

c.每个电流与其对应的相对中性点电压之间的相角应当相同,允许误差应为2°电角。

此外,试验设备应能模拟实际的一次系统故障情况,并提供所要求的电流值和所要求的直流暂态分量值。12.1.1方法

在下列情况下,允许采用在仪用互感器二次侧施加电流和电压的方法来模拟一次电流试验。

a.由各自独立的电源输入,以模拟负载偏置等。

b.在额定频率之外的其它频率下的试验应提供在该频率下经验证过的一次试验法与输入试验法之间的相互关系。

在其它情况下,应按制造厂与用户之间的协议办理。

12.1.2直流暂态分量

对于所有穿越性故障试验和内部故障电流试验(见13.1.2.2和13.1.2.3条),一次试验电流中直流暂态分量的时间

常数应按制造厂对特定试验条件所给出的最大值进行。

12.2型式试验中对使用的元件或模拟元件的性能和试验要求

除非制造厂和用户之间有协议的个别元件可以是:

a.临时改动的,以便于模拟其它试验条件;

b.临时省去的,而其功能由其它某些手段所体现,这些手段能表明所省去的元件的特性是非关键性的。

作为型式试验所用的元件应符合下列各条要求。

12.2.1继电器

继电器应为规定的型号,并且应整定在整个规定的范围内能得到正确性能的整定值上。这些继电器的特性应予规定或参照IEC255的有关部分。

12.2.2电流互感器

电流互感器的性能应符合IEC185的有关条文或相应国家标准,这些标准对各种等级的电流互感器的使用也给予指导,并且应提供正如制造厂所规定的保护系统所要求的特性。

允许低电抗互感器有专用的试验绕组(见12.1.1条)。

如果互感器是高电抗型的,应使用实际的互感器,否则制造厂和用户间应另行商定。

采用低电抗电流互感器,按制造厂的意见,为了维持二次绕组的有效电阻,用于试验的一次和(或)二次绕组匝数可能与设计规定的匝数不同。而互感器仍然是在低电抗互感器范畴内并且一次安匝不变。尤其是当使用小气隙的电流互感器时,其二次励磁曲线和剩磁系数也应一致。

应在合适的变比和二次过电流倍数下做试验。

12.2.3电压互感器

电磁式电压互感器的性能应符合IEC186或相应的国家标准,并具有如制造厂所规定的由保护系统所要求的特性。

注:在一定条件下,目前IEC186中规定的电容式电压互感器的暂态性能作为快速保护系统(特别是快速保护继电器)的电压基准是不适当的,由此出现的任何限制应由制造厂与用户之间协商。

12.2.4其它辅助装置

辅助装置包括中间电流互感器、综合互感器、稳定电阻器、整流器、电阻器、电容器、传感器等。辅助装置的性能应与保护系统所要求的特性相符。

接线中的任何特别注意事项应由制造厂规定。

12.2.5通信通道特性

保护系统各端在电力系统频率下通过导引线进行电流比较的情况下,通道特性应当按表示导引电路的电阻,以及与之相关的分布电容和(或)电感的方式来模拟。

当导引线监视是保护方案的一部分时,则整个装置的试验亦应包括这部分。

其它通信通道,诸如通过电力线的高频通道或靠微波联系的超高频通道,都应按适当考虑传播时间和衰减来予以模拟。

12.2.6电流互感器、电压互感器及电容式电压互感器的引线负担

引线负担用电阻表示。制造厂可以规定用引线及互感器二次绕组的电阻之和来表示的总的电阻值。

12.3制造厂对某一保护系统的性能和特性的规定

按照13.1.1.2条,制造厂应证明被试验的保护系统的参数符合本标准相应的规定。试验应确定保护系统所规定的应用范围和(或)按制造厂发布的特性范围使用各组元件是合理的。

制造厂应规定继电器、电流互感器和电压互感器的特性和所用的辅助装置,在有关情况下,还应规定引线的特性及所用元件之间的导引线负担。

另一些特性可能是限制使用的因素,例如导引线上的最大电压,应由制造厂加以规定。

根据型式试验的结果,制造厂可按下列项目规定保护系统的性能:

——灵敏度,按13.1.2.1条确定;

——动作时间,按13.1.2.2条规定;

——稳定极限,按13.1.2.3条规定。

13试验

13.1型式试验

13.1.1一般要求

本条所规定的各项型式试验是在各元件满足相应技术规范的有关要求下进行的。

保护系统应当与有关的元件一起进行整套的型式试验。这些元件可以是元件本身或是模拟部件(如电流互感器、电压互感器、断路器等),它们可能由几个制造厂提供。这种试验通常由保护装置的制造厂家进行一次。

如果对保护系统作了重大的设计更改,应重做型式试验。这种情况下型式试验的部分项目可以省略。

除第13.1.1.1条和(或)13.1.1.2条免做的试验项目外,每个保护系统都应按照第13.1.1.1~13.1.1.2条规定进行试验。

13.1.1.1参数试验

在型式试验中,为了确定保护系统将来的使用性能,对影响其性能的保护系统所有特性都应加以研究,并可确定所有参数与性能之间的确切关系。

如果保护系统特殊应用的参数,已被以上关系表明获得满意的结果,则仅对保护系统的元件部分作试验即可,无需做进一步的型式试验。

13.1.1.2特殊试验

当进行特殊试验时,仅需要证明保护性能对于特殊的使用要求是满意的即可。

13.1.2性能试验

本条包括灵敏度、动作时间、稳定性和短时额定值的试验。

所有试验应在商定或规定的整定值下进行。

13.1.2.1电流操作的保护系统的灵敏度

若为了确定特定的继电器的灵敏度,则应按照下列给出的要求对保护系统进行型式试验。

试验电流应逐渐增加直到继电器动作。对于包含脉冲启动的系统,或与被测电气量的变化速率或其暂态响应有关的系统,确定灵敏度所用的方法应由制造厂和用户之间协商。

用下列类型故障来确定灵敏度的试验是合理的。

——相对地;

——相对相;

——两相对地1)。

注:1)这种试验方法和应用范围应属制造厂与用户之间协商的问题。

对于灵敏度随相间故障及相对地故障的不同而变化的保护系统,除非其灵敏度值能用数学方法确定外,上述试验应对不同的相别组合重复进行。

对于所有各端的灵敏度均相同的差动系统,确定每一端的灵敏度可在任一端施加故障电流。在各端的灵敏度明显不同的情况下,除另有协议外,确定每一端对于故障的灵敏度则应依次在其它各端的每一端施加故障电流。此外,必要时,应同时从各端施加故障电流来确定灵敏度。

对于具有负载偏置特性的差动系统,最大灵敏度应在穿越性电流为零时确定,而最小灵敏度应在电流等于保护方案的额定电流或由制造厂与用户商定的更高的电流下确定。

重复测量灵敏度仅需对按本条上述确定给出最大和最小灵敏度的故障类型下进行。

当差动系统应用于三端及三端以上多端的电路时:

——应在按制造厂与用户间商定的空载分路电流互感器的数量最少的情况下确定最大灵敏度;

——应在空载分路电流互感器处于某一商定的数量下确定最小灵敏度。制造厂规定用下列方式之一的试验来确

定最小灵敏度:

a.使用正确数量的电流互感器;

b.使用少于正确数量的电流互感器,对其余电流互感器用等效分路阻抗代替;

c.对于可应用推算法的系统,使用少于正确数量的电流互感器,但应计算其余电流互感器的影响。

注:对于前面已提到的那些故障情况,确定施加电流及负载偏置影响可以分别予以限定(按13.1.2.1条规定的试验),以得到最大和最小的灵敏度。

13.1.2.2暂态条件下的动作时间

动作时间应在基准条件下测量(在可能情况下,以IEC255的有关部分作为根据)。

按照IEC255适用于被试验系统的有关规定,制造厂应说明,在基于取得额定动作性能而施加的一个(或几个)电流值下保护方案的动作时间。

如有必要,为了确定任一电流互感器可能发生的饱和影响,应在区内故障条件下,在规定的最大故障电流和(或)最小故障电压下测量动作时间。

应采用下列一次电流测量动作时间:

a.交流稳态电流

应施加三次无直流暂态分量的故障电流来测量动作时间,记下每次测量的动作时间。

b.含有直流暂态分量的交流电流

用相位合闸器施加三次含最大直流暂态分量的故障电流,而三次电流相位在180°范围内变动,动作时间为每次测量到的最长动作时间。确定一次电流的直流暂态分量的时间常数取决于指定的用途。其实际值由制造厂规定(见13.1.1.2条)。

除非另有规定,任何辅助激励量均应为额定值。

13.1.2.3保护系统的稳定性

下述条文中对稳定性试验的要求主要与差动及相位比较方案有关。

用相位合闸器施加三次含最大直流暂态分量的电流,而三次电流相位应在180°范围内变动。

确定一次电路的直流暂态分量的时间常数取决于指定的用途(见12.1.2条),其实际值由制造厂规定。

施加试验电流历时应不少于0.2s,或是保护规定动作时间的二倍,取最大值。

试验电流对称分量的有效值应与额定稳定极限值相对应。

如电流互感器发生稳态或暂态饱和,检验系统的稳定性必需在电流强度低于额定的稳定极限值时进行。

按下列故障电流的分布情况做检验稳定度的试验是合理的:

——相对地故障;

——相间故障;

——三相故障;

——零序电流。

注:可能还有其它情况,例如在三相中的电流分配为2I、I、I或励磁涌流。对于除变压器保护以外的其它型式保护的稳定性,可能需考虑因切换引起的励磁涌流,例如馈线保护。对此种情况或其它特殊情况(如故障转化),应由制造厂与用户之间商定合适的试验。

13.2验收试验1]

采用说明:

1]验收试验相当于出厂试验。

该试验通常在制造厂内进行,试验大纲应在制造厂与用户之间商定。

13.3委托试验2]

2]委托试验相当于投运试验。

该试验在用户的厂站内进行,且一般在保护系统所保护的厂站部分设备投入运行之前进行。

委托试验项目由制造厂与用户之间商定。

在适当情况下,应在保护系统上作下列试验。

13.3.1仪用互感器和接线

包括互感器与继电器之间接线在内的电流互感器和(或)电压互感器电路的连续(通电)试验和绝缘试验。

13.3.2仪用互感器特性

在规定值下检查仪用互感器特性。

13.3.3接地

检查二次绕组、辅助电路等的接地。

13.3.4电源等

检查电源、熔断器、小型空气开关等。

13.3.5报警系统

报警系统试验。

13.3.6整定值

实际整定参数的试验。

13.3.7跳闸电路等

包括断路器操作在内的跳闸电路试验。

13.3.8一次试验

可以采用负载电流、其它电流(例如发电机电路)或一次输入的试验设备来作试验。这种试验可用于检查差动系统的各电流互感器之间,或者方向保护系统的电流互感器和电压互感器之间的变比及相对极性的正确性,或者用于检查导引线通信通道的正确性。

13.4运行试验

本试验应周期性地进行。

本试验不象委托试验那样全面,但要检查其主要继电器的特性,逻辑电路和跳闸电路,一般不必测量仪用互感器的特性或极性。

附录A

保护系统方框图

(补充件)

注:1)来自其它保护系统。

2)到其它跳闸、合闸电路。

3)TC41(SC41A/SC41B)已撤销,分别由TC94和TC95代替。

附录B

电流互感器的特性和暂态响应对保护装置性能的影响

(补充件)

B1概述

保护系统的性能(动作和返回值、动作和返回时间、对穿越性电流的稳定性等)通常受仪用互感器的特性和暂态响应的影响。

对于普通类型的保护装置(如对所有的距离保护),不可能规定仪用互感器的型号、特性和性能要求。

对于给定型号的保护装置(如已给定型号的距离保护),保护装置的制造厂应使量度继电器、输入滤过器等的设计与仪用互感器的特性和暂态响应相协调。

B2电流互感器

由于铁心的初始剩磁和(或)暂态磁通而导致电流互感器的暂态饱和,使二次电流产生较大的波形畸变及过零位移,可能导致保护系统的性能变坏,如:测量误差增加、动作值增加、动作时间增加、保护超范围、动作鉴别失误(对区外故障)、输出触点抖动等。有些类型的保护装置对暂态饱和可能非常敏感,而另外一些类型的保护装置对暂态饱和可能不敏感或很不敏感。

电流互感器铁心带有小气隙,便降低了剩磁系数至较低值(小于0.1),电流互感器铁心带有大气隙,便能同时降低剩磁系数(接近零)和暂态磁通至一个较低值,当一次电流的直流暂态分量重复出现时,误差便增加。

在后一种情况(大气隙)下,直流暂态分量引起的误差是很大的,同时,在故障切除后,由于带气隙铁心的快速去磁,在二次电路中出现大幅值直流暂态分量。有些类型的保护装置不容许这种现象,另外一些类型的保护装置设计成对直流暂态分量不敏感。

在另一种情况(小气隙)下,保护装置对(电流互感器)准确度的要求可以用下列方式表达,从二次侧看,最大瞬时误差应不超过二次对称短路电流峰值的百分之…1),且电流过零点的误差不大于…2)。

注:1)例如5%。

2)例如3%。

附录C

保护装置的辅助电源

(补充件)

保护装置的辅助电源配置可以有很多方式。不可能在保护系统的一般技术规范中规定辅助电源和电路的任何具体的电路或结构。

保护装置的许多元件需要直流电源,例如来自蓄电池,由接到就地备用的低压电源(其它的低压电源、柴油发电机或电动发电机等)上的整流器来保证蓄电池的持续充电,自中央(控制)室或就地设置的继电器室中的直流电源至保护装置、跳闸电路等的辅助直流电路可以按多种方式配置。通常来自直流电源的直流电路用接在尽可能靠近直流电源处的熔断器和(或)低压空气开关来对短路以及最好对过负荷予以保护。

静态保护装置的许多元件需用直流/直流变换器,从而对静态电路提供合适的直流电源的电平和特性。直流/直流变换器可装在保护装置内部,也可以用来给几个并联工作的保护装置的元件供电。

附录D

辅助电路的接地

辅助电源可以不接地运行或在一点接地下运行。

在高抗阻接地(不接地系统)运行的情况下,因为单极接地故障不易察觉,故监视绝缘电阻是需要的。可用电压表进行监视,电压表指示各极与地之间的电压。绝缘电阻也可自动地进行监视。例如用图D1中所示的电阻型电桥来监视蓄电池中点与地之间的电压,或是用图D2中所示的负偏置直流系统。

图D1用电阻型电桥监视直流电源的接地故障

图D2用负偏置系统监视直流电源的接地故障

后两种辅助电源的接线方法是有利的,因为这样运行不受单极接地故障的扰乱,当带接地运行的单极有接地故障时便导致短路。

附录E

抗外部干扰的保护

(补充件)

由其它电路产生的共(纵)模及差(横)模两种电气干扰可能传入直流和交流电路中,对此电气干扰应按照保护系统容许的最大值于以保护,防止保护出现拒动和(或)误动作。

为了把高压减少到低于保护装置绝缘耐受强度的电平,通常推荐以下几种方法:

a.用与继电器或接触器线圈并接二极管、非线性电阻和RC电路来抑制电源上的干扰电压。在使用电子保护装置的情况下,由低压电路的切换(快速切断高感性电路)而产生的差模过电压。可用滤过器或在装置输入端用一些其它器件作为最后的屏蔽层予以限制,但应注意电缆屏障层的接地方法以及装置内部布置设计的方法从而可以避免干扰。

b.把电源电缆与有干扰影响的电缆分离(即减弱杂散电容的耦合),需要离开10cm或更多才有效。

c.采用屏蔽电缆,对邻近灵敏的设备或装置要提供屏蔽,屏蔽接地线要短,且要接地良好。

d.屏蔽接地的应用可能是一个需要试验的问题,屏蔽接地时对于电容耦合干扰多数情况下采用单端接地是合适的,同时,当存在共模电压时,它会得到最低的差模电压,但是对于辅助电缆不特别长以及终端装置上不平衡占优势的情况下,也不总是如此。在这些情况下,双端接地可能得到最佳效果。但是为了确定屏蔽横截面的尺寸,应考虑短路状态。在中频范围直至数百千赫,诸如变电所中高压切换可能产生的干扰,这也是最有效的防范措施。

附录F

跳闸和合闸电路

F1概述

跳闸和合闸电路的配置有很多方式。它们主要由跳闸和合闸触点、导线、闭锁二极管、断路器的辅助触点以及跳闸和合闸线圈组成。

在许多应用场合,量度继电器的触点直接去激励跳闸线圈,而不用任何辅助继电器。

F2跳闸和合闸线圈

跳闸和合闸电路可以是三相公用的线圈,或者是断路器每一相有一个线圈。

F3跳闸脉冲的延长

在大多数情况下,跳闸脉冲宽度取决于故障持续时间和保护系统的切断时间。在大多数情况下,都能给出满意的脉冲持续时间。

然而,在某些保护系统的变换器里能给出的信号太短,以致为了完成断路器的动作,有必要延长跳闸脉冲。

这种延长应与快速重合闸方案的其它延时整定值相协调。跳闸脉冲的持续时间可处在100ms范围内。

F4重复配置

当跳闸电路是双重化时,断路器经常也配置两个跳闸线圈。有时甚至合闸线圈也可能是双重化的。

F5跳闸电路的监视

跳闸电路的监视方案是经常使用的。通常在电路中允许流过一个不致引起断路器跳闸的微小电流。当此电流中断时,即发出警报。

有时,当断路器分断时,也采用监视电路方案。

F6双极切换

通常跳闸和合闸线圈的一端是不经任何继电器触点而直接接到蓄电池的负极上。当继电器的触点把正极接到线圈上时,断路器便动作。

也可以在负极上用一个继电器触点来配备两个电路。当跳闸继电器动作时,其触点同时在线圈的正端和负端上将电路闭合。采用这种方案是为了避免在直流系统上发生两点接地故障时引起误动作。为了避免电腐蚀的影响,有时用一电阻器与负极的触点并联。

附录G

仪用互感器的接地

(补充件)

G1电流互感器

在图G1中示出电流互感器二次电路接地的实例。

如果测量点远离电流互感器,则可采用中间辅助互感器以缩短主互感器的接线。

当安装环形电流互感器时,电缆头套管必须绝缘,同时必须确定通过互感器接地连线的路线。如果环形电流互感器单独采用铅包电缆,为了测量接地故障,上述措施尤为重要。

G2电压互感器

图G2示出接在相与地之间具有测量绕组和开口三角形接线的电压互感器二次电路接地的实例。开口三角形接线的接地可仅在三个互感器中的一个上进行。

带有抽头的二次绕组,仅二次电路的一个接合点需要接地。

电压互感器二次侧已接地的话,相间电压上的二次负载的连接要求使用中间辅助电压感器。

图G1电流互感器的接地(举例)

图G2电压互感器的接地(举例)

附录H

本标准引用的国际标准及对应的国家标准

(参考件)

本标准等同采用IEC255-20国家标准,按照有关“等同采用国际标准原则”,IEC255-20序言中所引用的IEC 标准没有纳入本标准正文,因此增加本附录,将本标准中引用的国际标准及对应的国家标准分别列出,供使用时参考。

H1本标准引用的国际标准

IEC50(448)(1987)国际电工词典第448章电力系统保护

IEC56-1(1971)高压交流断路器第1部分总则和定义

IEC56-2(1971)高压交流断路器第2部分额定值

IEC56-3(1971)高压交流断路器第3部分设计与制造

IEC56-4(1972)高压交流断路器第4部分型式试验与例行试验

IEC56-5(1971)高压交流断路器第5部分选择运行断路器的规则

IEC56-6(1971)高压交流断路器第6部分与调查、投标和订货一起提供的资料及运输、安装和维修的规则IEC185(1966)电流互感器

IEC186(1969)电压互感器

IEC255-0-20(1974)电气继电器的触点性能

IEC255-1-00(1975)有或无电气继电器

IEC255-3(1989)它定时限或自定时限单输入激励量量度继电器

IEC255-5(1977)电气继电器的绝缘试验

IEC255-6(1988)量度继电器和保护装置

IEC255-11(1979)量度继电器直流辅助激励量的中断与交流分量(纹波)

IEC255-22-1(1988)量度继电器和保护装置的电气干扰试验第一部分:1MHz脉冲(衰减振荡波)干扰试验

H2对应IEC标准的国家标准

GB1207电压互感器

GB1208电流互感器

GB1984交流高压断路器

GB2900.17电工术语继电器及继电保护装置

GB4703电容式电压互感器

GB4858电气继电器的绝缘试验

GB6162静态继电器及保护装置的电气干扰试验

GB8367量度继电器直流辅助激励量的中断与交流分量(纹波)

GB/T14047量度继电器和保护装置

GB/T14598.1电气继电器电气继电器的触点性能

GB/T14598.2电气继电器有或无电气继电器

_____________________

附加说明:

本标准由中华人民共和国电力工业部提出。

本标准由全国继电器、继电保护及自动装置标准化技术委员会归口。

本标准由电力工业部南京电力自动化设备总厂负责起草,电力工业部南京自动化研究所、机械工业部许昌继电器研究所参加。

本标准主要起草人:罗佩芳、刘昌约、许敬贤、张锦华、杨炜。

相序保护器

相序保护器 是一种自动相序判别的保护继电器,保证一些特殊机电设备 相序保护器 因为电源相序接反后倒转而导致事故或设备损坏。如电梯,如果电源在维修后相序出错会导致事故的发生,必须在控制回路接入相序保护器,保证相序无误。空调压缩机,也有采用相序保护器,保证压缩机不至于在维修后发生反转的情况。 工作原理 取样三相电源并进行处理,在电源相序和保护器端子输入的相序相符的情况下,其输出继电器接通,设备主控制回路接通。当电源相序发生变化时,相序不符,输出继电器无法接通,从而保护了设备,避免事故的发生。 三相电源依次接入保护器的U,V,W(有的是R,S,T)三个接线点,相序保护器的辅助触点一般有一常开一常闭。接入控制回路中,具体接常开还是常闭根据控制原理或者接线图来接,.当相序错误或者缺相的时候保护器的辅助触点动作常开变常闭,常闭变常开。若起到保护作用,应该接常闭触点。 相序保护器温度保护 在相序保护器电动机没有超过额定值时,由于通风不良、环境温度过高、启动次数过于频繁等原因,电动机也会过热。这种情况下用以上的过流保护或过载保护都不能解决问题,因此需要直接反映温度变化的热保护器。

温度保护通常可采用温度继电器。温度继电器主要有双金属片它们都被直接埋置在发热部位。 温度保护与过载保护都是利用温度来触发保护,但并不完全相同。过载保护是因为电流长时间超出额定值使得继电器升温触发保护;而温度保护是由于散热不良,环境温度过高等因素使得电机过热从而触发保护。温度保护被触发时,电动机中的电流值有可能是正常的,因此过载保护不一定会起作用。温度保护与过载保护也是不能互相替代的。 相序保护器漏电保护 相序保护器为了防止直接接触电击事故和间接接触电击事故,防止电气线路或电气设备接地故障引起电气火灾和电气设备损坏事故,低压配电系统应该具有漏电保护装置。 漏电保护根据工作零线是否穿过电流感应器,分为零序电流保护和剩余电流保护。零序电流保护与剩余电流保护的基本原理都是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。不同之处是,零序电流保护检测的是各相线中电流的矢量和,而剩余电流保护检测的是各相线还有零线中的电流矢量和。 理论上来说,三相线负载平衡且电路正常工作的情况下,各相线电流矢量和应该为零。但是在实际的产品制造中,由于生产工艺、使用条件及电源品质等因素的制约,理想的三相完全平衡的负载不大可能存在,其三相电流的矢量和不为零而且很容易达到漏电保护器的动作电流值例如30mA。因此,“负载三相平衡”这个概念只具有理论意义。 相序保护器原理 相序保护器原理一般情况下,电动机工作的接线顺序是有规定的,如果由于某种原因,导致相序发生错乱,电动机将无法正常工作甚至损坏。相序保护就是为了防止这类事故发生。 相序保护可采用相序当电路中相序与指定相序不符时,相序继电器将触发动作,切断控制电路的从而达到切断电动机电源、保护电动机的目的。 由和氖泡NB组成三相交流电相序检测电路。由于C1的移相作用,当电源按图中A、B、C相序接入时,氖泡发光,而逆相序如A、C、B接入时,氖泡则不亮。当按下启动按钮QA时,交流电经C2降压、VD1和整流、DW后得到12V直流电压,加在由继电器K、光敏电阻管V组成的保护执行电路上。如果此时相序为A、B、C 顺序,则氖泡发光,与氖泡封装在一起的CDS受光照后呈现很低的阻抗,V便得到基极偏流而导通,K吸合,K1接通交流的控制回路,C吸合,电动机启动运转。反之,如为逆相序,则氖泡不亮,K不吸合,K1断开,电动机便不能被启动。由此而达到保护目的。

电力系统继电保护问答

电力系统继电保护问答 05 电力系统继电保护问答 5 56.在大短路电流接地系统中,为什么有时要加装方向继电器组成零序电流方向保护? 答:在大短路电流接地系统中,如线路两端的变压器中性点都接地,当线路上发生接地短路时,在故障点与各变压器中性点之间都有零序电流流过,其情况和两侧电源供电的辐射形电网中的相间故障电流保护一样。为了保证各零序电流保护有选择性动作和降低定值,就必须加装方向继电器,使其动作带有方向性。使得零序方向电流保护在母线向线路输送功率时投入,线路向母线输送功率时退出。 57.零序(或负序)方向继电器的使用原则是什么? 答:零序电流保护既然是作为动作机率较高的基本保护,故应尽量使其回路简化,以提高其动作可靠性。而零序功率方向继电器则是零序电流保护中的薄弱环节。在运行实践中,因方向继电器的原因而造成的保护误动作时有发生。因此,零序(或负序)方向继电器的使用原则如下:(1)除了当采用方向元件后,能使保护性能有较显著改善的情况外,对动作机率最多的零序电流保护的瞬时段,特别是“躲非全相一段”,以及起后备作用的最末一段,应不经方向元件控制。 (2)其他各段,如根据实际选用的定值,不经方向元件也能保证选择性和一定灵敏度时,也不宜经方向元件控制。 (3)对平行双回线,特别是对采用单相重合闸的平行双回线,如果互感较大,其保护有关延时段必要时也包括灵敏一段,一般以经过零序方向元件控制为宜,因为这样可以不必考虑非全相运行情况下双回线路保护之间的配合关系,从而可以改善保护工作性能。 (4)方向继电器的动作功率,应以不限制保护动作灵敏度为原则,一般要求在发生接地故障且当零序电流为保护起动值时,尚应有2以上的灵敏度。 58.大短路电流接地系统中.输电线路接地保护方式主要有哪几种? 答:大短路电流接地系统中,输电线路接地保护方式主要有:纵联保护(相差高频、方向高频等)、零序电流保护和接地距离保护等。 59.什么是零序保护?大短路电流接地系统中为什么要单独装设零序保护? 答:在大短路电流接地系统中发生接地故障后,就有零序电流、零序电

电力系统继电保护简答题

是断 晃 1、零序电流速断保护的整定原则是什么?答躲过被保护线路末端发生接地短路时流过保护的最大零序电流;当系统采用单相重合闸时,应躲过非全相振荡时出现的最大 零序电流。 1、零序电流速断保护的整定原则是什么?答躲过被保护线路末端发生接地短路时流过保护的最大零序电流,躲过断路器三相触头不同期合闸所产生的最大零序电流;当系统采用单相重合闸时,应躲过非全相振荡时出现的最大零序电流。 2、方向性电流保护为什么有死区?死区由何决定?如何消除?答:当保护安装处附近发生三相短路时,由于母线电压降低至零,方向元件不动作,方向电流保护也将拒动,出现死区。死区长短由方向继电器最小动作电压及背后系统阻抗决定。消除方法常采用记忆回路。 3、何谓功率方向继电器90°接线方式?它有什么优点答:是指在三相对称的情况下,当时,加入继电器的电流如和电压相位相差90°。优点:第一,对各种两相短路都没有死区,因为继电器加入的是非故障的相间电压,其值很高;第二,选择继电器的内角后,对线路上发生的各种故障,都能保证动作的方向性。 4、与变压器纵差保护相比,发电机的纵差动保护有何特点?答:与变压器相比,发电机纵差保护不存在不平衡电流大特点,但在发电机中性点及附近发生相间故障时,发电机纵差保护存在有死区,因此,保护存在有如何减小死区提高保护灵敏度的问题 45、断流器失灵保护是答案:当故障线路的继电保护动作发出跳闸脉冲后,断路器拒绝动作时,能够以较短的时限切除同一发电厂或变电所内其它有关的断路器,以使停电范围限制为最小的一种更后备保护。 答案:纵连差动保护 4、发电机的故障类型。 答案:发电机的故障类型有定子绕组相间短路,定子绕组一相的匝间短路和定子绕组单相接地;转子绕组一点接地或两点接地,转子励磁回路励磁电流消失。 5、发电机的不正常运行状态。 答案:由于外部短路电流引起的定子绕组过电流;由于负荷超过发电机额定容量而引起的三相对称过负荷;由于外部不对称短路或不对称负荷而引起的发电机负序电流和过负荷;由于突然甩负荷而引起的定子绕组过电压;由于励磁回路故障或强励时间过长而引起的转子绕组过负荷;由于汽轮机主气门突然关闭而引起的发电机逆功率等 10、什么是励磁涌流。 答案:当变压器空载投入和外部故障切除后电压恢复时,铁心中的测通迅速变为原来的2倍,铁心严重饱和,励磁电流剧烈增大,可以达到额定电流的6-8倍,这个电流就叫励磁涌流。 13、前加速的优点及适用场合。 答案:第一,能够快速地切除瞬时性故障。第二,可能使瞬时性故障来不及发展成永久性故障,提高重合闸的成功率。第三,能保证发电厂和重要变电所的母线电压在0.6—0.7倍的额定电压以上,提高电能质量。第四,使用的设备少,简单经济。 适用于35KV以下由发电厂和重要牵引变电所引出的直配线路。 14、后加速的优点。 答案:第一,第一次是有选择的切除故障,不会扩大停电范围,特别是在重要的高压电网中,一般不允许保护无选择的动作而后以重合闸来纠正。 第二,保证了永久性故障能瞬时切除,并仍然有选择性。 第三,和前加速相比,使用中不受网络结构和符合条件的限制,一般说来是有利而无害的。 18、什么是输电线的纵联保护? 答案:输电线的纵联保护,就是用某种通信通道将输电线两端的保护装置纵向连结起来,将各端的电气量传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路范围之外,从而决定是否切断被保护线路,理论上具有绝对的选择性。 23、电流保护的接线方式是指什么,相间短路的电流保护的接线方式有哪几种方式? 答案:电流保护的接线方式是指保护中电流继电器与电流互感器之间的连接方式。对相间短路的电流保护,目前广泛采用的是三相星型接线和两相星形接线两种方式。 25、大电流接地系统中,为什么有时加装方向继电器组成零序电流方向保护? 答案:大电流接地系统中,如线路两端的变压器中性点都接地,那么当线路上发生接地短路时,在故障点与变压器中性点之间都有零序电流流过,其情况和两侧电源供电的辐射型电网

电力系统继电保护课后部分习题答案

电力系统继电保护(第二版) 张保会尹项根主编 继电保护装置在电力系统中所起的作用是什么? 答:继电保护装置就是指能反应电力系统中设备发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置.它的作用包括:1.电力系统正常运行时不动作;2.电力系统部正常运行时发报警信号,通知值班人员处理,使电力系统尽快恢复正常运行;3.电力系统故障时,甄别出发生故障的电力设备,并向故障点与电源点之间、最靠近故障点断路器发出跳闸指令,将故障部分与电网的其他部分隔离。 继电保护装置通过哪些主要环节完成预定的保护功能,各环节的作用是什么? 答:继电保护装置一般通过测量比较、逻辑判断和执行输出三个部分完成预定的保护功能。测量比较环节是册来那个被保护电器元件的物理参量,并与给定的值进行比较,根据比较的结果,给出“是”、“非”、“0”或“1”性质的一组逻辑信号,从而判别保护装置是否应该启动。逻辑判断环节是根据测量环节输出的逻辑信号,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该使断路器跳闸。执行输出环节是根据逻辑部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作。 线路上装设两组电流互感器,线路保护和母线保护应各接哪组互感器? 答:线路保护应接TA1,母线保护应接TA2。因为母线保护和线路保护的保护区必须重叠,使得任意点的故障都处于保护区内。 后备保护的作用是什么? 答:后备保护的作用是在主保护因保护装置拒动、保护回路中的其他环节损坏、断路器拒动等原因不能快速切除故障的情况下,迅速启动来切除故障。 为什么定时限过电流保护的灵敏度、动作时间需要同时逐级配合,而电流速断的灵敏度不需要逐级配合?答:定时限过电流保护的整定值按照大于本线路流过的最大负荷电流整定,不但保护本线路的全长,而且保护相邻线路的全长,可以起远后备保护的作用。当远处短路时,应当保证离故障点最近的过电流保护最先动作,这就要求保护必须在灵敏度和动作时间上逐级配合,最末端的过电流保护灵敏度最高、动作时间最短,每向上一级,动作时间增加一个时间级差,动作电流也要逐级增加。否则,就有可能出现越级跳闸、非选择性动作现象的发生。由于电流速断只保护本线路的一部分,下一级线路故障时它根本不会动作,因而灵敏度不需要逐级配合。 在双侧电源供电的网络中,方向性电流保护利用了短路时电气量的什么特征解决了仅利用电流幅值特征不能解决的问题? 答:在双侧电源供电网络中,利用电流幅值特征不能保证保护动作的选择性。方向性电流保护利用短路时功率方向的特征,当短路功率由母线流向线路时表明故障点在线路方向上,是保护应该动作的方向,允许保护动作。反之,不允许保护动作。用短路时功率方向的特征解决了仅用电流幅值特征不能区分故障位置的问题,并且线路两侧的保护只需按照单电源的配合方式整定配合即可满足选择性。 功率方向判别元件实质上是在判别什么?为什么会存在“死区”?什么时候要求它动作最灵敏? 答:功率方向判别元件实质是判别加入继电器的电压和电流之间的相位,并且根据一定关系[cos(+a)是否大于0]判别初短路功率的方向。为了进行相位比较,需要加入继电器的电压、电流信号有一定的幅值(在数字式保护中进行相量计算、在模拟式保护中形成方波),且有最小的动作电压和电流要求。当短路点越靠近母线时电压越小,在电压小雨最小动作电压时,就出现了电压死区。在保护正方向发生最常见故障时,功率方向判别元件应该动作最灵敏。 为了保证在正方向发生各种短路时功率判别元件都能动作,需要确定接线方式及内角,请给出90°接线方式正方向短路时内角的范围。 答:(1)正方向发生三相短路时,有0°

施耐德RM4T相序保护器说明书

Zelio Control - industrial measurement and control relays 3-phase supply control relays RM4 T Functions These devices are designed to monitor 3-phase supplies and to protect motors and other loads against the faults listed in the table below.They have a transparent, hinged ? ap on their front face to avoid any accidental Applications Control for connection of moving equipment (site equipment, agricultural equipment, refrigerated trucks). Control for protection of persons and equipment against the consequences of reverse running (lifting, handling, elevators, escalators, etc.).Control of sensitive 3-phase supplies. Protection against the risk of a driving load (phase failure).Normal/emergency power supply switching.from 5 to 15 %. 2Potentiometer for setting time delay, 0.1 to 10 s.R Yellow LED: indicates relay output state. U Green LED: indicates that supply to the RM4 is on.A Red LED: phase asymmetry. P Red LED: phase failure or incorrect rotational direction of phases. b b b b b RM4 T 561011 P resentation

《电力系统继电保护》考试复习题集.

2005/2006学年第二学期 《继电保护》复习题 使用班级:发电(3)041、发电(3)042、发电(3)043 第一章绪论 一、填空题: 1、电力系统发生故障时,继电保护装置应______________,电力系统出现不正常工作状态时,继电保护装置一般应____________。 2、继电保护的灵敏性是指其对于保护范围内发生故障或不正常工作状态的_________。通常用衡量。 3、继电保护的选择性是指继电保护动作时,只能把从系统中切除,使系统的继续运行。尽量缩小停电范围。 4、继电保护的可靠性是指保护在应动作时,不应动作时。 5、继电保护装置一般是由测量部分、和三个主要部分组成。 6、继电保护按作用不同可分为、和辅助保护。 二、判断题: ()1、电气设备过负荷时,继电保护装置应将过负荷设备从系统中切除。()2、电力系统故障时,继电保护装置只发出信号,不切除故障设备。 ()3、电力系统出现不正常工作状态时,继电保护装置不但发出信号,同时也要把不正常工作的设备切除。 ()4、继电保护装置的误动作和拒动作都是可靠性不高的表现,它们对电力系统造成的危害程度相同。 ()5、继电保护装置的动作时间就是故障被切除的时间。

三、选择题: 1、继电保护动作时,要求仅将故障的元件或线路从电力系统中切除,使系统无故障部分继续运行,尽量缩小停电范围。这是继电保护的()。 A、可靠性 B、选择性 C、灵敏性 2、电力系统短路时最严重的后果是()。 A、电弧使故障设备损坏 B、使用户的正常工作遭到破坏 C、破坏电力系统运行的稳定性 3、快速保护的动作时间最快可达到0.02~0.04s;而断路器的动作时间最快可达到 0.06~0.15s。所以继电保护快速切除故障的时间为()。 A、0.02~0.04s B、0.02~0.06s C、0.04~0.1s 四、问答题: 1、何谓主保护、后备保护?何谓远后备保护、近后备保护? 答:主保护:反应整个被保护元件上的故障,并能以最短的延时有选择地切除故障的保护。后备保护:主保护或者断路器拒绝动作时,用来切除故障的保护。 近后备:主保护拒绝动作时,由本元件的另一套保护实现的后备保护。 远后备:主保护或者断路器拒绝动作时,由相邻元件的保护实现的后备保护。 2、继电保护的基本任务是什么? 答:(1)自动、迅速、有选择性地将故障元件从系统中切除,使故障元件免遭破坏,并保证其他无故障元件迅速恢复正常运行;(2)反应电气元件不正常运行情况,并根据不正常运行情况的种类和电气元件维护条件,发出信号,由运行人员进行处理。(3)与其他自动装置配合,解决在故障情况下提高供电可靠性的问题。 3、利用电力系统正常运行和故障时参数的差别,可以构成哪些不同原理的继电保护?

电力系统继电保护第二部分.doc

电力系统继电保护第二部分

电力系统继电保护第二部分 第七章变压器保护 7-1变压器可能发生哪些故障和异常工作情况,应该装哪些保护? 变压器的故障类型:变压器油箱内部故障和油箱外部故障 油箱内部故障:绕组的相间短路,匝间短路和中性点接地系统侧的接地短路; 油箱外部故障:主要是变压器的绝缘套管和引出线上发生的相间短路和接地短路。 变压器的异常工作情况:外部短路引起的过电流过负荷,油箱漏油造成油面下降或冷却系统故障引起的油温升高;外部接地短路引起的中性点过电压;过电压或系统频率降低引起的过励磁等。应装的保护 瓦斯保护:反应变压器油箱内部各种短路和油面降低; 纵差动保护:反应变压器绕组或引出线相间短路、中性点直接接地系统侧绕组或引出线的单相接地及绕组匝间短路; 过电流保护:反应变压器外部相间短路并做瓦斯保护和纵差动保护的后备保护;

零序电流保护:反应中性点直接接地系统中变压器外部短路。 以及过负荷保护和过励磁保护。 7-2为什么变压器纵差保护不能代替瓦斯保护? 瓦斯保护主要优点是结构简单、灵敏性高、能反应变压器油箱内部各种故障,特别是匝间短路或一相断线,纵差动保护往往不能动作,此外也是油箱漏油或绕组、铁芯烧损的唯一保护。 何时重瓦斯保护应由跳闸位置改为信号位置? 为防止在变压器换油或瓦斯继电器实验时错误动作,使重瓦斯保护转为只发信号。 7-3变压器实现纵差动保护的基本原则是什么由于变压器高低压侧的额定电流不同,因此为保证纵差保护的正确工作就必须选择适当的电流互感器变比,使得在正常和外部故障时,两个二次电流相等,即在正常和外部短路时差动回路的电流等于零,保护不动作。而在内部短路时,差动回路的电流不为零,保护动作。

电气继电保护常见故障及维修技术探讨 武珊

电气继电保护常见故障及维修技术探讨武珊 发表时间:2019-01-08T17:08:30.170Z 来源:《电力设备》2018年第24期作者:武珊赵晓蕾景炎[导读] 摘要:随着我国经济水平的提高,电的需求也越来越大。 (国网山西省电力公司运城供电公司山西运城 044000)摘要:随着我国经济水平的提高,电的需求也越来越大。电作为一种资源,它既有其重要性,同时也有其危险性。目前,各种电气设备的使用,使得电力系统面临着巨大的安全问题,电力系统运行安全与否不仅关系到电力企业的发展,同时也关系到我国人民生活的质量与安全。为了保证电力系统运行安全,就必须加强电气继电保护,做好电气继电保护的维修管理工作。 关键词:电气继电保护;常见故障;维修技术随着我国经济的快速增长,电力市场得到进一步的扩大,电力系统的复核量增加,电力系统的继电保护工作的难度加大,继电保护装置作为电力系统中的主要组成部分,在电力系统中占据中绝对重要的地位,是确保电力系统正常安全运行必要措施。一旦继电保护装置出现不对则无法保证电力系统的安全性,还有可能对电力系统的正常安全运行带来不利影响,因此电力企业应当对电力系统的继电保护的维护工作予以高度的重视,确保继电保护装置的正常运行。本文从电力继电保护检修维护工作要求出发,分析了继电保护常见故障提出维修措施。 1.电气继电保护的意义 继电保护设备是一种安全智能的设备,主要由继电器和有关辅助组件而构成。继电保护设备能够准确的检测出电气组件是否存在异常,并使断路器自动跳闸或发出警示。然而,随着电力规模的逐渐扩大,电力运行将面临着越来越严重的安全问题。同时,电气设备种类的增加也会加大电力系统的负荷,再加上其它因素的影响,较易对电力系统的安全运行造成影响,从而难以促进社会的可持续发展。由于电力在促进社会的快速发展中起着十分重要的作用,因此,一定要采取有效的措施来保护电力系统,然而,继电保护技术应用于电力系统的保护方面可以起到有效的作用。随着用电需求量的日益增加,电力系统的供电已经无法满足用户的需求。基于此,一定要重视电力系统的维护,通过应用继电保护技术来提高电力系统的维护水平。继电保护能够保证电力系统的稳定运行,一旦电气设备发生了故障,可以自动地将故障及时排除,从而不仅有利于防止故障带来更严重的破坏性,而且也不会影响到其它设备的正常运行。除此之外,继电保护还比较先进,其具有的自动保护作用可以保护电力系统的稳定运行,进而能够有效的提高电力企业的社会经济效益。 2 电力继电保护故障的常见故障 2.1不运行或不复位 有些情况下,继电保护器无法正常工作,最直观的表现主要有两种,一个是继电器不运行,另一个是继电器不复位。继电器由于故障而无法正常工作,将会给机电系统的正常运转带来严重威胁,因而其对应的保护功能无法执行。因此,维修工作人员应尽快查找到问题的真正原因。应对电压进行检查,查看继电器有无对应的电压,电压值和额定值是否相符,电压是否存在波动,上述均无异常时,再对继电器接触进行检查,以上问题均有可能导致继电器无法正常工作。继电器若出现不复位异常,则需要对输入电压进行检查,如是否被断开等,另外,还需要对继电器本身质量进行检查。 2.2线圈故障 导致线圈发生故障的原因较多,通常情况下线圈断线、线圈供电不足、线圈极性接反、线圈供电错误和线圈发热等都是较为常见的故障。线圈导线多发生在进行超声波清洗时或是向线圈进行施加电压时;当供电电压较低时,则会导致线圈供电出现不足的情况;二极管继电器作为线圈的重要组成部分,一旦极性连接错误,则会导致接点不动作;在供电电源连接时,如果将交流线圈和直流线圈的电源接反,则会导致线圈被烧毁或是不能正常工作;另外在线圈长时间通电情况下会有发热现象,从而导致绝缘受到破坏,使继电器无法正常工作。 2.3连接故障 当继电器接点出现粘连或是接点接触不良时则会导致连接故障发生。当继电器接点连接的负荷容量远远大于节点的额定容量时,或是继电器开关频率较高、继电器超过有效使用日期时都会导致接点出现粘连的现象发生。 当继电器接点表面没有及时进行清洁,存有异物,或是表面有腐蚀情况发生时,接点由于机械性原因导致接触存在问题,继电器使用环境中有振动或是冲击现象存在,继电器存在超期服役的现象等都会导致继电器接点接触不良的情况发生。 2.4外界干扰 虽然我国为了提高电力系统运行的稳定性,将各种新型的技术以及设备应用到其中,但是微型继电保护在电力系统中的抗干扰能力仍相对较低,因而在这样的情况下,电气继电保护系统受外界的干扰就会大大增加,例如通信设备的干扰、外界干扰器的影响、电压幅度过大等,极易在这些因素的干扰下使得逻辑元件进行错误地分析以及判定,进而执行错误的行为,从而影响其保护的动作效果,影响整个系统的运行。 3电气继电保护的维修技术继电保护装置特殊的保护性能,使得其在我国企业中的供电系统和变电站中得到较为广泛的应用,继电保护装置的市场需求逐渐扩大,而随着现代信息技术的快速发展,继电保护装置不断被更新和完善,市场上的继电保护产品越来越多,产品的适用性逐渐增强,向着更广泛的领域扩展。对此,必须严格规范电力系统继电保护装置的维护操作行为,每一位继电保护装置的操作人员要严格按照工作条例和操作要求来对继电保护进行检测与调试,能够及时采取有效措施,控制好寄生回路现象,以确保电力系统的正常安全运行。 3.1观察法 很多电气继电保护装置管理的技术人员,一般在对电气继电保护装置进行检测的过程中,都是使用的专业设备,但是有的时候,即使是利用了专业的检测设备,也没有找到电气继电保护装置发生故障的准确位置,在这种时候,也是在调解允许的情况下,利用直观的方法,是找出电气继电保护装置发生故障准确位置的有效方法。当电气继电保护装置发生了故障之后,利用直观的方法,可以及时的解决掉电气继电保护装置简单的故障。例如,相关的技术人员,可以对个别部件的运行状况进行直接的观察,然后再来判断电力系统的运行状态是否受到了影响,也可以通过电气继电保护装置的气味以及颜色,来判断装置元件是否出现问难需要进行更换,如果发现存有问题,技术人员可以及时的对其进行解决。 3.2替代法

相序保护器接线图

相序保护器 相序保护器是一种自动相序判别的保护继电器,保证一些特殊机电设备因为电源相序接反后倒转而导致事故或设备损坏。如电梯,如果电源在维修后相序出错会导致事故的发生,必须在控制回路接入相序保护器,保证相序无误。空调压缩机,也有采用相序保护器,保证压缩机不至于在维修后发生反转的情况。 相序保护器图 一般情况下,电动机工作的接线顺序是有规定的,如果由于某种原因,导致相序发生错乱,电动机将无法正常工作甚至损坏。相序保护就是为了防止这类事故发生。 相序保护可采用相序继电器,当电路中相序与指定相序不符时,相序继电器将触发动作,切断控制电路的电源从而达到切断电动机电源、保护电动机的目的。 相序保护器优点

相序保护器是一种多功能三相电源系统或三相用电设备的监测和保护仪器。 相序保护器可实时显示三相电源电压、并可在电源发生过压保护、欠压保护、缺相保护、不平衡保护、错相保护等故障时通过继电器输出的形式,给用户提供报警输出和保护电路动作输出的触点控制信号,起到报警和保护作用。集三相电压显示、过电压保护、欠电压保护、缺相保护(断相保护)、电压不平衡保护、相序保护(错相保护)于一体,采用功能强大的微处理器芯片和非易失存储技术,显示采用高清晰超宽温中文液晶,具有功能齐全,性能稳定,显示直观、操作简便的特点。 相序保护器工作原理 取样三相电源并进行处理,在电源相序和保护器端子输入的相序相符的情况下,其输出继电器接通,设备主控制回路接通。当电源相序发生变化时,相序不符,输出继电器无法接通,从而保护了设备,避免事故的发生。 三相电源依次接入保护器的U,V,W(有的是R,S,T)三个接线点,相序保护器的辅助触点一般有一常开一常闭。接入控制回路中,具体接常开还是常闭根据控制原理或者接线图来接,.当相序错误或者缺相的时候保护器的辅助触点动作常开变常闭,常闭变常开。若起到保护作用,应该接常闭触点。 相序保护器操作指南 1、把三相电源的三相四线分别接入相序保护器的L1、L 2、L 3、N端。 2、相序保护器的常开、常闭输出端,分别接入控制设备的回路。详见相序保护器接线示意图 3、设置参数,把连接好的相序保护器通上三相电,液晶屏显示其中一相的电压。 (1)相序保护器正常情况下,按一下R/设置键,进入设置状态,设置字符闪烁,此时液晶屏上显示设置和相序字样,按▲或▼键可选择是否启用相序保护功能,ON表示开启,OFF 表示关闭。 (2)再按一下相序保护器的R/设置键,设置过电压值,液晶屏上显示设置和过压字样,按▲或▼ 键设置过电压值,过电压值在220V~300V范围内设置,步进量为1V;再按一次R/设置键,设置过电压动作时间(单位为秒),动作时间 可在0.1~20秒范围之间设置,步进量为0.1秒。接线示意图 (3)再按一下相序保护器的R/设置键,设置欠电压值,液晶屏上显示设置和欠压字样,按▲或▼ 键设置欠电压值,欠电压值在150V~220V范围内设置,步进量为1V;再按一次R/ 设置键,设置过电压动作时间(单位为秒),动作时间可在0.1~20秒范围之间设置,步进量为0.1秒。 (4)再按一下相序保护器的R/设置键,液晶屏上显示End字样,本次设置完成。 (5)当相序保护器发生电源过压、欠压、缺相、错相、不平衡等故障时,液晶屏上分别闪烁显示过压、欠压、缺相、相序、不平衡等字样,如果故障时间超过设置的动作时间,过压、欠压、缺相、相序、不平衡等字样保持常亮,同时显示故障时的电压值,这时输出触点转换。(6)由于相序保护器缺相、错相故障属于不可自动恢复性故障;故发生缺相、错相故障时,

电力系统继电保护课后习题解析答案全

电力系统继电保护课后习题答案 1 绪论 1.1电力系统如果没有配备完善的继电保护系统,想象一下会出现什么情景? 答:现代的电力系统离开完善的继电保护系统是不能运行的。当电力系统发生故障时,电源至故障点之间的电力设备中将流过很大的短路电流,若没有完善的继电保护系统将故障快速切除,则会引起故障元件和流过故障电流的其他电气设备的损坏;当电力系统发生故障时,发电机端电压降低造成发电机的输入机械功率和输出电磁功率的不平衡,可能引起电力系统稳定性的破坏,甚至引起电网的崩溃、造成人身伤亡。如果电力系统没有配备完善的继电保护系统,则当电力系统出现不正常运行时,不能及时地发出信号通知值班人员进行合理的处理。 1.2继电保护装置在电力系统中所起的作用是什么? 答:继电保护装置就是指能反应电力系统中设备发生故障或不正常运行状态,并 动作于断路器跳闸或发出信号的一种自动装置.它的作用包括:1.电力系统正常 运行时不动作;2.电力系统部正常运行时发报警信号,通知值班人员处理,使电力系统尽快恢复正常运行;3.电力系统故障时,甄别出发生故障的电力设备,并向故障点与电源点之间、最靠近故障点断路器发出跳闸指令,将故障部分与电网的其他部分隔离。 1.3继电保护装置通过哪些主要环节完成预定的保护功能,各环节的作用是什么? 答:继电保护装置一般通过测量比较、逻辑判断和执行输出三个部分完成预定的保护功能。测量比较环节是册来那个被保护电器元件的物理参量,并与给定的值进行比较,根据比较的结果,给出“是”、“非”、“0”或“1”性质的一组逻辑信号,从而判别保护装置是否应该启动。逻辑判断环节是根据测量环节输出的逻辑信号,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该使断路器跳闸。执行输出环节是根据逻辑部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作。 1.4 依据电力元件正常工作、不正常工作和短路状态下的电气量复制差异,已经构成哪些原理的保护,这些保护单靠保护整定值能求出保护范围内任意点的故障吗? 答:利用流过被保护元件电流幅值的增大,构成了过电流保护;利用短路时电压幅值的降低,构成了低电压保护;利用电压幅值的异常升高,构成了过电压保护;利用测量阻抗的降低和阻抗角的变大,构成了低阻抗保护。 单靠保护增大值不能切除保护范围内任意点的故障,因为当故障发生在本线路末端与下级线路的首端出口时,本线路首端的电气量差别不大。所以,为了保证本

电气继电保护管理规定

电气继电保护管理规定 第一章总则 第一条为规范大庆石化公司电力系统继电保护工作,加强技术监督,提高继电保护与安全自动装置的管理水平,保障电网安全运行、保护电气设备,依据国家相关法律、法规和专业技术规程、标准,制定本规定。 第二条本规定适用于大庆石化公司电气继电保护及安全自动装置、在线电气仪表的管理。 第三条本规定是大庆石化公司电气继电保护及在线仪表管理的基本要求,各单位在电气继电保护及安全自动装置、在线电气仪表的选型、设计、购置、安装、验收、使用、修理、改造、更新和报废等全过程管理中,必须严格执行本规定。 第二章管理职责 第四条大庆石化公司电力系统继电保护专业实行统一领导,分级管理,在公司、二级单位和基层单位设置相应的继电保护专业管理岗位。 第五条公司电气管理处作为继电保护管理的职能部门,对公司电网内继电保护实行专业管理,对承接网内电气设备继电保护调试的单位进行技术监督管理。 第六条二级单位主管部门及基层单位分别设专(兼)职继电保护

技术人员,负责本单位继电保护管理工作。电气副总工程师为二级单位继电保护专业总负责人,运行主管领导是基层单位继电保护专业主管领导。 第七条矿区服务事业部也应设置相应的继电保护专业管理岗位,配备继电保护人员负责本单位继电保护管理工作,专业上接受公司电气管理处的技术指导。 第八条继电保护专业管理岗位人员至少应了解掌握: 1.被保护电力设备的有关参数和保护设备的功能及型号规格、厂家。 2.电气系统的运行方式(包括发电机、变压器中性点的接地方式),负荷潮流、短路计算及稳定分析结果等。 3.电气一次系统图和二次原理图。 4.辖区电气继电保护整定方案。 第九条电气管理处继电保护管理岗位职责:1.负责公司电气继电保护及在线仪表的管理及考核工作。参加电力系统的新、改扩建工程设计相应部分审核。 2.负责组织修订、编制、批准继电保护整定方案,并组织保护装置现场整定的管理工作。 3.负责组织确定系统保护功能配置、保护装置选型及保 护方式,审定保护接线图

电力系统继电保护问答精编版

电力系统继电保护问答 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

电力系统继电保护问答 1.什么是继电保护装置? 答:当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。 2.继电保护在电力系统中的任务是什么? 答:继电保护的基本任务: (1)当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求(如保持电力系统的暂态稳定性等)。 (2)反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。 3.简述继电保护的基本原理和构成方式。 答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,

也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。 4.电力系统对继电保护的基本要求是什么? 答:继电保护装置应满足可行性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。 (1)可行性是指保护该动体时应可行动作。不该动作时应可*不动作。可*性是对继电保护装置性能的最根本的要求。 (2)选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件(如启动与跳闸元件或闭锁与动作元件)的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。 (3)灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定。 选择性和灵敏性的要求,通过继电保护的整定实现。 (4)速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装设速动保护(如高频保护、差动保护)、充分发挥零序接地瞬时段保护及相间

电力系统继电保护第一章习题和答案

1.1电力系统如果没有配备完善的继电保护系统,想象一下会出现什么情景? 答:现代的电力系统离开完善的继电保护系统是不能运行的。当电力系统发生故障时,电源至故障点之间的电力设备中将流过很大的短路电流,若没有完善的继电保护系统将故障快速切除,则会引起故障元件和流过故障电流的其他电气设备的损坏;当电力系统发生故障时,发电机端电压降低造成发电机的输入机械功率和输出电磁功率的不平衡,可能引起电力系统稳定性的破坏,甚至引起电网的崩溃、造成人身伤亡。如果电力系统没有配备完善的继电保护系统,则当电力系统出现不正常运行时,不能及时地发出信号通知值班人员进行合理的处理。 1.2继电保护装置在电力系统中所起的作用是什么? 答:继电保护装置就是指能反应电力系统中设备发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置.它的作用包括:1.电力系统正常运行时不动作;2.电力系统部正常运行时发报警信号,通知值班人员处理,使电力系统尽快恢复正常运行;3.电力系统故障时,甄别出发生故障的电力设备,并向故障点与电源点之间、最靠近故障点断路器发出跳闸指令,将故障部分与电网的其他部分隔离。 1.3继电保护装置通过哪些主要环节完成预定的保护功能,各环节的作用是什么? 答:继电保护装置一般通过测量比较、逻辑判断和执行输出三个部分完成预定的保护功能。测量比较环节是册来那个被保护电器元件的物理参量,并与给定的值进行比较,根据比较的结果,给出“是”、“非”、“0”或“1”性质的一组逻辑信号,从而判别保护装置是否应该启动。逻辑判断环节是根据测量环节输出的逻辑信号,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该使断路器跳闸。执行输出环节是根据逻辑部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作。 1.4 依据电力元件正常工作、不正常工作和短路状态下的电气量复制差异,已经构成哪些原理的保护,这些保护单靠保护整定值能求出保护范围内任意点的故障吗? 答:利用流过被保护元件电流幅值的增大,构成了过电流保护;利用短路时电压幅值的降低,构成了低电压保护;利用电压幅值的异常升高,构成了过电压保护;利用测量阻抗的降低和阻抗角的变大,构成了低阻抗保护。 单靠保护增大值不能切除保护范围内任意点的故障,因为当故障发生在本线路末端与下级线路的首端出口时,本线路首端的电气量差别不大。所以,为了保证本线路短路时能快速切除而下级线路短路时不动作,这种单靠整定值得保护只能保护线路的一部分。 1.5依据电力元件两端电气量在正常工作和短路状态下的差异,可以构成哪些原理的保护?答:利用电力元件两端电流的差别,可以构成电流差动保护;利用电力元件两端电流相位的差别可以构成电流相位差动保护;利两侧功率方向的差别,可以构成纵联方向比较式保护;利用两侧测量阻抗的大小和方向的差别,可以构成纵联距离保护。

电气继电保护常见故障及维修技术探讨

电气继电保护常见故障及维修技术探讨 发表时间:2018-04-10T09:32:06.443Z 来源:《知识-力量》2017年12月下作者:程源[导读] 文中重点研究了电气继电保护的常见故障和维修技术。 中国电建集团核电工程公司山东济南250101 【摘要】:随着国民经济的快速发展,电气设备的类型越来越多样化,从而影响到了电力系统的安全运行。由于继电保护设施可以保证电气系统的正常运行,因此,人们对继电保护设施提出了较高的要求。然而,电气继电保护设施在实际运行中往往会出现各种各样的故障,如果继电保护功能失去了作用,就可能对整个电气系统的稳定运行造成一定的影响。基于此,文中重点研究了电气继电保护的常见故障和维修技术。 【关键词】:电气;继电保护;常见故障;维修技术随着人们生活水平的不断提高,对电能的需求量也在日益增加。由于电力资源在推动社会的快速发展中起着十分重要的作用,因此,电力安全直接影响着人们的生产生活。当前,随着电气设备使用量的逐渐增加,电力系统将面临越来越严重的安全问题。电力系统能否正常运行不仅直接影响着电力企业的发展,而且也决定着人们的生活质量与安全。为了保证电力系统的安全运行,有必要落实好继电保护工作和电气继电保护的维修管理工作。 1.电气继电保护的意义 继电保护设备是一种安全智能的设备,主要由继电器和有关辅助组件而构成。继电保护设备能够准确的检测出电气组件是否存在异常,并使断路器自动跳闸或发出警示。然而,随着电力规模的逐渐扩大,电力运行将面临着越来越严重的安全问题。同时,电气设备种类的增加也会加大电力系统的负荷,再加上其它因素的影响,较易对电力系统的安全运行造成影响,从而难以促进社会的可持续发展。由于电力在促进社会的快速发展中起着十分重要的作用,因此,一定要采取有效的措施来保护电力系统,然而,继电保护技术应用于电力系统的保护方面可以起到有效的作用。随着用电需求量的日益增加,电力系统的供电已经无法满足用户的需求。基于此,一定要重视电力系统的维护,通过应用继电保护技术来提高电力系统的维护水平。继电保护能够保证电力系统的稳定运行,一旦电气设备发生了故障,可以自动地将故障及时排除,从而不仅有利于防止故障带来更严重的破坏性,而且也不会影响到其它设备的正常运行。除此之外,继电保护还比较先进,其具有的自动保护作用可以保护电力系统的稳定运行,进而能够有效的提高电力企业的社会经济效益。2电气继电保护的常见故障 2.1继电保护设备的质量不合格 随着市场经济的快速发展,市场竞争变得越来越激烈,一些厂家为了获取更多的经济利益,生产出质量较差的继电保护产品并将其投入到市场中。质量不合格的继电保护产品应用在电力系统中一定会影响到电力系统的安全运行。比如,继电器元件的材质与精度不符合标准、整体性能不达标,微机保护设备的组件运行不平衡并且性能和质量较差等都较易使设备在运行的过程中出现故障。2.2继电采样通道出现故障 虽然继电保护设备在电力系统中得到了广泛应用,但是,在继电保护系统中,由于受到各种因素的制约,继电保护采样通道往往会存在一系列问题,常见的故障有压互信号故障和流互信号故障等,从而对电力系统的稳定运行造成了影响。2.3继电保护设备工作存在异常 在电力系统当中,只有将继电保护设备同外部二次回路和直流系统相连接才可以把继电保护作用得以充分发挥。然而,在实际的工作过程中,一旦其它零部件出现了故障,也会对继电保护设备的安全运行造成影响,从而无法将保护电路的作用充分地发挥出来。 2.4电力系统继电保护中其他故障问题 如果电力系统中出现故障时,其采集系统就可以通过相应的信号对故障及时的进行分析,以及针对所分析出来的结果制定出相应的解决对策;电压系统作为电力系统继电保护中极其重要的装置,一般情况下,此种装置都会对重合闸和无压线路进行检查,如果主变的电压侧出现了双分支的情况,那么此时就要考虑到主变低压侧分支和相邻主变低压侧之间是否存在着具体的相关性。如果设备出现了问题,就会直接影响到继电保护的正常作用,甚至使继电保护失去其应有的效果而无法正常工作。而这样的继电保护也就严重的制约了电力系统的整体发展。 3电气继电保护维修技术 3.1观察法 观察法是指在直观上观察电气继电保护设备是否存在故障。在电力系统中,如果电力系统运行负荷超出了继电保护设备的最大承载值,就较易导致继电保护设备出现故障,比方说,继电保护设备中的保险丝突然烧断、继电保护设备发出刺鼻的味道,在这种情况下,维修人员就能够运用观察法来观察继电保护设备是否存在故障,如果闻到电气继电保护设备发出了烧焦的味道,就可以断定继电保护设备的内部出现了故障,应该对其进行更换。3.2对比法 对比法是指把两台具有相同型号的设备进行比较,通过比较来发现两者存在的不同之处,从而有利于确定发生故障的具体部位。维修电气继电保护设备时,一旦发现了继电保护设备存在故障,维修人员就应该用一台同此设备具有相同型号的设备进行比较,同时一定要确保所使用的设备不存在性能和质量问题,使两台设备处于相同的运行状态,找出存在的差异,从而可以有针对性的对出现故障的继电保护设备进行维修。 4电气继电保护设备故障的预防措施4.1加强重视继电保护工作 由于继电保护设备在电力系统中起着非常重要的作用,因此,为了保证电力系统的安全稳定运行,降低安全事故的发生机率,电气企业必须加强重视继电保护工作,积极引进先进的技术,提高继电保护工作人员的技术水平,构建一支专业素质较强的继电保护队伍。另外,电力企业还应该将安全责任制度得以全面落实,保证各项制度的顺利实施,从而有利于防止由于缺少规范性而造成的安全事故。4.2加强对继电保护设备的维护和管理

相关主题
文本预览
相关文档 最新文档