当前位置:文档之家› 2021年成人高考数学复习资料高起专

2021年成人高考数学复习资料高起专

2021年成人高考数学复习资料高起专
2021年成人高考数学复习资料高起专

成人高考-数学知识提纲数学复习资料

1.集合:会用列举法、描述法表达集合,会集合交、并、补运算,能借助数轴解决集合运算问题,详细参看课本例2、4、5.

2.充分必要条件

要分清条件和结论,由条件可推出结论,条件是结论成立充分条件;由结论可推出条件,则条件是结论成立必要条件。从集合角度解释,若B A ?,则A 是B 充分条件;若B A ?,则A 是B 必要条件;若A=B ,则A 是B 充要条件。

例1:对“充分必要条件”理解.请看两个例子:

(1)“29x =”是“3x =”什么条件?

(2)2x >是5x >什么条件?

咱们懂得,若A B ?,则A 是B 充分条件,若“A B ?”,则A 是B 必要条件,但这种只记住定义理解还不够,必要有自己理解语言:“若A B ?,即是A 能推出B ”,但这样还不够详细形象,由于“推出”指是什么还不明确;虽然借助数轴、文氏图,也还是“抽象”;如果用“A 中所有元素能满足B ”自然语言去理解,基本能深刻把握“充分必要条件”内容.本例中,29x =即集合{3,3}-,当中元素3-不能满足或者说不属于{3},但{3}元素能满足或者说属于{3,3}-.假设}3|{},9|{2====x x B x x A ,则满足“A B ?”,故“29x =”是“3x =”必要非充分条件,同理2x >是5x >必要非充分条件.

3.直角坐标系 注意某一点关于坐标轴、坐标原点、,y x y x ==-坐标写法。如 点(2,3)关于x 轴对称坐标为(2,-3),

点(2,3)关于y 轴对称坐标为(-2,3),

点(2,3)关于原点对称坐标为(-2,-3),

点(2,3)关于y x =轴对称坐标为(3,2),

点(2,3)关于y x =-轴对称坐标为(-3,-2),

4.函数三要素:定义域、值域、相应法则,如果两个函数三要素相似,则是相似函数。

5.会求函数定义域,做21页第一大题

6.函数定义域、值域、解析式、单调性、奇偶性性、周期是重要研究内容,特别是定义域、一次和二次函数解析式,单调性最重要。

7. 函数奇偶性。

(1)具备奇偶性函数定义域特性:定义域必要关于原点对称!为此拟定函数奇偶性时,务必先鉴定函数定义域与否关于原点对称。

(2)拟定函数奇偶性惯用办法(若所给函数解析式较为复杂,应先化简,再判断其奇偶性):

①定义法:②运用函数奇偶性定义等价形式:()()0f x f x ±-=或()1()f x f x -=±(()0f x ≠)。③图像法:奇函数图象关于原点对称;偶函数图象关于y 轴对称。 常用奇函数:1335,,,,sin ,tan y x y x y x y x y x y x ===-===,指数是奇数

常用偶函数:220,,,,cos y k y x y x y x y x -=====

某些规律:两个奇函数相加或者相减还是奇函数,两个偶函数相加或者相减还是偶函数,但是两种函数加减就是非奇非偶,两种函数乘除是奇函数,例如sin tan cos x y x x

==是奇函数.

(3)函数奇偶性性质:

①奇函数在关于原点对称区间上若有单调性,则其单调性完全相似;偶函数在关于原点对称区间上若有单调性,则其单调性恰恰相反.

②如果奇函数有反函数,那么其反函数一定还是奇函数.

③若()f x 为偶函数,则()()(||)f x f x f x -==.

④奇函数()f x 定义域中具有0,则必有(0)0f =.故(0)0f =是()f x 为奇函数既不充分也不必要条件。

8.函数单调性:普通用来比较大小,并且重要用来比较指数函数、对数函数大小,

此外,反比例函数、一次函数、二次函数单调性也比较重要,要熟记她们图像分布和走势。熟记课本第11页至13页图和有关结论。

一次函数、反比例函数 p17 例5 p20 例8

9.二次函数表达形式有三种:普通式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--,要会依照已知条件特点,灵活地选用二次函数表达形式。

课本中p17 例5(4) 例6、例7,例10 例11;习题p23 8、9、10、11

10.一元一次不等式解法核心是化为ax b >,再把x 系数化为1,注意乘以或者除以一种负数不等号方向要变化;一元一次不等式组最后取个不等式交集,即数轴上公共某些。做p42 4、5、6大题

11.绝对值不等式只规定会做:||ax b c c ax b c +?<+或者ax b c +<-,一定会去绝对值符号。做p43 7

12.一元二次不等式是重点,阅读课文33至34图表及39至42页例题。做43页8、9、10、11、12

设0a >,12,x x 是方程20ax bx c ++=两实根,且12x x <,则其解集如下表:

对于方程02=++c bx ax 有实数解问题。一方面要讨论最高次项系数a 与否为0,另一方面若0≠a ,则一定有042≥-=?ac b 。

13. 数列同项公式与前n 项和关系

11

,1,2n n n s n a s s n -=?=?-≥?( 数列{}n a 前n 项和为12n n s a a a =+++). 等差数列通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;

其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22

d n a d n =+-.

等比数列通项公式1*11()n n n a a a q q n N q

-==?∈; 其前n 项和公式为11

(1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a q q q s na q -?≠?-=??=?.

14. 等差数列性质:

(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=

(2) 若{}n a 、是等差数列,

232,,n n n n n S S S S S -- ,…也成等差数列

(3)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,

S S a -=奇偶中,21(21)n S n a -=-?中(这里a 中即n a );:(1):奇偶S S k k =+。

(4)如果两等差数列有公共项,那么由它们公共项顺次构成新数列也是等差数列,且新等差数列公差是原两等差数列公差最小公倍数.

注意:公共项仅是公共项,其项数不一定相似,即研究n m a b =.

15.等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,一方面要判断公比q 与否为1,再由q 状况选取求和公式形式,当不能判断公比q 与否为1时,要对q 分1q =和1q ≠两种情形讨论求解。

16.等比数列性质:

(1)当m n p q +=+时,则有m n p q a a a a =,特别地,当2m n p +=时,则有2m n p a a a =.

(2) 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列。 当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列.

(3) 在等比数列{}n a 中,当项数为偶数2n 时,S qS =偶奇;项数为奇数21n -时,

1S a qS =+奇偶.

(4)数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列,故常数数列

{}n a 仅是此数列既成等差数列又成等比数列必要非充分条件。

这一章重要是找数字规律,写出数列通项公式,但对等差和等比数列规定比较高,会有较大比重,出解答题,48页起例2、3、4、5是基本题,例6、7、8、9是中档题目,例10、11、12是综合题。最要紧做55页题目。

17. 导数几何意义:曲线y =f (x )在点P (x 0,f(x 0))处切线斜率是).(0x f '相应地, 切线方程是);)((000x x x f y y -'=-

18.导数应用:

(1)运用导数判断函数单调性:设函数y =f (x )在某个区间内可导,

如果,0)(>'x f 那么f(x)为增函数;如果,0)(<'x f 那么f(x)为减函数;

如果在某个区间内恒有,0)(='x f f(x)为常数;

(2)求可导函数极值环节:①求导数)(x f ';②求方程0)(='x f 根;③检查)(x f '在方程0)(='x f 根左右符号,如果左正右负,那么函数y=f(x)在这个根处获得最大值;如果左负右正,那么函数y=f(x)在这个根处获得最小值。

19.本章重点是求曲线在一点处切线方程和多项式导数,会求函数最大值最小值和极值。课本61页例1、3、4、5和64页习题要过一过关。

20.三角函数 本章出2个小题,1个大题,不是重点内容

1象限角概念:如果角终边在坐标轴上,就以为这个角不属于任何象限。

2.弧长公式:||l R α=,扇形面积公式:

211||22

S lR R α==,1弧度(1rad)57.3≈. 3、任意角三角函数定义:设α是任意一种角,P (,)x y 是α终边上任意一点(异于原点),

它与原点距离是0r =>,那么sin ,cos y x r r αα=

=,()tan ,0y x x

α=≠, cot x y α=(0)y ≠

4.特殊角三角函数值:

成人高考专升本高等数学公式大全

成人高考专升本高等数 学公式大全 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

2016年成人高考(专升本)高等数学公式大全 提高成绩的途径大致可以分为两种:一是提高数学整体的素质和能力,更好的驾驭考试;二是熟悉考试特点,掌握考试方法,将自己已有的潜能和水平发挥到极致。 如果说在复习中,上面两种方法那一种更能在最短的时间内提成人高考试的分数呢?对于前者,是需要我们在整个高中乃至以前的学习积累下来的综合能力,这个能力的提高需要时间和积累,在短期内的提高是有限的;对于后者能力的了解和掌握对短期内迅速提成人高考试成绩的成效是很明显的。而且,在一般的学校教育中,往往只重视前者而忽视后者。我们用以下几个等式可以很好的说明上述两者的关系和作用。 一流的数学能力 + 一流的考试方法和技巧 = 顶尖的成绩 一流的数学能力 + 二流的考试方法和技巧 = 二流的成绩 二流的数学能力 + 一流的考试方法和技巧 = 二流的成绩其实对于考试方法和技巧的掌握,大致包含以下几个方面: 一、熟悉考试题型,合理安排做题时间。 其实,不仅仅是数学考试,在参任何一门考试之前,你都要弄清楚或明确几个问题:考试一共有多长时间,总分多少,选择、填空和其他

主观题各占多少分。这样,你才能够在考试中合理分配考试时间,一定要避免在不值得的地方浪费大量的时间,影响了其他题的解答。 拿安徽省的数学成人高考题为例,安徽省数学成人高考满分为150分,时间是2小时,其中选择题是12道,每题5分,共60分;填空题4道,每题是4分,共16分,解答题一共74分。所以在了解这些内容后,你一定要根据自己的情况,合理安排解题时间。 一般来说,选择题填空题最迟不宜超过40分钟,按照尚博学校的教学标准是让学生在30分钟之内高效的完成选择填空题。你必须留下一个多小时甚至更多的时间来处理后面的大题,因为大题意味着你不仅要想,还要写。 二、确保正确率,学会取舍,敢于放弃。 考试时,一定要根据自己的情况进行取舍,这样做的目的是:确保会做的题目一定能够拿分,部分会做或不太会做的题目尽量多拿分,一定不可能做出的题目,尽量少投入时间甚至压根就不去想。 对于基础较好的学生,如果感觉前面的选择填空题做的很顺利,时间很充裕,在前面几道大题稳步完成的情况下,可以冲击下最后的压轴题,向高分冲击。对于基础一般的学生,首先要保证的是前面的填空选择题大部分分值一定能够稳拿,甚至是拿满分。对于大题的前几题,也尽量多花点时间,一定不要在会做的题目上无谓失分,对于大题的后两

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020年成人高考专升本高等数学二知识点复习 第一章:极限与连续 1-1、极限的运算 1、极限的概念 (1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于 f(x)=A 一个常数A,则称A为函数f(x)当x→x0时的极限,记作lim x→x0 (2)左极限、右极限;在某点极限存在,左右极限存在且唯一。 lim f(x)=A x→x0? f(x)=A lim x→x0+ 2、无穷小量与无穷大量 无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则 f(x)=0 称在该变化过程中, f(x)为无穷小量,记作lim x→x0 无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越 f(x)=∞ 大,则称在该变化过程中, f(x)为无穷大量,记作lim x→x0 3、无穷小量与无穷大量的关系 为无穷小量; 在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1 f(x) 为无穷大量; 在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1 f(x) 4、无穷小量的性质 性质1:有限个无穷小量的代数和仍是无穷小量 ★性质2:无穷小量与有界函数的积仍是无穷小量 5、无穷小量的比较与替换 定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0 =0,则称β是α比较高阶的无穷小量 (1)如果limβ α

(2)如果lim β α=∞,则称β是α比较低阶的无穷小量 (3)如果lim β α =c ≠0,则称β是与α同阶的无穷小量 (4)如果lim β α=1,则称β与α是等价的无穷小量 ★常见的等价无穷小量: 当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x ?1 ~ ln (1+x) 1?cos x ~1 2x 2 ★★6、两个重要极限 (1)lim x→0 sin x x =1 (2)lim x→∞ (1+1 x )x =e 或lim x→0 (1+x)1 x =e ★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂 (4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章) 1-2、函数的连续性 1、函数在某一点上的连续性 定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量?x 趋近于0时,相应的函数改变量?y 也趋近于0,即lim ?x→0 [f (x 0+?x )?f (x 0)]=0,则称函数y =f(x)在x 0处连续。 定义2:设函数y =f(x)在点x 0的某个邻域内有定义,如果当 x →x 0时,函数f(x)的极限存在,且等于x 0处的函数值f(x 0), lim x→x 0 f (x )=f(x 0),则称函数y =f(x)在x 0处连续。

2018年山西成人高考专升本高等数学一真题及答案

? 2018年山西成人高考专升本高等数学一真题及答案 一、选择题(1~10 小题,每小题 4 分,共40 分在每小题给出选项中, 只有一项是符合题目要求的) 1.lim x x0 cos x A.e B.2 C.1 D.0 2.若y 1 cos x,则dy A.(1 sin x)dx B.(1 sin x)dx C.sin xdx D. sin xdx 3. 若函数f (x) 5x ,则f (x) A.5x1 B. x 5x-1 C.5x ln 5 D.5x 4. 1 dx 2 x A.ln 2 x C B. ln 2 x C C. 1 C (2 x)2 D. 1 C (2

x)2

百度文库资料店 5. f (2x)dx A.1 f (2x) C 2 B. f (2x) C C.2 f (2x) C D.1 f (x) C 2 1 f(x)dx 6. 若f(x)为连续的奇函数,则 -1 A.0 B.2 C. 2f (1) D. 2f (1) 7.若二元函数z x2 y 3x 2 y,则z x A.2xy 3 2 y B.xy 3 2 y C.2xy 3 D.xy 3 8.方程x2 y2 2z 0表示的二次曲面是 A.柱面 B.球面 C.旋转抛物面 D.椭球面 9.已知区域D(x,y)1x1,1y1,则xdxdy D A.0 B.1 C.2 D.4

百度文库资料店 ? ∞ + 2 z 10. 微分工程 yy 1的通解为 A. y 2 x C B. 1 y 2 x C 2 C. y 2 Cx D. 2 y 2 x C 二、填空题(11~20 小题,每小题 4 分,共 40 分) 11. 曲线 y x 3 6x 2 3x 4 的拐点为 1 12. l im(1 3x ) x x 0 13. 若函数 f (x ) x arctan x ,则f (x ) = 14. 若y e 2 x ,则dy 15. (2x 3)dx 16. 1 (x 5 x 2 )dx 1 x 17. 0 sin 2 dx 1 18. n 0 3 n e x dx 19. 0 20.若二元函数z x 2 y ,则 x y 三、解答题(21-28 题,共 70 分,解答应写出推理、演算步骤) 21.(本题满分 8 分) 3sin x , x 0, 设函数 f (x ) 3 x x a , x 0 在x 0处连续,求a 2

成人高考专升本高数一复习资料

成人高考高数一复习资料 1.理解极限的概念(对极限定义、、等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 1.数列 按一定顺序排列的无穷多个数 称为数列,记作,其中每一个数称为数列的项,第n 项。为数列的一 般项或通项,例如 (1)1,3,5,…,,… (2) (3) (4)1 ,0,1,0,…,… 都是数列。 在几何上,数 列 可看作数轴上的一个动点,它依次取数轴 上的点 。 2. 数列的极限 定义对于数列 ,如果当 时, 无限地趋于一个常数A ,则称当n 趋于无穷大时,数列以常数A 为极限,或称数列收敛于A ,记作 否则称数列 没有极限,如果数列没有极限,就称数列是发散的。 数列极限的几何意义:将常数A 及数列的项 依次用数轴上的 点表示,若数列以A 为极限,就表示当n 趋于无穷大时,点 可以无限 定理 1.1(惟一性)若数列 收敛,则其极限值必定惟一。 定理1.2(有界性)若数列收敛,则它必定有界。 注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。 定理 1.3(两面夹定理)若数列 ,, 满足不等式 且 。 定理1.4 若数列单调有界,则它必有极限。 下面我们给出数列极限的四则运算定理。 定理 1.5 (1) (2) (3)当时, (三)函数极限的概念1.当时函数的极限 (1)当时 的极限 定义 对于函数,如果当x 无限地趋于时,函数 无限地趋于一个常数A ,则称当时,函数 的极限是A ,记作 或 (当时) (2 )当 时 的左极限 定义 对于函数 ,如果当x 从 的左边无限地趋于时,函数 无 限地趋于一个常数A ,则称当 时,函数 的左极限是A ,记作 或 例如函数 当x 从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当 时,的左极限是1,即有 (3 )当 时, 的右极限 定义 对于函数 ,如果当x 从 的右边无限地趋于时,函数 无 限地趋于一个常数A ,则称当 时,函数 的右极限是A ,记作 或 又如函数 当x 从0的右边无限地趋于0时, 无限地趋于一个常数-1 。因此有 这就是说,对于函数 当时,的左极限是1,而右极限是 -1,即 但是对于函数 ,当 时, 的左极限是2,而右极限是2。 显然,函数的左极限、右极限 与函数的极限 之间 有以下关系: 定理1.6 当 时,函数 的极限等于A 的必要充分条件是 这就是说:如果当时,函数 的极限等于A ,则必定有左、右极限 都等于A 。 反之,如果左、右极限都等于A ,则必有。 这个结论很容易直接由它们的定义得到。 以上讲的是当时,函数的极限存在的情况,对于某些函数的某些点 处,当 时, 的极限也可能不存在。 2.当时,函数的极限 (1)当 时,函数 的极限 定义 对于函数 ,如果当 时, 无限地趋于一个常数A , 则称当 时,函数 的极限是A ,记作或 (当 时) (2)当时,函数 的极限 定义 对于函数 ,如果当时, 无限地趋于一个常数A , 则称当 时,函数的极限是A ,记作 这个定义与数列极限的定义基本上一样,只不过在数列极限的定义中一定表示,且n 是正整数;而在这个定义中,则要明确写出, 且其中的x 不一定是整数。

成人高考高升专数学常用知识点及公式打印版

成人高考高升专数学常用知识点及公式 第1章 集合和简易逻辑 知识点1:交集、并集、补集 1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素 2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素 3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑 概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。 题型:判断命题甲是命题乙的什么条件,从两方面出发: ①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件 D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件 技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况 第2章 不等式和不等式组 知识点1:不等式的性质 1. 不等式两边同加或减一个数,不等号方向不变 2. 不等式两边同乘或除一个正数,不等号方向不变 3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”) 解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式 1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。 2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生 改变)。

成考高升专数学历年考题

成考数学试卷 (文史类) 题型分类 一、集合与简易逻辑 2001年 (1)设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则(M T)N 是() (A)}6,5,4,2{(B)}6,5,4{(C)}6,5,4,3,2,1{(D)}6,4,2{ (2)命题甲:A=B ,命题乙:sinA=sinB .则() (A)甲不是乙的充分条件也不是乙的必要条件;(B)甲是乙的充分必要条件; (C)甲是乙的必要条件但不是充分条件;(D)甲是乙的充分条件但不是必要条件。 2002年 (1)设集合}2,1{=A ,集合}5,3,2{=B ,则B A 等于() (A ){2}(B ){1,2,3,5}(C ){1,3}(D ){2,5} (2)设甲:3>x ,乙:5>x ,则() (A )甲是乙的充分条件但不是必要条件;(B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件;(D )甲不是乙的充分条件也不是乙的必要条件. 2003年 (1)设集合{}22(,)1M x y x y =+≤,集合{}22≤,则集合M 与N 的关系是 (A )M N=M (B )M N=?(C )N M (D )M N (9)设甲:1k =,且1b =;乙:直线y kx b =+与y x =平行。则 (A )甲是乙的必要条件但不是乙的充分条件;(B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件;(D )甲是乙的充分必要条件。 2004年 (1)设集合{},,,M a b c d =,{},,N a b c =,则集合M N= (A ){},,a b c (B ){}d (C ){},,,a b c d (D )? (2)设甲:四边形ABCD 是平行四边形;乙:四边形ABCD 是平行正方,则 (A )甲是乙的充分条件但不是乙的必要条件;(B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件;(D )甲不是乙的充分条件也不是乙的必要条件. 2005年 (1)设集合{}P=1234,,,,5,{}Q=2,4,6,8,10,则集合P Q= (A ){}24,(B ){}12,3,4,5,6,8,10,(C ){}2(D ){}4 (7)设命题甲:1k =,命题乙:直线y kx =与直线1y x =+平行,则 (A )甲是乙的必要条件但不是乙的充分条件;(B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件;(D )甲是乙的充分必要条件。 2006年 (1)设集合{}M=1012-,,,,{}N=123,,,则集合M N= (A ){}01,(B ){1,2}(C ){}101-,,(D ){}10123-, ,,,

成人高考专升本高数真题及答案

20XX年成人高等学校招生全国统一考试 高等数学 答案必须答在答题卡上指定的位置,答在试卷上无效。 一、选择题:1-10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。 正确答案:A 【名师解析】根据函数的连续性立即得出结果 【名师点评】这是计算极限最常见的题型。在教学中一直被高度重视。 正确答案:C 【名师解析】使用基本初等函数求导公式 【名师点评】基本初等函数求导公式是历年必考的内容,我们要求考生必须牢记。 正确答案:B 【名师解析】根据基本初等函数求导公式和复合函数求导法则 正确答案:D 【名师解析】如果知道基本初等函数则易知答案;也能根据导数的符号确定

【名师点评】这是判断函数单调性比较简单的题型。 正确答案:A 【名师解析】基本积分公式 【名师点评】这是每年都有的题目。 【名师解析】求出积分区间,确定被积函数,计算定积分即可。 【名师点评】用定积分计算平面图形面积在历年考试中,只有一两年未考。应当也一直是教学的重点 正确答案:C 【名师解析】变上限定积分求导 【名师点评】这类问题一直是考试的热点,也始终是讲课的重点。 正确答案:D 【名师解析】把x看成常数,对y求偏导 【名师点评】本题属于基本题目,是年年考试都有的内容

正确答案:A 10、袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出的2个球均为白色球的概率为 【名师点评】古典概型问题的特点是,只要做过一次再做就不难了。 二、填空题:11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。 正确答案:0 【名师解析】直接代公式即可。 【名师点评】又一种典型的极限问题,考试的频率很高。 正确答案:1 【名师解析】考查等价无穷小的定义 【名师点评】无穷小量的比较也是重点。本题是最常见的且比较简单的情况。 【名师解析】 性),分别求出左右极限并比较。 【名师点评】这道题有点难度,以往试题也少见。

成人高考专升本高等数学二公式大全

第一章节公式 1、数列极限的四则运算法则 如果,lim ,lim B y A x n n n n ==∞ →∞ →那么 B A y x y x n n n n n n n -=-=-∞ →∞ →∞ →lim lim )(lim B A y x y x n n n n n n n +=+=+∞ →∞ →∞ →lim lim )(lim B A y x y x n n n n n n n .(lim ).(lim ).(lim ==∞→∞→∞→) )0(lim lim lim ≠==∞ →∞ →∞→B B A y x y x n n n n n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{}n c 有极限,则: n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么 CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 2、函数极限的四算运则 如果,)(lim ,)(lim B x g A x f ==那么 B A x g x f x g x f ±=±=±)(lim )(lim )(lim )(lim B A x g x f x g x f ?=?=?)(lim )(lim )(lim )(lim ) 0)(lim ()(lim )(lim )()(lim ≠===x g B B A x g x f x g x f 推论设)(lim ),(lim ),......(lim ),(lim ),(lim 321x f x f x f x f x f n 都存在,k 为常数,n 为正整数,则有: ) (lim ....)(lim )(lim )](....)()([lim 2111x f x f x f x f x f x f n n ±±±=±± ) (lim )]([lim x f k x kf = n n x f x f )](lim [)]([lim = 3、无穷小量的比较: .0lim ,0lim ,,==βαβα且穷小是同一过程中的两个无设 );(,,0lim )1(βαβαβ α o ==记作高阶的无穷小是比就说如果;),0(lim )2(同阶的无穷小是与就说如果βαβ α ≠=C C ;~;,1lim 3βαβαβ α 记作是等价的无穷小量与则称如果)特殊地(= .),0,0(lim )4(阶的无穷小的是就说如果k k C C k βαβ α >≠= .,lim )5(低阶的无穷小量是比则称如果βαβ α ∞= , 0时较:当常用等级无穷小量的比→x

成人高考专升本高等数学真题及答案

2013年成人高等学校专升本招生全国统一考试 高等数学(二) 答案必须答在答题卡上指定的位置,答在试卷上无效....... 。 选择题 一、选择题:1~10 小题,每小题4分,共40分。在每小题给出的四个选项中, 只有一项是符合题目要求的,把所选项前的字母填涂在答题卡相应题号的信点.......... 上. 。 1、2 2lim x cos x x π → = A. 2 π B. 2 π - C. 2 π D. 2 π - 2、设函数ln 3x y e =-,则 dy dx = A. x e B. 1 3 x e + C. 13 D. 13 x e - 3、设函数()ln(3)f x x =,则'(2)f = A. 6 B. ln 6 C. 12 D. 16 4、设函数3()1f x x =-在区间(,)-∞+∞ A.单调增加 B.单调减少 C.先单调增加,后单调减少 D.先单调减少,后单调增加 5、 2 1 dx x ?= A. 1 C x + B. 2 ln x C + C. 1 C x - + D. 2 1C x + 6、 2 (1) x d dt t dx +?= A. 2 (1)x + B. 0 C. 31(1)3 x + D. 2(1)x + 7、曲线||y x =与直线2y =所围成的平面图形的面积为 A. 2 B. 4 C. 6 D. 8 8、设函数cos()z x y =+,则 (1,1)|z x ?=? A. cos 2 B. cos 2- C. sin 2 D. -sin 2

9、设函数y z xe =,则 2 z x y ???= A. x e B. y e C. y xe D.x ye 10、设A ,B 是两随机事件,则事件A B -表示 A.事件A ,B 都发生 B.事件B 发生而事件A 不发生 C.事件A 发生而事件B 不发生 D.事件A ,B 都不发生 非选择题 二、填空题:11~20小题,每小题4分,共40分,将答案填写在答题卡相应题...... 号后..。 11、3123x x lim x →-= _______________. 12、设函数ln ,1,(),1x x f x a x x ≥?=?-

成人高考专升本数学全真模拟试题

成人高考专升本数学全 真模拟试题 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

2018成人高考专升本《数学》全真模拟试题【1-3】 一、选择题:本大题共17个小题,每小题5分,共85分。在每小题给出的四个选项中,只有一项是符合题目要求的。 第1题 答案:D 第2题 答案:A 第3题 答案:C 第4题 答案:B 第5题 答案:D 第6题由数字1,2,3,4,5组成无重复数字的二位奇数个数是 答案:D

第7题抛物线顶点在坐标原点,焦点在3,轴上,其上点P(m,-3)到焦点距离为5,则抛物线的方程为() 答案:C 第8题 答案:B 第9题 答案:A 第10题用0,1,2,3,4,5这六个数字,可组成没有重复数字的六位数的个数是() 答案:B 第11题 答案:C 第12题 答案:C 第13题从15名学生中选出两人担任正、副班长,不同的选举结果共有( )

种种种种 答案:C 第14题 答案:A 第15题 答案:D 第16题 答案:B 第17题 答案:B 二、填空题:本大题共4小题,每小题4分,共16分。把答案填写在题中的横线上。 第18题 5个人用抽签的方法分配两张电影票,第一个抽的人得到电影票的概率是__________。 答案:2/5 第19题在4张卡片上分别写有数字1,2,3,4,由这4张卡片组成个位数字不是2,百位数字不是3的四位数有__________个.

答案: 14 第20题 答案:(-5,4) 第21题 答案:6 三、解答题:本大题共4小题,共49分。解答应写出推理、演算步骤。第22题 答案: 第23题 答案: 第24题 答案: 第25题

2020年成人高考专升本高等数学一知识点汇总复习(自编)

2020年成人高考专升本高等数学一知识点复习一、题型分布: 试卷分选择、填空、解答三部分,分别占40分、40分、70分 二、内容分布 难点:隐函数求导、全微分、多元函数极值、常微分方程 复习方法: 1、结合自身情况定目标 2、分章节重点突破,多做题,做真题

第一章:极限与连续 1-1、极限的运算 1、极限的概念 (1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于一个常 f(x)=A 数A,则称A为函数f(x)当x→x0时的极限,记作lim x→x0 (2)左极限、右极限;在某点极限存在,左右极限存在且唯一。 f(x)=A lim x→x0? f(x)=A lim x→x0+ 2、无穷小量与无穷大量 无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则称在该 f(x)=0 变化过程中, f(x)为无穷小量,记作lim x→x0 无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越大,则 f(x)=∞ 称在该变化过程中, f(x)为无穷大量,记作lim x→x0 3、无穷小量与无穷大量的关系 为无穷小量; 在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1 f(x) 为无穷大量; 在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1 f(x) 4、无穷小量的性质 性质1:有限个无穷小量的代数和仍是无穷小量 ★性质2:无穷小量与有界函数的积仍是无穷小量 5、无穷小量的比较与替换 定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0 =0,则称β是α比较高阶的无穷小量 (1)如果limβ α =∞,则称β是α比较低阶的无穷小量 (2)如果limβ α

成人高考高升专数学常用知识点及公式

学习必备欢迎下载 成人高考高升专数学常用知识点及公式 温馨提示:数学公式不能死记硬背,而是理解掌握后灵活运用,上课

第一章 集合和简易逻辑 知识点1:交集、并集、补集 1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素 2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素 3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑 概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。 题型:判断命题甲是命题乙的什么条件,从两方面出发: ①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件 D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件 技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况 第二章 不等式和不等式组 知识点1:不等式的性质 1. 不等式两边同加或减一个数,不等号方向不变 2. 不等式两边同乘或除一个正数,不等号方向不变 3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”) 解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式 1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。 2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号 要发生改变)。

成人高考专升本数学复习总结

高等数学公式总结 一、求极限方法: 1、当x 趋于常数0x 时的极限: 02 2 00x x lim(ax bx c)ax bx c →++=++;0000 0ax b cx d ax b lim cx d cx d x x ++≠+??????→++→当; 00000cx d ,ax b ax b lim cx d x x +=+≠+???????????→∞+→当但; 2220020ax bx f cx dx e ,ax bx f lim x x cx dx e ++++=++=??????????????→→++当且可以约去公因式后再求解。 2、当x 趋于常数∞时的极限: 11n n ax bx f n m,lim {m m x cx dx e n m -++???+>=∞???????????????→-→∞++???+只须比较分子、分母的最高次幂若则。若n

成人高考专升本高等数学(一)试题及答案

普通高校专升本《高等数学》试卷 一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个小题,每一小题3分,共24分) 1. 曲线 在 处的切线方程 为 . 2. 已知 在 内连续 , , 设 , 则 = . 3. 设 为球面 ( ) 的外侧 , 则 = . 4. 幂级数 的收敛域为 . 5. 已知 阶方阵 满足 , 其中 是 阶单位阵, 为任意实数 , 则 = . 6. 已知矩阵 相似于矩阵 , 则 . 7. 已知 , 则 = . 8. 设 是随机变量 的概率密度函数 , 则随机变量 的概率密度函数 = . 二.选择题. (本题共有8个小题,每一小题3分,共24分,每个小题给出的选项中,只有一项符合要求) 得分 阅卷人 得分 阅卷人

1. = ( ). () () () () 2. 微分方程的通解为( ). (C 为任意常数) () () () () 3. = ( ) . () () () () 4. 曲面,与面所围成的立体体积为( ). () () () () 5. 投篮比赛中,每位投手投篮三次, 至少投中一次则可获奖.某投手第一次投中的概率为; 若第一次未投中, 第二次投中的概率为; 若第一, 第二次均未投中, 第三次投中的概率为,则该投手未获奖的概率为( ). () () () () 6.设是个维向量,则命题“线性无关” 与命题()不等价。 (A)对,则必有; (B)在中没有零向量;

(C)对任意一组不全为零的数,必有; (D)向量组中任意向量都不可由其余向量线性表出。 7. 已知二维随机变量在三角形区域上服从均匀分 布, 则其条件概率密度函数是( ). ().时, ().时, () 时, () 时, 8. 已知二维随机变量的概率分布为: , 则下面正确的结论是( ). () 是不相关的 () () 是相互独立的 () 存在,使得 得分阅卷人三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本 题共9个小题,每小题7分,共63分) 1. 计算, (,).

成人高考高升专数学模拟试题及答案

成人高考高升专数学模拟试题及答案

成人高考高升专数学模拟题 本试卷共5页,150分。考试时长120分钟。考 生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本市卷和答题卡一并交回。 第一部分(选择题,共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)若集合{|52},{|33}A x x B x x =-<<=-<<,则A B =I (A ){|32}x x -<< (B ){|52}x x -<< (C ){|33}x x -<< (D ){|53}x x -<< (2)圆心为(1,1)且过原点的圆的方程是 (A )22(1) (1)1x y -+-= (B )22(1)(1)1x y +++= (C )22(1) (1)2x y +++= (D )22(1)(1)2x y -+-= (3)下列函数中为偶函数的是 (A )2sin y x x = (B )2cos y x x = (C )|ln |y x = (D )2x y -= (4)某校老年,中年和青年教师 的人数见下表,采用分层抽 样的方法调查教师的身体状 况,在抽取的样本中,青年 教师有320人,则该样本的老年教师人数为

(A)90 (B)100 (C)180 (D)300 (5)执行如果所示的程序框图,输出的k值为 (A)3 (B)4 (C)5 (D)6 (6)设,a b是非零向量,“|||| g”是“//a b”的 a b a b (A)充分而不必要条件(B)必要而不充分条件 (C)充分必要条件(D)既不充

成人高考专升本高等数学一考试真题及参考答案#(精选.)

2014年成人高考专升本高等数学一考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。 第1题 参考答案:D 第2题 参考答案:A 第3题 参考答案:B 第4题设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)( )

A.不存在零点 B.存在唯一零点 C.存在极大值点 D.存在极小值点参考答案:B 第5题 参考答案:C 第6题 参考答案:D 第7题

参考答案:C 第8题 参考答案:A 第9题 参考答案:A 第10题设球面方程为(x一1)2+(y+2)2+(z一3)2=4,则该球的球心坐标与半径分别为( ) A.(一1,2,一3);2

B.(一1,2,-3);4 C.(1,一2,3);2 D.(1,一2,3);4 参考答案:C 二、填空题:本大题共10小题。每小题4分,共40分,将答案填在题中横线上。第11题 参考答案:2/3 第12题 第13题 第14题 参考答案:3

第15题曲线y=x+cosx在点(0,1)处的切线的斜率k=_______. 参考答案:1 第16题 参考答案:1/2 第17题 参考答案:1 第18题设二元函数z=x2+2xy,则dz=_________. 参考答案:2(x+y)dx-2xdy 第19题过原点(0,0,0)且垂直于向量(1,1,1)的平面方程为________.参考答案:z+y+z=0 第20题微分方程y’-2xy=0的通解为y=________. 三、解答题:本大翘共8个小题,共70分。解答应写出推理,演算步骤。第21题

2019年成人高考-专升本-数学真题及答案解析

2019年成人高考-专升本-数学真题及答案解析 第Ⅰ卷(选择题,共40分) 得分评卷人一选择题:1-10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的 1[.单选题]当x→0时,x+x2+x3+x4为x的()。 A.等价无穷小 B.2价无穷小 C.3价无穷小 D.4价无穷小 [答案]A [解析],故x+x2+x3+x4是x的等价无穷小。 2[.单选题]=()。 A.-e2 B.-e C.e D.e2 [答案]D [解析]。 3[.单选题]设函数y=cos2x,则y’=()。 A.y=2sin2x B.y=-2sin2x C.y=sin2x D.y=-sin2x [答案]B [解析]y’=(cos2x)’=-sin2x·(2x)’=-2sin2x。 4[.单选题]设函数f(x)在[a,b]上连续,在(a,b)内可导,f’(x)>0,f (a)f(b)<0则f(x)在(a,b)内零点的个数为()。 A.3 B.2 C.1

D.0 [答案]C [解析]由零点存在定理可知,f(x)在(a,b)上必有零点,且函数是单调函数,故其在(a,b)上只有一个零点。 5[.单选题]设2x为f(x)的一个原函数,则f(x)=()。 A.0 B.2 C.x2 D.x2+C [答案]B [解析]2x为f(x)的一个原函数,对f(x)积分后为2x,则f(x)=2。 6[.单选题]设函数(x)=arctanx,则=()。 A.-arctanx+C B. C.arctanx+C D. [答案]C [解析] 7[.单选题]设,则()。 A.I 1>I 2 >I 3 B.I 2>I 3 >I 1 C.I 3>I 2 >I 1 D.I 1>I 3 >I 2 [答案]A [解析]在区间(0,1)内,有x2>x3>x4,由积分的性质可知 ,即I 1>I 2 >I 3 。 8[.单选题]设函数z=x2e y,则=()。 A.0

成人高考专升本高数二真题及答案

成人高考专升本高数二 真题及答案 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

2015年成人高考专升本高数二真题及答案 1. lim x →?1 x +1 x 2+1=( ) A. 0 B.12 C.1 D.2 2.当x →0时,sin 3x是2x 的() A. 低阶无穷小量 B.等阶无穷小量 C. 同阶但不等价无穷小量 D.高阶无穷小量 3.函数f(x)= x+1,x <0,在x=0处() 2, x ≥0 A.有定义且有极限 B.有定义但无极限 C.无定义但有极限 D.无定义且无极限 4.设函数f(x)=x e π 2 ,则f'(x)=() A.(1+x)e π 2 B. (12+x)e π 2 C. (1+x 2 )e π 2 D. (1+2x)e π2 5.下列区间为函数f(x)=x 4-4x 的单调增区间的是() A.(-∞,+∞) B. (-∞,0) C.(-1,1) D. (1,+∞) 6.已知函数f(x)在区间[?3,3]上连续,则∫f (3x )1 ?1dx=( ) A.0 B.13∫f (t )3?3dt C. 1 3 ∫f (t )1 ?1dt D.3∫f (t )3 ?3dt 7.∫(x ?2+sin x )dx=( )

A. -2x -1+cos x +c B. -2x -3 +cos x +c C. -x ?3 3-cos x +c D. –x -1 -cos x +c 8.设函数f(x)=∫(t ?1)dt x 0,则f “(x)=( ) A.-1 B.0 C.1 D.2 9.设二元函数z=x y ,则?z ?x =( ) A.yx y-1 B. yx y+1 C. y x ln x D. x y 10.设二元函数 z=cos (xy ),?2 y ?x 2 =() A.y 2sin (xy ) B.y 2cos (xy ) C.-y 2sin (xy ) D.- y 2cos (xy ) 11.lim x →0 sin 1 x = . 0 12.lim x →∞ (1?2x )x 3= . e ?2 3 13.设函数y=ln (4x ?x 2),则y ′(1)= . 23 14.设函数y=x+sin x ,则dy= . (1+cos x)dx 15.设函数y=x 32 +e ?x ,则 y ”= . 34x ?12+e -x 16.若∫f (x )dx =cos (ln x )+C ,则f (x )= . - sin (ln x ) x 17.∫x |x |1?1dx = . 0 18.∫d (x ln x )= . x ln x +C 19.由曲线y=x 2,直线x=1及x 轴所围成的平面有界图形的面积S= . 13 20.设二元函数z=e y x ,则?z ?x |(1,1)= . -e 21.计算lim x →1 e x ?e ln x lim x →1e x ?e ln x =lim x →1 e x 1x

相关主题
文本预览
相关文档 最新文档