当前位置:文档之家› 调节规律与调节控制回路

调节规律与调节控制回路

调节规律与调节控制回路
调节规律与调节控制回路

调节规律与调节控制回路

1、在自动调节控制回路中比例(P)、积分(I)、微分(D)各起

什么作用?

比例调节器依据“偏差的大小”来动作,它的输出与输入偏差的大小成比例。比例调节及时、有力,但有余差。它用比例度δ来表示其作用的强弱,δ愈小,调节作用愈强,比例作用太强时,会引起振荡。

积分调节依据“偏差是否存在”来动作,它的输出与偏差对时间的积分成比例,只有当余差消失时,积分作用才会停止,其作用是消除余差。但积分作用使最大动偏差增大,延长了调节时间。它用积分时间T来表示其作用的强弱,T愈小,积分作用愈强,但积分作用太强时,也会引起振荡。

微分调节依据“偏差变化速度”来动作,它的输出与输入偏差变化的速度成比例,其效果是阻止被调参数的一切变化,有超前调节的作用,对滞后大的对象有很好的效果。它使调节过程偏差减小,时间缩短,余差也减小(但不能消除)。它用微分时间T d 来表示其作用的强弱,T d大,作用强,但T d太大,也会引起振荡。

2、比例(P)、比例积分(PI)、比例积分微分(PID)调节规律的

适用场合?

比例(P)调节规律适用于负荷变化较小,纯滞后不太大而工

艺要求不高又允许有余差的调节系统。

比例积分(PI)调节规律适用于对象调节通道时间常数较小,系统负荷变化较大(需要消除干扰引起的余差)、纯滞后不大(时间常数不是太大)而被调参数不允许与给定值有偏差的调节系统。

比例积分微分(PID)调节规律适用于容量滞后较大,纯滞后不太大,不允许有余差的对象。

3、微分(D)调节规律的作用?

由于微分(D)调节规律有超前作用,因此调节器加入微分作用可以:克服调节对象的惯性滞后(时间常数T)、容量滞后(τc);

但微分作用不能克服调节对象的纯滞后τ0,因为在τ0时间内,被调参数的变化速度为零。

4、压力、流量的调节为何不选用微分调节?而温度、成分调节多

采用微分调节?

对于压力、流量等被调参数来说,对象调节通道时间常数T0较小,而负荷又变化较快,这时微分作用和积分作用都要引起振荡,对调节质量影响很大,故不采用微分调节规律。

而对于温度、成分等测量通道和调节通道的时间常数较大的系统来说,采用微分规律这种超前作用能够收到较好的效果。

5、各类常见调节系统的特点

6、具有比例(P)+积分(I)+微分(D)【简称PID】调节器的调

节系统,如何进行参数整定?

具有PID调节器的调节系统,采用临界比例度法进行参数整定,整定步骤如下:

(1)、调节系统稳定后,将积分时间放到最大,微分时间放到零,

然后逐步将调节器比例度减小,观察在给定量提升或干扰量改变时的过渡过程情况。如果调节过程是衰减性振荡,则应把比例度继续放小;如果调节过程是发散,振荡加剧,则应把比例度放大,直到持续四、五次等幅振荡为止。记下此时的临界周期T k。

(2)、根据下表所示经验公式求出调节器的各参数。

3)、在调节器上,取稍大于求得的比例度值,再依次调整所需的积分时间和微分时间,最后把比例度值放到求得的值上。如果记

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

变量泵性能及方向控制回路设计实验(2)

一、实验步骤及过程 (一)变量泵性能实验 液压系统原理图1、按照图接好液压回路。

2、全部打开节流阀和溢流阀,接通电源,启动变量泵,让变量泵空载运转几分钟,排除系统内的空气。注:节流阀和溢流阀逆时针方向拧到头完全打开,顺时针方向拧到头完全关闭。 3、关闭节流阀,慢慢调调整溢流阀,将压力P调至作为系统安全压力,然后用锁母将溢流阀锁紧。 4、全部打开节流阀,使被试泵的压力最低,测出此时的流量,即为空载流量。 和流5、逐渐关小节流阀的通流截面,作为泵的不同负载,测出对应不同压力P i 量q,将所测数据填入表1-1。注意,节流阀每次调节后,须运转一、两分钟后,再测有关数据。 6、实验完成后,将节流阀,溢流阀全部打开,再关闭液压泵,关闭电源。(二)变量泵方向控制回路设计 实验步骤

(1)将设计好的液压基本回路原理图交给实验指导老师进行检查; (2)按照液压基本回路原理图用液压胶管总成在QCS014实验台上搭建回路,并连接各位置传感器; (3)起动主机,进入万能自编界面,按事先设计好电磁阀的动作顺序表编程。(4)搭建好的回路必须经过实验指导老师检查,以确认无误且回路完全符合实验要求和实验目的; (5)将溢流阀的调节手柄完全松开(逆时针转动); (6)起动实验台,打开变量泵开关; (7)调溢流阀使回路的压力为P1(P1≤3Mpa); (8)点击手动开关,检查动作顺序是否正确,之后点击自动开关,看回路和程序是否满足实验要求。 二、实验记录及数据处理 1、填写液压泵性能实验数据记录表

2、根据以上实验记录表,在实验报告中绘制q-P, -P曲线图,要求用坐标纸绘制。

方向控制回路教案

安岳县职教中心20XX年上期公开课 教案 学科名称:汽车机械基础 课题名称:液压基本回路之方向控制回路授课教师:安岳县职教中心李晓林授课时间:20XX年04月18日 授课地点:2014春11班

【课题名称】方向控制回路 【教学目标】 掌握方向控制回路的工作原理及应用。 【教学重点】 换向回路和锁紧回路的工作原理。 【教学难点】 分析换向回路和锁紧回路。 【教学教具准备】 电脑多媒体 【课时安排】 1节课 【教学流程设计】 复习巩固→新课引入→新课讲解→课堂总结→课后练习【教学过程设计】 一复习巩固 教师:1、液压系统的四大组成部分? 学生:动力、执行、控制、辅助部分。 教师:2、画出三位四通换向阀H、O、M型。 学生:

二导入新课 请同学们观察图片,找出图片中哪些地方运用了液压系统知识。然后请同学们思考登车桥支腿、车载升降平台支架和起重机支腿是如何实现升、降及停止的? 三课程的讲解 方向控制回路 概念:指控制液压油通、断或流动方向的回路统称。 功能:控制执行元件的启动、停止及换向(进、退)。 分类:一般分为换向回路和锁紧回路。 (一)换向回路 二位四通电磁换向阀的换向回路。如图(详) 回路构成:(学生) 核心元件:二位四通电磁换向阀 工作原理(教师分析):当换向阀电磁铁断电时 换向阀3右位工作 进油路:泵→换向阀右位→液压缸无杆腔,活塞向左移动。 回油路:液压缸有杆腔→换向阀右位→油箱。

当换向阀电磁铁通电时 换向阀3左位工作 进油路:泵→换向阀左位→液压缸有杆腔,活塞向右移动。 回油路:液压缸无杆腔→换向阀左位→油箱 换向回路特点及应用:使用方便,易于实现自动化,但换向时间短,冲击大,一般用于小流量、平稳性要求不高的场合。 (二)锁紧回路 锁紧:是指液压缸活塞两端的压力油被封住不能流动。 作用:使执行元件能停留在任意位置上,且停留后不会因外力作用而移动位置。 锁紧回路如何实现? 1、最常用的是采用液控单向阀(又称双向液压锁)的锁紧回路。 2、换向阀中位机能为O形或M组成锁紧回路。 1)、采用液控单向阀的锁紧回路。(详)如图: 学生分析:回路构成 教师分析:锁紧回路工作原理

8路彩灯控制器实验报告

《8路彩灯控制电路设计》课程设计报告 专业: 班级: 姓名: 学号: 同组成员: 指导教师:赵玲 2015年1 月7 日

目录 一、课程设计目的 (3) 二、课程设计要求 (3) (一)、彩灯控制器设计要求 (3) (二)、课程设计总体要求 (3) 三、课程设计内容 (3) (一)、设计原理分析 (3) (二)、器件选择 (5) (三)、具体电路连线及设计思路 (6) 1、时钟控制电路 (6) 2、花色控制电路 (7) 3、花色演示电路 (8) 4、总体电路图 (10) 四、实际焊接电路板思路及过程 (11) (一)、设计思路及电路图 (11) (二)、设计及焊接过程 (11) (三)、电路板展示 (12) 五、课程设计总结与体会 (13)

一、课程设计目的 1.巩固数字电路技术基础课程所学的理论知识,将学习到的理论知识落实到实际,所谓学以致用。并且将模拟电路技术基础和电路分析基础等课程的所学知识加以强化。 2.熟悉几种常用集成数字芯片74LS161、74LS194等的功能和应用,并掌握其工作原理,并将这几种芯片的应用结合起来。从而学会使用常用集成数字芯片进行电路设计。 3.学会使用protues软件进行模拟电路仿真,并且学会将仿真电路实现。 4.了解数字系统设计的基本思想和方法,学会科学分析和解决问题,学会使用基本元器件其进行电路设计。 5.培养自己的动手能力,团队协作能力。 二、课程设计要求 (一)、彩灯控制器设计要求 设计并制作8路彩灯控制电路,用以控制8个LED按照不同的花色闪烁,要求如下: 1.接通电源,电路开始工作,LED灯闪烁; 2.LED灯按照事先设计的方式工作,要求闪烁的模式不能少于三种模式; 3.(选做内容)闪烁时实现快慢两种节拍的变换。 (二)、课程设计总体要求 (1)根据设计任务,每人独立完成一份设计电路图,并要求仿真实现;(2)根据设计的电路图,两人一组,利用万能板完成电路的焊接,并调试成功; (3)每人独立完成一份设计报告。 三、课程设计内容 (一)、设计原理分析 1.基本原理如下:总体电路共分三大块。第一块实现时钟信号的产生和控制,利用555定时器连接电路实现该功能;第二块实现花型的控制及节拍控制,利用

调节规律与调节控制回路

调节规律与调节控制回路 1、在自动调节控制回路中比例(P)、积分(I)、微分(D)各起 什么作用? 比例调节器依据“偏差的大小”来动作,它的输出与输入偏差的大小成比例。比例调节及时、有力,但有余差。它用比例度δ来表示其作用的强弱,δ愈小,调节作用愈强,比例作用太强时,会引起振荡。 积分调节依据“偏差是否存在”来动作,它的输出与偏差对时间的积分成比例,只有当余差消失时,积分作用才会停止,其作用是消除余差。但积分作用使最大动偏差增大,延长了调节时间。它用积分时间T来表示其作用的强弱,T愈小,积分作用愈强,但积分作用太强时,也会引起振荡。 微分调节依据“偏差变化速度”来动作,它的输出与输入偏差变化的速度成比例,其效果是阻止被调参数的一切变化,有超前调节的作用,对滞后大的对象有很好的效果。它使调节过程偏差减小,时间缩短,余差也减小(但不能消除)。它用微分时间T d 来表示其作用的强弱,T d大,作用强,但T d太大,也会引起振荡。 2、比例(P)、比例积分(PI)、比例积分微分(PID)调节规律的 适用场合? 比例(P)调节规律适用于负荷变化较小,纯滞后不太大而工

艺要求不高又允许有余差的调节系统。 比例积分(PI)调节规律适用于对象调节通道时间常数较小,系统负荷变化较大(需要消除干扰引起的余差)、纯滞后不大(时间常数不是太大)而被调参数不允许与给定值有偏差的调节系统。 比例积分微分(PID)调节规律适用于容量滞后较大,纯滞后不太大,不允许有余差的对象。 3、微分(D)调节规律的作用? 由于微分(D)调节规律有超前作用,因此调节器加入微分作用可以:克服调节对象的惯性滞后(时间常数T)、容量滞后(τc); 但微分作用不能克服调节对象的纯滞后τ0,因为在τ0时间内,被调参数的变化速度为零。 4、压力、流量的调节为何不选用微分调节?而温度、成分调节多 采用微分调节? 对于压力、流量等被调参数来说,对象调节通道时间常数T0较小,而负荷又变化较快,这时微分作用和积分作用都要引起振荡,对调节质量影响很大,故不采用微分调节规律。 而对于温度、成分等测量通道和调节通道的时间常数较大的系统来说,采用微分规律这种超前作用能够收到较好的效果。

继电保护实验报告

电力系统继电保护 实验报告 姓 名 学 号 指导教师 专业班级 学 院 信息工程学院 实验二:方向阻抗继电器特性实验 一、实验目的 1. 熟悉整流型LZ-21型方向阻抗继电器的原理接线图,了解其动作特性; 2. 测量方向阻抗继电器的静态()?f Z pu =特性,求取最大灵敏角; 3. 测量方向阻抗继电器的静态()r pu I f Z =特性,求取最小精工电流; 4. 研究方向阻抗继电器记忆回路和引入第三相电压的作用。 二、实验内容 1.整流型阻抗继电器的阻抗整定值的整定和调整 前述可知,当方向阻抗继电器处在临界动作状态时,推证的整定阻抗表达式如式4-3所示,显然,阻抗继电器的整定与LZ-21中的电抗变压器DKB 的模拟阻抗Z I 、电压变换器YB 的变比n YB 、电压互感器变比n PT 和电流互感器n CT 有关。 例如,若要求整定阻抗为Zset =15Ω,当n PT =100,n CT =20,Z I =2Ω(即DKB 原

方匝数为20匝时),则10 15 = yb n ,即YB n 1=0.67。也就是说电压变换器YB 副方线 圈匝数是原方匝数的67%,这时插头应插入60、5、2三个位置,如图4-10所示。 (1,检查电抗变压器DKB 原方匝数应为16(2)计算电压变换器YB 的变比6 .15 =yb n ,YB 副方线圈对应的匝数为原方匝数的32%。 (3)在参考图4-10阻抗继电器面板上选择20匝、10匝,2匝插孔插入螺钉。 表4-3 DKB 最小整定阻抗范围与原方线圈对应接线

(4)改变DKB原方匝数为20匝(Z I=2Ω)重复步骤(1)、(2),在阻抗继电器面板上选择40匝、0匝,0匝插孔插入螺钉。 (5)上述步骤完成后,保持整定值不变,继续做下一个实验。 2.方向阻抗继电器的静态特性Z pu=f(?)测试实验 实验步骤如下: (1)熟悉LZ-21方向阻抗继电器和ZNB-Ⅱ智能电秒表的操作接线及实验原理。认真阅读LZ-21方向阻抗继电器原理接线图4-2和实验原理接线图(图4-11)(2)按实验原理图接线,具体接线方法可参阅LG-11功率方向继电器实验中所介绍的内容。 (3)逆时针方向将所有调压器调到0V,将移相器调到0°,将滑线电阻的滑动触头移至其中间位置,将继电器灵敏角度整定为72°,整定阻抗设置为5Ω。 ( ( ( 为1A (7)调节单相调压器的输出电压,保持方向阻抗继电器的电流回路通过的电流为I m=2.0A; (8)按照LG-11功率方向继电器角度特性实验中步骤(7)至(12)介绍的方法,测量给定电压分别为表4-4中所确定数值下使继电器动作的两个角度?1、?2,并将实验测得数据记录于表4-4中相应位置。 (9)实验完成后,将所有调压器输出调至0V,断开所有电源开关。

自动调节器典型调节规律及调节过程分析(1)

第八章 调节器调节规律及其对过程影响 第一节 自动调节器典型调节规律及调节过程分析 调节器的基本调节规律是模拟运行人员的基本操作,是运行人员调节动作精华的总结。选择合适的调节器动作规律是热工自动人员的职责范畴,但运行人员如果能理解各种动作的调节过程,就能够使用好相应的自动调节系统。 自动调节的目的是要及时准确地进行调节,前面我们已经讲到基本环节由比例、积分、惯性、微分、迟延组成。因为惯性、迟延环节不符合及时准确的要求,所以我们可考虑的就只有比例、积分、微分这三种特性了(积分、微分调节规律一般不能单独使用)。自动调节器的典型动作规律按照环节特性可分为比例(P )、比例积分(PI )、比例微分(PD )、比例积分微分(PID )。 一、典型调节规律 1. 比例(P )调节规律 比例调节作用简称为P 作用,是所有调节器必不可少的一种典型调节作用。P 作用实质上就是典型环节中的比例作用。不过这个环节一般用电子元件构成的电路来实现,其输入输出都是电信号。 比例环节的传递函数P K W =,P K 称为比例环节的比例放大系数;而在比例(P )调节作用中,传递函数习惯上表示成δ 1 =P W , (8-1) 式中 P K 1 = δ——调节器的比例带(比例度),δ越大,比例作用越弱。 下面以如图8-1所示的采用浮子式比例调节器的水位调节系统为例,说明比例调节器的调节规律。该系统的被调对象是有自平衡能力的单容水箱;浮子起到检测器的作用,用于感受水位的变化;比例调节器就是杠杆本身,杠杆以O 点为支点可以顺时针或逆时针转动。给定值的大小与给定值连杆的长短有关;选择流入侧阀门作为调节阀,由调节器来控制它的开度变化。当某种扰动使水位升高时(说明此时流入量1q >流出量2q ),浮子随之升高,通过杠杆作用使阀门芯下移,关小调节阀,流入量1q 减小直至等于流出量 2q 。反之,当某种扰动使水位降低时(说明此时流入量1q <流出量2q ,浮子随之降低,通过杠杆作用使阀门芯上移,开大调节阀,流入量1q 加大直至等于流出量2q 。这样,就可以自动地把水位H 维持在某个 高度附近,完成水位的自动调节。↓↑?μh ,↑↓?μh ,动作方向始终正确,朝着减小被调量波动的方向努力。比例调节器的动画演示见光盘第八章目录下”比例调节器流出侧扰动(阶跃减少)”和“比例调节 图示中连杆长度为L ,水位如图8-1所示。假设在目前调节阀门开度μ下流入流出正好平衡,水位稳定不变。此时,将给定值连杆变短后重新装入,由于连杆变短,水位还是原数值没有变化,所以调节器杠杆右侧下降左端升高,调节阀门开度阶跃开大,使流入量1q 阶跃增加,21q q >,进而引起水位H 上升,水位上升的同时,调节杠杆右侧又不断回升,杠杆左端下移,调节阀开度不断关小,使1q 减小,当21q q =时,水位处于新的平衡状态。这个新的水位高于原来的水位,所以给定值连杆长度变短相当于给定值的增

PI调节器

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI 调节器或PID调节器。微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器

方向控制回路实验教案12

第12 次课教学整体设计

教学过程(教学设计实施步骤及时间分配) 步骤1:复习巩固、检查课后搜集的资料(10分钟) 一、复习液压系统设计概述 二、复习液压系统设计方法和步骤。 三、检查预习情况。 步骤2:本节课学习任务、情境设计(5分钟) 本节课主要学习方向控制回路实验,通过学习方向控制回路实验有关方面的知识,了解方向控制回路实验步骤和方法。 步骤3-1:讲授知识(30分钟) 实验一方向控制回路 一、实验目的 1.加深认识液控单向阀的工作原理、基本结构、使用方法和在回路中的作用。 2.学会利用液控单向阀的结构特点设计液压双向锁紧回路。 3.通过实验加深对锁紧回路性能的理解。 4.培养安装、联接和调试液压系统回路的实践能力。 二、实验设备 实验台一台;三位四通电磁换向阀一个;液压缸一个;溢流阀一个;油管若干;四通油路过渡底板;接近开关及其支架;压力表(量程:10MPa)一个;油泵一个。 三、实验原理 实验回路如下图所示,当有压力油进入时, 回油路的单向阀被打开,压力油进入工作液压 缸。但当三位四通电磁换向阀(Y型)处于中位 或液压泵停止供油时,两个液控单向阀把工作液 压缸内的油液密封在里面,使液压缸停止在该位 置上被锁住。(如果工作液压缸和液控单向阀都 具有良好的密封性能,即使在外力作用下,回路 也能使执行元件保持长期锁紧状态)。本实 验在图示位置时,由于Y型三位四通电磁换向阀 处于中位,A、B、T口连通,P口不向工作液压

缸供油,保持压力,缸两腔连通。此时,液压泵输出油液经溢流阀流回油箱,因无控制油液作用,液控单向阀A,B关闭,液压缸两腔均不能进排油,于是,活塞被双向锁紧。要使活塞向右运动,则需使换向阀1DT通电,左位接入系统,压力油经液控单向阀A进入液压缸,同时也进入液控单向阀B的控制油口K,打开阀B,使液压缸右腔回油经阀B及换向阀流回油箱,同时工作液压缸活塞向右运动。当换向阀右位接通,液控单向阀B开启,压力油打开阀A的控制口K,工作液压缸向左行,回油经阀A和换向阀T口流回油箱。 四、实验内容与步骤 (一)、实验内容: 根据已学液压传动知识利用液控单向阀的工作原理和基本性能设计双向锁紧回路,并在液压实验台上进行安装、联接、调试和运行。观察分析用液控单向阀的闭锁回路在工作过程中液压缸的锁紧精度及其可靠性。 本实验使用了一个Y型三位四通电磁换向阀和两个液控单向阀所组成的液压双向锁紧回路,在工作液压缸的进、出油路上接入液控单向阀A和B,通过三位四通电磁换向阀对液控单向阀的换向控制,可以在行程的任何位置将液压缸活塞锁紧。其锁紧精度仅受液压缸少量内泄漏的影响。 (二)、实验步骤 1) 设计利用两个液控单向阀的双向液压闭锁回路; 2) 安装回路所需元器件,用透明油管连接回路。经检查确定无误后接通电源,连接三位四通电磁换向阀,启动电气控制面板上的电源开关; 3)启动液压泵开关,调节液压泵的转速使压力表达到预定压力,利用三位四通电磁换向阀的换向功能使活塞进行往复运动; 4) 观察并分析系统压力与液控单向阀控制口压力之间的关系。 五、注意事项 1、因实验元器件结构和用材的特殊性,在实验的过程中务必注意稳拿轻放防止碰撞;在回路实验过程中确认安装稳妥无误后才能进行加压实验。 2、做实验之前必须熟悉元器件的工作原理和动作的条件,掌握快速组合的方法,绝对禁止强行拆卸,不能强行旋扭各种元件的手柄,以免造成人为损坏。

计算机控制系统实验报告

《计算机控制系统》实验报告 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 姓名:*** 学号:************

一、实验课程教学目的与任务 通过实验设计或计算机仿真设计,使学生了解和掌握数字PID控制算法的特点、了解系统PID参数整定和数字控制系统的直接设计的基本方法,了解不同的控制算法对被控对象的控制特性,加深对计算机控制系统理论的认识,掌握计算机控制系统的整定技术,对系统整体设计有一个初步的了解。 根据各个实验项目,完成实验报告(用实验报告专用纸)。 二、实验要求 学生在熟悉PC机的基础上,熟悉MATLAB软件的操作,熟悉Simulink工具箱的软件编程。通过编程完成系统的设计与仿真实验,逐步学习控制系统的设计,学习控制系统方案的评估与系统指标评估的方法。 计算机控制系统主要技术指标和要求: 根据被控对象的特性,从自动控制系统的静态和动态质量指标要求出发对调节器进行系统设计,整体上要求系统必须有良好的稳定性、准确性和快速性。一般要求系统在振荡2~3次左右进入稳定;系统静差小于3%~5%的稳定值(或系统的静态误差足够小);系统超调量小于30%~50%的稳定值;动态过渡过程时间在3~5倍的被控对象时间常数值。 系统整定的一般原则: 将比例度置于较大值,使系统稳定运行。根据要求,逐渐减小比例度,使系统的衰减比趋向于4:1或10:1。若要改善系统的静态特性,要使系统的静差为零,加入积分环节,积分时间由大向小进行调节。若要改善系统的动态特性,增加系统的灵敏度,克服被控对象的惯性,可以加入微分环节,微分时间由小到大进行调节。PID控制的三个特性参数在调节时会产生相互的影响,整定时必需综合考虑。系统的整定过程是一个反复进行的过程,需反复进行。

智能调节器特性实验

智能调节器特性实验 一、实验目的 1、了解智能工业调节器的功能和特性,学习调节器的正确使用方法。 2、了解调节器的PID调节规律及其实现方法. 3、掌握调节器比例度、积分时间、微分时间的校验方法 4、了解控制参数自整定的方法。 5、了解控制参数整定在整个系统中的重要性 二、实验原理 (一)PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID 控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。 (二)PID控制器的参数整定 PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID 控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲

方向控制回路

理论课课堂教学安排教学过程主要教学内容及步骤 复习回顾: (5`) 提问 新课:1、常见的液压辅助元件有哪些,七对液压系统的性能有何影响? 2、油箱、过滤器、蓄能器、管接头有何作用? 第一节压力控制回路 定义: 利用压力控制阀来控制系统整体或局部压力,以使执行元件获得所需的力或转矩、或者保持受力状态的回路。 类型: 一、调压回路二、减压回路三、增压回路四、卸荷回路五、保压回路六、平衡回路 一、调压回路 功能:使液压系统整体或某一部分的压力保持恒定或者不超过某个数值。主要元件:溢流阀 方法:液压泵出油口处并联溢流阀 常用回路: (一)单级调压回路 (二)多级调压回路 (一)单级调压回路 说明:系统压力只有一种 特点: 1、由溢流阀和定量泵组合在一起构成; 2、当系统压力小于溢流阀调整压力时,溢流阀关闭不溢流,系统压力 保持不变。 3、当系统压力大于溢流阀调整压力时, 溢流阀开启溢流,系统压力保持为溢 流阀的调整压力不变。 应用: 如图所示,在液压泵的出口处并联溢流 阀来控制回路的最高压力。在该过程中,由 于系统压力超过溢流阀的调整压力,所以溢 流阀是常开的,液压泵的工作压力保持为溢 流阀的调整压力不变。 (二)多级调压回路 说明:系统压力有两种或两种以上。 应用: 单级调压回路

引导读书 提问 1、两级调压回路 如图所示,在图示状态下,当两位 两通电磁换向阀断电时,液压泵的工作 压力由先导溢流阀1调定为最高压力; 当两位两通电磁换向阀通电后,液压泵 工作压力由远程调压阀2(溢流阀)调 定为较低压力。(其中,远程调压阀2 的调整压力必须小于溢流阀1的调整压 力。) 2、三级调压回路 如图所示,在图示状态,当电磁换 向阀4断电中位工作时,液压泵的工作 压力由先导溢流阀1调定为最高压力; 当电磁换向阀4右边电磁铁通电右位 时,液压泵工作压力由远程调压阀2(溢 流阀)调定为较低压力。当电磁换向阀 4左边电磁铁通电左位时,液压泵工作 压力由远程调压阀3(溢流阀)调定为 较低压力。(其中,远程调压阀2和3 的调整压力必须小于溢流阀1的调整压 力。) 二、减压回路 功能:使液压系统中的某一部分油路具有较低的稳定压力。 应用场合:控制油路、夹紧回路、润滑油路主要元件:定值 减压阀方法:在需要减压的油路前串联一个减压阀常用回路: (一)单向 减压回路 (二)二级减压回路 三、增压回路 功能:使液压系统中的某一部分支路的压力高于系统压力。主要元件: 增压器方法:在需要增压的油路前串联一个增压器常用回路: (一)单作 用增压器的增压回路(二)双作用增压器的增压回路 四、卸荷回路 【设置原因】液压系统在工作循环中短时间间歇时,为减少功率损耗, 降低系统发热,避免因液压泵频繁启停影响液压泵的寿命,需设置卸荷回 路 【液压泵卸荷的概念】指液压泵以很小的输出功率(接近于零)运转。 即液压泵以很低的压力(接近于零)运转或输出很少流量(接近于零)的 压力油。 两级 三级调压回路

电路实验报告

目录 实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性与齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

实验一电位、电压的测定及电路电位图的绘制 一.实验目的 1.学会测量电路中各点电位与电压方法。理解电位的相对性与电压的绝对性; 2.学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 二.原理说明 在一个确定的闭合电路中,各点电位的大小视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则就是不变的,这一性质称为电位的相对性与电压的绝对性。据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标,电路中各点位置(电阻或电源)作横坐标,将测量到的各点电位在该平面中标出,并把标出点按顺序用直线条相连接,就可得到电路的电位图,每一段直线段即表示该两点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定,对于不同的参考点,所绘出的电位图形就是不同,但其各点电位变化的规律却就是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2.恒压源(EEL-I、II、III、IV均含在主控制屏上,可能有两种配置(1)+6V(+5V),+12 V,0~30V可调或 (2)双路0~30V可调。) 3.EEL-30组件(含实验电路)或EEL-53组件 四.实验内容 实验电路如图1-1所示,图中的电源U S1用恒压源中的+6V(+5V)输出端,U S2用0~+30V可调电源输出端,并将输出电压调到+12V。 1.测量电路中各点电位 以图1-1中的A点作为电位参考点,分别测量B、C、D、E、F各点的电位。 用电压表的黑笔端插入A点,红笔端分别插入B、C、D、E、F各点进行测量,数据记入表1-1中。 以D点作为电位参考点,重复上述步骤,测得数据记入表1-1中。 图1-1 2.电路中相邻两点之间的电压值 在图1-1中,测量电压U AB:将电压表的红笔端插入A点,黑笔端插入B点,读电压表读数,记入表1-1中。按同样方法测量U BC、U CD、U DE、U EF、及U FA,测量数据记入表1-1中。

PLC控制交流异步电动机正反转实验报告

实验总结报告题目:PLC控制交流异步电动机正反转 学院:信息与通信工程学院指导老师:涂兵老师 专业:自动化 班级:11级自动化2Bf 学号:14112101440 姓名:魏龙 序号:27

PLC控制交流异步电动机正反转 一、实验目的 1、学会用可编程序控制器实现交流异步电动机正反转过程的变成方法,并对电动机正 反转进行接线; 2、加深对PLC控制系统的各种保护、自锁、互锁等环节的理解; 3、学会分析并排除控制线路故障的方法; 4、能进行软件和硬件的调试,熟悉实验设备的操作; 5、能自行设计带有电气互锁或机械互锁的正反转电路。 二、实验原理 在三相鼠笼式异步电动机连锁正反转控制中,通过PLC程序和接线相序的更换来改变电动机的旋转方向。 三、实验设备 本实训用到的设备如表所示。 四、程序编写 1、方案一 1.1 I/O分配表格如下:

1.2 梯形图如下所示: 图1、1电机正反转梯形图1.3程序说明: 1.按下正转按钮,电机正转启动。 2.按下反转按钮,电机反转启动。 3.按下停止按钮,电机立即停止工作。 1.4 仿真结果 1)当按下I0.1时仿真结果如下: 图1、2 正转仿真2)当按下I0.2时仿真结果如下: 图1、3反转仿真

3)当按下I0.0时,仿真结果如下: 图1、4停止仿真2、方案二 2.1 I/O分配表格如下: 2.2 梯形图如下所示: 图2、1网络一 图2、2网络二

图2、3网络三 2.3程序说明: 1.按下I0.1,Q0.1置1正转启动; 2.按下I0.2,Q0.2置1反转启动,同时Q0.1复位正转停止。 3.按下I0.0,如果是正转,则Q0.1复位,停止正转;如果是反转,则Q0.2复位,停止反转。 2.4 仿真结果: 1)当按下I0.1时仿真结果如下: 图2、4正转仿真 2)当按下I0.2时仿真结果如下: 图2、5反转仿真 3)当按下I0.0时,仿真结果如下:

声光控制实验报告书

声光控制实验报告书 X X 学院 课程设计说明书(论文) 课程设计题目:声光控制开关电路 学生姓名: 学号: 院系: 专业班级: 指导教师姓名及职称: 起止时间:2011年3月——2011年6月 一、课题名称:声光控制开关电路 二、内容摘要: 一种声光控制开关装置,它包括:声光控制电路、延时电路、可控硅开关电路等。本实验采用新型分离元件,且电路设计简单,克服了现有的声光控制开关成本高、体积大等缺点,优点是一、省电,灯泡大部分时间不工作,因此节电效率很高,达80%左右;二是方便,工作时不用接触,全自动智能控制;另外,接线简单、安装方便,是一种家庭及公共场所理想的照明开关。 三、设计内容及要求: 1.内容 用声与光控制路灯,白天光线强,路灯不亮,只有光线暗时,通过声音触发路灯亮,并且灯点亮一定时间后,自动熄灭。 2.主要要求 (1)电路稳定性和可靠性要高。这是控制电路性能的最基本要求,否则自控能力弱,严重时会失去自动控制功能。

(2)功耗要小。控制电路一直接于交流220伏电路上,若功耗特别是静态功耗大,则不利于节能,甚至还会大大缩短控制电路的寿命。 (3)灵敏度要能调节。这是控制电路正常工作时,对声光控制信息信号的最低要求,控制信号的灵敏度应满足不同的环境要求。 (4)带负载能力要强。被控灯的功率不尽相同,因此要求控制电路的一定范围的驱动能力。 (5)触发延时时间要能按要求调节。延时时间至少在1分钟内可以调节。 四、比较和选定设计的系统方案,画出系统框图: 如图1 所示,全波整流电路将交流220V电压变为约 200V的直流电压,为后面的控制电路供电,例如桥式整流电路;受控开关受触发延时电路输出信号的控制,从而控制加于灯上的交流电压,达到控制开关灯的目的。例如可控硅,继电器触头等;降压滤波电路将输出的直流200V电压进行降压后滤波,从而为其后的电路提供平滑直流工作电压,如电阻降压,电容滤波;声光控制元件将声光控制信息变成电信号,为放大触发延时电路提供输入控制信号,例如,驻极体话筒和蜂鸣器等声控元件,光敏二极管和光敏电阻等光控元件;放大电路将较微弱的声光控制信号进行放大,以推动触发延时电路工作,例如各种放大电路;触发延时电路将放大电路输出的电压去推动触发延时电路工作,控制受控开关的闭合,达到控制灯亮时间长短的目的,实现声光控制功能。 五、单元电路设计、参数计算和元器件选择说明: I C选用CO MS数字集成电路CD4069,CD4069有四个独立的与非门电路,VCC是电源的正极。可控硅T选用B T169型,如负载电流大可选3A、6A、10A 等规格的单向可控硅,它的测量方法是:用RX1档,将红表笔接可控硅的负极,黑表笔接正极,这时表针无读数,然后用黑表笔接触一下控制极K,这时表有读数,黑表笔马上离开这时表仍有读数(注意触控制极时正负表笔是始终连接的)说明可控硅是完好的。选用收录音机的小话筒,;光敏电阻选用的是R9,有光照时电阻为20K以下,无光时电阻值大于100M,说明该元件是完好的。二极管采用普通D1-D4 组成桥式整流电路。总之,元件的选择可灵活掌握,参数可在一定的范围内选用。其他原件按设计电路图选择。

实验一 三相异步电动机的正反转控制实验报告

实验一三相异步电动机的正反转控制实验报告 实验目的 ⑴了解三相异步电动机接触器联锁正反转控制的接线和操作方法。 ⑵理解联锁和自锁的概念。 ⑶掌握三相异步电动机接触器的正反转控制的基本原理与实物连接的要求。 实验器材 三相异步电动机(M 3~)、万能表、联动空气开关(QS1)、单向空气开关(QS2)、交流接触器(KM1,KM2)、组合按钮(SB1,SB2,SB3)、端子排7副、导线若干、螺丝刀等。实验原理 三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。任意改变电源的相序时,电动机的旋转方向也会随之改变。 实验操作步骤 连接三相异步电动机原理图如图所示,其中线路中的正转用接触器KM1和反转用的接触器KM2,分别由按钮SB2和反转按钮SB2控制。控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。 当按下正转启动按钮SB1后,电源相通过空气开关QS1,QS2和停止按钮SB3的动断接点、正转启动按钮SB1的动合接点、接触器KM和其他的器件形成自锁,使得电动机开始正转,当按下SB3时,电动机停止转动,在按下SB2时,接触器KM和其他的器件形成自锁反转。安装接线 1在连接控制实验线路前,应先熟悉各按钮开关、交流接触器、空气开关的结构形式、动作原理及接线方式和方法。 2 在不通电的情况下,用万用表检查各触点的分、合情况是否良好。检查接触器时,特别需要检查接触器线圈电压与电源电压是否相符。 3将电器元件摆放均匀、整齐、紧凑、合理,并用螺丝进行安装,紧固各元件时应用力均匀,紧固程度适当。

方向控制回路教案

方向控制回路教案

安岳县职教中心2015年上期公开课 教案 学科名称:汽车机械基础 课题名称:液压基本回路之方向控制回路授课教师:安岳县职教中心李晓林授课时间:2015年04月18日 授课地点:2014春11班

【课题名称】方向控制回路 【教学目标】 掌握方向控制回路的工作原理及应用。 【教学重点】 换向回路和锁紧回路的工作原理。 【教学难点】 分析换向回路和锁紧回路。 【教学教具准备】 电脑多媒体 【课时安排】 1节课 【教学流程设计】 复习巩固→新课引入→新课讲解→课堂总结→课后练习【教学过程设计】 一复习巩固 教师:1、液压系统的四大组成部分? 学生:动力、执行、控制、辅助部分。 教师:2、画出三位四通换向阀H、O、M型。 学生:

二导入新课 请同学们观察图片,找出图片中哪些地方运用了液压系统知识。然后请同学们思考登车桥支腿、车载升降平台支架和起重机支腿是如何实现升、降及停止的? 三课程的讲解 方向控制回路 概念:指控制液压油通、断或流动方向的回路统称。 功能:控制执行元件的启动、停止及换向(进、退)。 分类:一般分为换向回路和锁紧回路。 (一)换向回路 二位四通电磁换向阀的换向回路。如图(详) 回路构成:(学生) 核心元件:二位四通电磁换向阀 工作原理(教师分析):当换向阀电磁铁断电时 换向阀3右位工作 进油路:泵→换向阀右位→液压缸无杆腔,活塞向左移动。 回油路:液压缸有杆腔→换向阀右位→油箱。

当换向阀电磁铁通电时 换向阀3左位工作 进油路:泵→换向阀左位→液压缸有杆腔,活塞向右移动。 回油路:液压缸无杆腔→换向阀左位→油箱 换向回路特点及应用:使用方便,易于实现自动化,但换向时间短,冲击大,一般用于小流量、平稳性要求不高的场合。 (二)锁紧回路 锁紧:是指液压缸活塞两端的压力油被封住不能流动。 作用:使执行元件能停留在任意位置上,且停留后不会因外力作用而移动位置。 锁紧回路如何实现? 1、最常用的是采用液控单向阀(又称双向液压锁)的锁紧回路。 2、换向阀中位机能为O形或M组成锁紧回路。 1)、采用液控单向阀的锁紧回路。(详)如图: 学生分析:回路构成 教师分析:锁紧回路工作原理

过程控制实验报告201600304002

广西科技大学过程控制工程实验报告 姓名:凌加平 班级:测控161 学号: 201600304002 指导老师:麦雪凤

实验1 单容水箱液位定值控制实验 一、实验目的 1、通过实验熟悉单回路反馈控制系统的组成和工作原理。 2、分析分别用P、PI和PID调节时的过程图形曲线。 3、定性地研究P、PI和PID调节器的参数对系统性能的影响。 二、实验设备 A3000现场系统,任何一个控制系统,万用表 三、实验原理 1、控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。控制逻辑如图5-2-1所示: 图1-1 单容下水箱液位定值控制实验 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 实际上,可以通过控制连接到水泵上的变频器来控制压力,效果可能更好。

2、控制系统接线表 四、实验内容与步骤及结果 1、系统连接 (1)在A3000-FS上,打开手动调节阀JV201、JV206,调节下水箱闸板开度(可以稍微大一些),其余阀门关闭。 (2)在A3000-CS上,将电磁流量计输出连接到AI0,AO0输出连到电动调节阀上。 (3)打开A3000电源。在A3000-FS上,启动右边水泵。 (4)启动计算机组态软件,进入实验系统选择相应的实验。启动调节器,设置各项参数,可将调节器的手动控制切换到自动控制。 2、比例调节控制。 (1)设置P参数,I参数设置到最大,D=0。观察计算机显示屏上的曲线,待被调参数基本稳定于给定值后,可以开始加干扰实验。 (2)待系统稳定后,对系统加扰动信号(在纯比例的基础上加扰动,一般可通过改变设定值实现)。记录曲线在经过几次波动稳定下来后,系统有稳态误差,并记录余差大小。 (3)减小P重复步骤1,观察过渡过程曲线,并记录余差大小。 (4)增大P重复步骤5,观察过渡过程曲线,并记录余差大小。 (5)选择合适的P,可以得到较满意的过渡过程曲线。改变设定值(如设定值由50%变为60%),同样可以得到一条过渡过程曲线。 注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。

相关主题
文本预览
相关文档 最新文档