当前位置:文档之家› 现代谱估计

现代谱估计

现代谱估计
现代谱估计

现代谱估计实验报告

1实验目的

功率谱估计在实际工程中有重要应用价值。如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域发挥了重要作用。

本次实验的目的主要是深入理解现代谱估计的基本理论,包括ARMA模型、ARMA谱估计。掌握现代谱估计的基本方法,包括SVD-TLS算法等。利用ARMA 功率谱估计中Cadzow谱估计子和Kaveh谱估计子来进行谱估计。

2实验原理

冃景

若离散随机过程{x(n)}服从线性差分方程

p q

x(n) a i X(n i) e(n) b j e(n j) (1)

i 1 j 1

式中e (n)是一离散白噪声,则称{x(n)}为ARMA过程,而式(1)所示的差分方程称为ARMA模型。系数a1,a2??p,和b1,b2?…b q,分别称为自回归参数和滑动平均参数,而p和q分别叫做AR阶数和MA阶数。式(1)所示的ARMA过程,其功率谱密度为

jw I

/ 、2〔B(z)| 2 B(e)l

w両z e jw |B(e jw)| (2)

Px

ARMA谱估计的目的是使用N个已知的观测数据x(0),x(1):.x(N-1)计算出ARMA过程{x(n)}的功率谱密度估计。

在实际中,可以运用cadzow谱估计子和kaveh谱估计子来估计,cadzow谱估计子秩序确定AR阶数p和估计AR参数,而kaveh谱估计子也只需要确定AR 阶数p和估计AR参数以及MA阶数。

相关算法

AR阶数p的确定用奇异值分解(SVD,AR参数的估计用总体最小二乘法(TLS), 即应用(SVD-TLS算法来完成ARMA谱估计。

SVD-TLS 算法:

步骤1计算增广矩阵B的SVD,并储存奇异值和矩阵V;

步骤 2 确定增广矩阵 B 的有效秩p;

步骤 3 计算矩阵S;

步骤4求S的逆矩阵S--并计算出未知参数的总体最小二乘估计。

3 实验内容

仿真的观测数据由下式给出:

xn = square(W*n)+*randn(1,N) ( 3)

其中, fs = 20000, n = 0:1/fs: , N = length(n), W = 2000*pi 。

1、采样周期图法进行谱估计

2、假设AR阶数未知,用SVD-TLS^法确定AR阶数和参数,然后使用Cadzow 谱估计子进行谱估计。

4 Matlab 仿真

仿真的观测数据时域信号如图 1 所示

图1观测数据时域信号

1、经典功率谱估计

周期图法是把随机序列x(n)的N个观测数据视为一能量有限的序列。直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。仿真图如图2所示。

图2周期图法功率谱

2、现代功率谱估计

现代功率谱估计即参数谱估计方法是通过观测数据估计参数模型再按照求

参数模型输出功率的方法估计信号功率谱。主要是针对经典谱估计的分辨率低和

方差性能不好等问题提出的。按照上面介绍的步骤,编写程序对观测信号x(n)进行仿真,可以设置不同的M ,qe,pe的值,以便分析对比。图3是设置了M=2001,qe=100, pe=50,后得出的x(n)的功率谱图形。

图3 ARMA模型功率谱

5实验总结

本次实验分别用了周期图法和ARMA模型的参数估计方法对方波信号进行了功率谱估计,通过实验和得到的仿真图对比可以发现:

通过周期图法得到的功率谱估计频谱分辨率较低,不能适应高分辨率功率谱

估计的要求,参数化的谱估计可以获得高频率分辨率的功率谱。经典功率谱估计的分辨率反比于有效信号的长度,但现代谱估计的分辨率可以不受此限制。这是因为对于给定的N点有限长序列x(n),虽然其估计出的自相关函数也是有限长的,但是现代谱估计的一些隐含着数据和自相关函数的外推,使其可能的长度超过给定的长度,不像经典谱估计那样受窗函数的影响。因而现代谱的分别率比较高,而且现代谱线要平滑得多,从上图可以清楚看出。

6 附录

Matlab 程序如下:

clear; close all fs = 20000;

n = 0:1/fs:;

N = length(n);

W = 2000*pi; x1n = square(W*n); x2n = randn(1,N); xn = x1n+*x2n; figure;plot(n,xn); title( '时域信号'); Nfft = 100;

[Pxx,f] = period(xn,fs,Nfft); figure;plot(f,Pxx);

title( '周期图法功率谱');

%ARMA谱估计

pe = 50;

qe = 100;

NARMA = length(xn);

M = length(n);

[a,Rx,p] = ARMA (xn,qe,pe,M);

%CadzoW谱估计子

[Pw] = Cadzow(a,Rx,p,NARMA);

%功率谱X

figure;plot((0:length(Pw)-1)*fs/length(Pw),Pw);

title('ARMA模型');

function [Pxx,f] = period(xn,fs,Nfft)

Pxx = abs(fft(x n, Nfft)42)/Nfft;

f = (0:length(Pxx)-1)*fs/length(Pxx);

function [a,Rxx,p] = ARMA(xn,qe,pe,M) Rxx = xcorr(xn',unbiased'); for(i = 1:M) for(j = 1:pe+1)

Re(i,j) = Rxx(pe+i+1-j);

end

end [U,S,V] = svd(Re);

Ak = 0; for(i = 1:pe+1)

Ak = Ak + S(i,i)A2;

end;

Akf = 0;

v = Akf/Ak;

p = 0;

while v <

p = p+1;

Akf = Akf + S(p,pF2; v = Akf/Ak;

end

Sp = 0;

for j =1:p

for i =1:pe+1-p

Sp=Sp+S(i,iF2*V(i:i+p,j)*V(i:i+p,j): end end invSp = inv(Sp);

for(i = 1:p)

a(i) = invSp(i+1,1)/invSp(1,1);

end function [Pw] = Cadzow(a,Rx,p,N) Ro = Rx;

Ro(N) = *Rx(N);

基于Matlab实现现代功率谱估计[1]要点

2011年 8月 15日第 34卷第 16期 现代电子技术 M odern Electro nics T echnique A ug. 2011V ol. 34N o. 16 基于 Matlab 实现现代功率谱估计 王春兴 (山东师范大学物理与电子科学学院 , 山东济南 250014 摘要 :功率谱估计可以分为经典谱估计和现代谱估计。现代谱的估计可建立 A R 模型对离散信号进行谱估计、建立 M A 模型和 A RM A 模型进行谱估计。基于 M atlab 对三种模型进行仿真 , 并对结果进行了分析。结果显示 , 三种模型对现代谱的获得是有效的 , 并得到较好的谱估计。 关键词 :P SE; 现代功率谱估计 ; AR 模型法 ; A RM A 中图分类号 :T N911-34; G202 文献标识码 :A 文章编号 :1004-373X (2011 16-0065-03 Modern Power Spectrum Estimation Based on Matlab W AN G Chun -x ing (Colleg e o f Physics and Elect ro nics, Shando ng No rm al U niversity , Jinan 250014, Chi na Abstract :Po wer spectr um estimation can be divided into classical spectr al estimat ion and modern spectr al estimation. M odern spectr al estimation model can establish AR mo del, M A mo del and ARM A model fo r discr ete sig nals to per for m spec -t ral

材料现代分析方法试题及答案1

一、单项选择题(每题 2 分,共10 分) 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 1.透射电镜中如何获得明场像、暗场像和中心暗场像? 答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。 2.简述能谱仪和波谱仪的工作原理。 答:能量色散谱仪主要由Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识X 射线,这些X 射线被Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。最后得到以能量为横坐标、强度为纵坐标的X 射线能量色散谱。 在波谱仪中,在电子束照射下,样品发出所含元素的特征x 射线。若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的X 射线就会发生强烈衍射。波谱仪利用晶体衍射把不同波长的X 射线分开,即不同波长的X 射线将在各自满足布拉格方程的2θ方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的X射线能量色散谱。 3.电子束与试样物质作用产生那些信号?说明其用途。 (1)二次电子。当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量(约30~50 电子伏特),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。 (2)背散射电子。背散射电子是指被固体样品原子反射回来的一部分入射电子。既包括与样品中原子核作用而形成的弹性背散射电子,又包括与样品中核外电子作用而形成的非弹性散射电子。利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬度,进行定性成分分析。 (3)X 射线。当入射电子和原子中内层电子发生非弹性散射作用时也会损失其部分能量(约

材料现代分析方法试题2(参考答案)

材料现代分析方法试题4(参考答案) 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片 答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。 选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片, 以滤掉K β线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料。 以分析以铁为主的样品,应该选用Co或Fe靶的X射线管,同时选用Fe和Mn 为滤波片。 2.试述获取衍射花样的三种基本方法及其用途? 答:获取衍射花样的三种基本方法是劳埃法、旋转晶体法和粉末法。劳埃法主要用于分析晶体的对称性和进行晶体定向;旋转晶体法主要用于研究晶体结构;粉末法主要用于物相分析。 3.原子散射因数的物理意义是什么?某元素的原子散射因数与其原子序数有何关系? 答:原子散射因数f 是以一个电子散射波的振幅为度量单位的一个原子散射波的振幅。也称原子散射波振幅。它表示一个原子在某一方向上散射波的振幅是一个电子在相同条件下散射波振幅的f倍。它反映了原子将X射线向某一个方向散射时的散射效率。 原子散射因数与其原子序数有何关系,Z越大,f 越大。因此,重原子对X射线散射的能力比轻原子要强。 4.用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成什么图案?为摄取德拜图相,应当采用什么样的底片去记录? 答:用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成一组锥心角不等的圆锥组成的图案;为摄取德拜图相,应当采用带状的照相底片去记录。

现代谱估计

现代谱估计实验报告 1实验目的 功率谱估计在实际工程中有重要应用价值。如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域发挥了重要作用。 本次实验的目的主要是深入理解现代谱估计的基本理论,包括ARMA模型、ARMA谱估计。掌握现代谱估计的基本方法,包括SVD-TLS算法等。利用ARMA 功率谱估计中Cadzow谱估计子和Kaveh谱估计子来进行谱估计。 2实验原理 冃景 若离散随机过程{x(n)}服从线性差分方程 p q x(n) a i X(n i) e(n) b j e(n j) (1) i 1 j 1 式中e (n)是一离散白噪声,则称{x(n)}为ARMA过程,而式(1)所示的差分方程称为ARMA模型。系数a1,a2??p,和b1,b2?…b q,分别称为自回归参数和滑动平均参数,而p和q分别叫做AR阶数和MA阶数。式(1)所示的ARMA过程,其功率谱密度为 jw I / 、2〔B(z)| 2 B(e)l w両z e jw |B(e jw)| (2) Px ARMA谱估计的目的是使用N个已知的观测数据x(0),x(1):.x(N-1)计算出ARMA过程{x(n)}的功率谱密度估计。 在实际中,可以运用cadzow谱估计子和kaveh谱估计子来估计,cadzow谱估计子秩序确定AR阶数p和估计AR参数,而kaveh谱估计子也只需要确定AR 阶数p和估计AR参数以及MA阶数。

相关算法 AR阶数p的确定用奇异值分解(SVD,AR参数的估计用总体最小二乘法(TLS), 即应用(SVD-TLS算法来完成ARMA谱估计。 SVD-TLS 算法: 步骤1计算增广矩阵B的SVD,并储存奇异值和矩阵V; 步骤 2 确定增广矩阵 B 的有效秩p; 步骤 3 计算矩阵S; 步骤4求S的逆矩阵S--并计算出未知参数的总体最小二乘估计。 3 实验内容 仿真的观测数据由下式给出: xn = square(W*n)+*randn(1,N) ( 3) 其中, fs = 20000, n = 0:1/fs: , N = length(n), W = 2000*pi 。 1、采样周期图法进行谱估计 2、假设AR阶数未知,用SVD-TLS^法确定AR阶数和参数,然后使用Cadzow 谱估计子进行谱估计。 4 Matlab 仿真 仿真的观测数据时域信号如图 1 所示

现代功率谱估计

现代功率谱估计 淮北师范大学物理与电子信息学院 235000 摘要功率谱估计就是基于有限的数据寻找信号、随机过程或系统的频率成分。它是随机信号处理的重要内容,广泛应用于人民的日常生活及军事、工业、农业活动中。其实现方法主要可分为经典谱估计和现代谱估计。经典谱估计方法由于其种种缺点,迫使人们大力研究现代谱估计方法。现代谱估计法是以参数模型为基础的方法,大致可以分为参数模型谱估计和非参数模型谱估计,前者有AR模型、MA模型、ARMA模型、PRONY模型等;后者有最小方差方法、多分量的MUSIC 方法等。 本文将着眼于现代谱估计的各种方法,首先简要介绍随机信号功率谱估计的相关基础知识,然后从经典法入手,探讨现代谱估计的理论基础,分析各种方法的优劣性及适用范围,并且给出对应的Matlab仿真结果,从而深刻理解各种方法的特点,从而在实际工作中做出合理的选择。 关键词功率谱估计现代信号处理 Matlab

引言 功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。英国科学家牛顿最早给出了“谱”的概念。后来,1822年,法国工程师傅立叶提出了著名的傅立叶谐波分析理论。该理论至今依然是进行信号分析和信号处理的理论基础。 傅立叶级数提出后,19世纪末,Schuster提出用傅立叶级数的幅度平方作为函数中功率的度量,并将其命名为“周期图”(periodogram)。这是经典谱估计的最早提法,这种提法至今仍然被沿用。 周期图较差的方差性能促使人们研究另外的分析方法。1927年,Yule提出用线性回归方程来模拟一个时间序列。Yule的工作实际上成了现代谱估计中最重要的方法——参数模型法谱估计的基础。Walker利用Yule的分析方法研究了衰减正弦时间序列,得出Yule-Walker方程,可以说,Yule和Walker都是开拓自回归模型的先锋。 1948年,Bartlett首次提出了用自回归模型系数计算功率谱。自回归模型和线性预测都用到了1911年提出的Toeplitz矩阵结构,Levinson曾根据该矩阵的特点于1947年提出了解Yule-Walker的快速计算方法。这些工作为现代谱估计的发展打下了良好的理论基础。1965年,Cooley和Tukey提出的FFT算法,也促进了谱估计的迅速发展。 现代谱估计的提出主要是针对经典谱估计(周期图和自相关法)的分辨率和方差性能不好的问题。1967 年,Burg 提出的最大熵谱估计,即是朝着高分辨率谱估计所作的最有意义的努力。 由于随机信号是一类持续时间无限长,具有无限大能量的功率信号,它不满足傅里叶变换条件,而且也不存在解析表达式,因此就不能够应用确定信号的频谱计算方法去分析随机信号的频谱。然而,虽然随机信号的频谱不存在,但其相关函数是可以确定的。如果随机信号是平稳的,那么其相关函数的傅里叶变换就是它的功率谱密度函数,简称功率谱。功率谱反映了单位频带内随机信号的一个样本信号来对该随机过程的功率谱密度函数做出估计。 本文将着眼于现代谱估计的各种方法,首先简要介绍随机信号功率谱估计的相关基础知识,然后从经典法入手,探讨现代谱估计的理论基础,分析各种方法的优劣性及适用范围,并且给出对应的Matlab仿真结果,从而深刻理解各种方法的特点,从而在实际工作中做出合理的选择。

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N-1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ∑--=+=1||0 *) ()(1 )(?m N n xx m n x n x N m r

材料现代分析方法练习题及答案

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

材料现代分析方法试题4(参考答案)

材料现代分析方法试题8(参考答案) 一、基本概念题(共10题,每题5分) 1.衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么? 答:衍射线在空间的方位主要取决于晶体的面网间距,或者晶胞的大小。衍射线的强 度主要取决于晶体中原子的种类和它们在晶胞中的相对位置。 2.总结简单点阵、体心点阵和面心点阵衍射线的系统消光规律。 答:简单点阵不存在系统消光, 体心点阵衍射线的系统消光规律是(h+k+l)偶数时出现反射,(h+k+l)奇数时消光。 面心点阵衍射线的系统消光规律是h,k,l全奇或全偶出现反射,h,k,l有奇有偶时消光。答: 简单点阵不存在系统消光, 体心点阵衍射线的系统消光规律是(h+k+l)偶数时出现反射,(h+k+l)奇数时消光。 面心点阵衍射线的系统消光规律是h,k,l全奇或全偶出现反射,h,k,l有奇有偶时消光。3.某一粉末相上背射区线条与透射区线条比较起来,其θ较高抑或较低?相应的d较大还是较小? 答:背射区线条与透射区线条比较θ较高,d较小。 产生衍射线必须符合布拉格方程2dsinθ=λ,对于背射区属于2θ高角度区,根据d=λ/2sinθ,θ越大d越小。 4.物相定性分析的原理是什么?对食盐进行化学分析与物相定性分析,所得信息有何不同? 答:物相定性分析的原理是根据每一种结晶物质都有自己独特的晶体结构,即特定点 阵类型、晶胞大小、原子的数目和原子在晶胞中的排列等。因此,从布拉格公式和强度 公式知道,当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样,它们的特 征可以用各个反射晶面的晶面间距值d和反射线的强度来表征。其中晶面网间距值d与 晶胞的形状和大小有关,相对强度I则与质点的种类及其在晶胞中的位置有关。这些衍 射花样有两个用途:一是可以用来测定晶体的结构,这是比较复杂的。二是用来测定物 相,所以,任何一种结晶物质的衍射数据d和I是其晶体结构的必然反映,因而可以根 据它们来鉴别结晶物质的物相,这个过程比较简单。分析的思路将样品的衍射花样与已

功率谱估计

功率谱估计及其MATLAB仿真 詹红艳 (201121070630控制理论与控制工程) 摘要:从介绍功率谱的估计原理入手分析了经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。 关键词:功率谱估计;周期图法;AR参数法;Matlab Power Spectrum Density Estimation and the simulation in Matlab Zhan Hongyan (201121070630Control theory and control engineering) Abstract:Mainly introduces the principles of classical PSD estimation and modern PSD estimation,discusses the characteristics of the methods of realization in Matlab.Moreover,It gives an example of each part in realization using Matlab functions. Keywords:PSDPstimation,Periodogram method,AR Parameter method,Matlab 1引言 现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。它是数字信号处理的重要研究内容之一。功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。 功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。 Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件,人称矩 阵实验室,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,成为目前极为流行的工程数学分析软件。也为数字信号处理进行理论学习、工程设计分析提供了相当便捷的途径。本文的仿真实验中,全部在Matlab6.5环境下调试通过;随机序列由频率不同的正弦信号加高斯白噪声组成。 2经典功率谱估计 经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。经典功率谱估计方法分为:相关函数法(BT法)、周期图法以及两种改进的周期图估计法即平均周期图法和平滑平均周期图法,其中周期图法应用较多,具有代表性。 1.1相关函数法(BT法) 该方法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。当延迟与数据长度相比很小时,可以有良好的估计精度。 Matlab代码示例1: Fs=500;%采样频率 n=0:1/Fs:1;

材料现代分析方法北京工业大学

材料现代分析方法北京工业大学 篇一:13103105-材料现代分析方法 《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分:3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,20XX年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,20XX 年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出

版社,20XX年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,20XX年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,20XX年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,20XX年。 [7]《材料结构分析基础》,余鲲编,科学出版社,20XX年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时

材料现代分析方法试题及答案1

《现代材料分析方法》期末试卷1 一、单项选择题(每题 2 分,共10 分) 1.成分和价键分析手段包括【b 】 (a)WDS、能谱仪(EDS)和XRD (b)WDS、EDS 和XPS (c)TEM、WDS 和XPS (d)XRD、FTIR 和Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b)NMR、FTIR 和WDS (c)SEM、TEM 和STEM(扫描透射电镜)(d)XRD、FTIR 和Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和CO 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)

4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。 以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。 3.在核磁共振谱图中出现多重峰的原因是什么? 多重峰的出现是由于分子中相邻氢核自旋互相偶合造成的。在外磁场中,氢核有两种取向,与外磁场同向的起增强外场的作用,与外磁场反向的起减弱外场的作用。根据自选偶合的组合不同,核磁共振谱图中出现多重峰的数目也有不同,满足“n+1”规律 4.什么是化学位移,在哪些分析手段中利用了化学位移? 同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。在XPS、俄歇电子能谱、核磁共振等分析手段中均利用化学位移。 5。拉曼光谱的峰位是由什么因素决定的, 试述拉曼散射的过程。 拉曼光谱的峰位是由分子基态和激发态的能级差决定的。在拉曼散射中,若光子把一部分能量给样品分子,使一部分处于基态的分子跃迁到激发态,则散射光能量减少,在垂直方向测量到的散射光中,可以检测到频率为(ν0 - Δν)的谱线,称为斯托克斯线。相反,若光子从样品激发态分子中获得能量,样品分子从激发态回到基态,则在大于入射光频率处可测得频率为(ν0 + Δν)的散射光线,称为反斯托克斯线 四、问答题(10 分) 说明阿贝成像原理及其在透射电镜中的具体应用方式。 答:阿贝成像原理(5 分):平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。在透射电镜中的具体应用方式(5 分)。利用阿贝成像原理,样品对电子束起散射作用,在物镜的后焦面上可以获得晶体的衍射谱,在物镜的像面上形成反映样品特征的形貌像。当中间镜的物面取在物镜后焦面时, 则将衍射谱放大,则在荧光屏上得到一幅电子衍射花样;当中间镜物面取在物镜的像面上时,则将图像进一步放大,这就是电子显微镜中的成像操作。 五、计算题(10 分) 用Cu KαX 射线(λ=0.15405nm)的作为入射光时,某种氧化铝的样品的XRD 图谱如下,谱线上标注的是2θ的角度值,根据谱图和PDF 卡片判断该氧化铝的类型,并写出XRD 物相分析的一般步骤。 答:确定氧化铝的类型(5 分) 根据布拉格方程2dsinθ=nλ,d=λ/(2sinθ) 对三强峰进行计算:0.2090nm,0.1604nm,0.2588nm,与卡片10-0173 α-Al2O3 符合,进一步比对其他衍射峰的结果可以确定是α-Al2O3。 XRD 物相分析的一般步骤。(5 分) 测定衍射线的峰位及相对强度I/I1: 再根据2dsinθ=nλ求出对应的面间距 d 值。 (1) 以试样衍射谱中三强线面间距d 值为依据查Hanawalt 索引。

材料现代分析方法实验报告

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

(完整版)材料现代分析方法第一章习题答案解析

第一章 1.X射线学有几个分支?每个分支的研究对象是什么? 答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。 X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。 X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。 X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。 2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少? 解:已知条件:U=50kV 电子静止质量:m0=9.1×10-31kg 光速:c=2.998×108m/s 电子电量:e=1.602×10-19C 普朗克常数:h=6.626×10-34J.s 电子从阴极飞出到达靶的过程中所获得的总动能为: E=eU=1.602×10-19C×50kV=8.01×10-18kJ 由于E=1/2m0v02 所以电子击靶时的速度为: v0=(2E/m0)1/2=4.2×106m/s 所发射连续谱的短波限λ0的大小仅取决于加速电压: λ0(?)=12400/U(伏) =0.248? 辐射出来的光子的最大动能为: E0=hv=h c/λ0=1.99×10-15J 3. 说明为什么对于同一材料其λK<λKβ<λKα? 答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k 以kα为例: hV kα = E L– E k

h e = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α 4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象? 答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。 5. 特征X 射线与荧光X 射线的产生机理有何不同?某物质的K 系荧光X 射线波长是否等于它的K 系特征X 射线波长? 答:特征X 射线与荧光X 射线都是由激发态原子中的高能级电子向低能级跃迁时,多余能 量以X 射线的形式放出而形成的。不同的是:高能电子轰击使原子处于激发态,高能级电子回迁释放的是特征X 射线;以 X 射线轰击,使原子处于激发态,高能级电子回迁释放 的是荧光X 射线。某物质的K 系特征X 射线与其K 系荧光X 射线具有相同波长。6. 连续谱是怎样产生的?其短波限 与某物质的吸收限 有何不同(V 和 V K 以kv 为单位)? 答:当X 射线管两极间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰 击,由于阳极的阻碍作用,电子将产生极大的负加速度。根据经典物理学的理论,一个带 负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电 磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。 在极限情况下,极少数的电子在一次碰撞中将全部能量一次性转化为一个光量子,这 个光量子便具有最高能量和最短的波长,即短波限。连续谱短波限只与管压有关,当固定

matlab经典、现代功率谱估计

上机作业: 1、假设一平稳随机信号为()()()0.81x n x n w n =?+,其中 是均值为0,方差为1的白噪声,数据长度为1024。 (1)、产生符合要求的)(n w 和)(n x ; (2)、给出信号)(n x 的理想功率谱; (3)、编写周期图谱估计函数,估计数据长度N=1024及256时信号功率谱,分析估计效果。 (4)、编写Bartlett 平均周期图函数,估计当数据长度N=1024及256时,分段数L 分别为2和8时信号 的功率谱,分析估计效果。 一、解题思路 w(n)可以通过随机序列randn(1,N)来产生,x(n)可以通过对w(n)滤波产生(由递推式可 得系统的传递函数),也可以直接由递推式迭代产生。 由于线性系统的输出功率谱等于输入功率谱乘以传递函数模的平方,X(n)可以看做w(n)通过一线性系统的输出,H(z)=1/(1-0.8z)。所以x(n)的理想功率谱P(e jw )=σw 2|H(e jw )|2。 周期图方法:直接对观测数据做FFT 变换,变换的结果取模的平方再除以数据长度,作为估计的功率谱。256个观测点时可以对原观测数据以4为间隔提取得到。 Bartlett 法:将L 组独立的观测数据分别求周期图,再将L 个周期图求平均作为信号的功率谱估计。L 组数据可以通过对原观测数据以L 为间隔提取得到。 二、MATLAB 实现程序及注解 clc; clear;close all; Fs=500; %采样率 N=1024; %观测数据 w=sqrt(1)+randn(1,N); %0均值,方差为1的白噪声,长度1024 x=[w(1) zeros(1,N-1)]; %初始化x(n),长度1024,x(1)=w(1) for i=2:N x(i)=0.8*x(i-1)+w(i); %迭代产生观测数据x(n) end %% 理想功率谱 [h,w1]=freqz(x); figure,plot(w1*500/(2*pi),10*log10(abs(h).^2));grid on; title('理想功率谱'); xlabel('频率'); ylabel('功率db'); %% 周期图法 %1024个观测点 Pxx=abs(fft(x)).^2/N; %周期图公式 Pxx=10*log10(Pxx(index+1)); %化为db figure;plot(k,Pxx);grid on; title('周期图1024点');

(完整版)材料现代分析方法考试试卷

班级学号姓名考试科目现代材料测试技术A 卷开卷一、填空题(每空1 分,共计20 分;答案写在下面对应的空格处,否则不得分) 1. 原子中电子受激向高能级跃迁或由高能级向低能级跃迁均称为_辐射跃迁__ 跃迁或_无辐射跃迁__跃迁。 2. 多原子分子振动可分为__伸缩振动_振动与_变形振动__振动两类。 3. 晶体中的电子散射包括_弹性、__与非弹性___两种。 4. 电磁辐射与物质(材料)相互作用,产生辐射的_吸收_、_发射__、_散射/光电离__等,是光谱分析方法的主要技术基础。 5. 常见的三种电子显微分析是_透射电子显微分析、扫描电子显微分析___和_电子探针__。 6. 透射电子显微镜(TEM)由_照明__系统、_成像__系统、_记录__系统、_真空__系统和__电器系统_系统组成。 7. 电子探针分析主要有三种工作方式,分别是_定点_分析、_线扫描_分析和__ 面扫描_分析。 二、名词解释(每小题3 分,共计15 分;答案写在下面对应的空格处,否则不得分) 1. 二次电子二次电子:在单电子激发过程中被入射电子轰击出来的核外电子. 2. 电磁辐射:在空间传播的交变电磁场。在空间的传播遵循波动方程,其波动性表现为反射、折射、干涉、衍射、偏振等。 3. 干涉指数:对晶面空间方位与晶面间距的标识。 4. 主共振线:电子在基态与最低激发态之间跃迁所产生的谱线则称为主共振线 5. 特征X 射线:迭加于连续谱上,具有特定波长的X 射线谱,又称单色X 射线谱。 三、判断题(每小题2 分,共计20 分;对的用“√”标识,错的用“×”标识) 1.当有外磁场时,只用量子数n、l 与m 表征的原子能级失去意义。(√) 2.干涉指数表示的晶面并不一定是晶体中的真实原子面,即干涉指数表示的晶面上不一定有原子分布。(√) 3.晶面间距为d101/2 的晶面,其干涉指数为(202)。(×) 4.X 射线衍射是光谱法。(×) 5.根据特征X 射线的产生机理,λKβ<λK α。 (√ ) 6.物质的原子序数越高,对电子产生弹性散射的比例就越大。(√ ) 7.透射电镜分辨率的高低主要取决于物镜。(√ )8.通常所谓的扫描电子显微镜的分辨率是指二次电子像的分辨率。(√)9.背散射电子像与二次电子像比较,其分辨率高,景深大。(× )10.二次电子像的衬度来源于形貌衬度。(× ) 四、简答题(共计30 分;答案写在下面对应的空格处,否则不得分) 1. 简述电磁波谱的种类及其形成原因?(6 分)答:按照波长的顺序,可分为:(1)长波部分,包括射频波与微波。长波辐射光子能量低,与物质间隔很小的能级跃迁能量相适应,主要通过分子转动能级跃迁或电子自旋或核自旋形成;(2)中间部分,包括紫外线、可见光核红外线,统称为光学光谱,此部分辐射光子能量与原子或分子的外层电子的能级跃迁相适应;(3)短波部分,包括X 射线和γ射线,此部分可称射线谱。X 射线产生于原子内层电子能级跃迁,而γ射线产生于核反应。

材料现代分析方法课程教学大纲

《材料现代分析方法》复试考试大纲 课程名称:材料现代分析方法 Ⅰ、考试总体要求 掌握X射线衍射分析(XRD)、电子显微分析(SEM、TEM)、红外光谱分析(IR)及热分析(DTA、DSC和TG)等分析方法的设备构造、工作原理、表征技术和应用。要求能够正确选用现代分析技术开展材料组成、结构与性能关系的科学研究能力。 Ⅱ、考试的内容及比例 1、X射线衍射分析(30-40%) (1) 掌握X射线物理学基础、X射线衍射理论、X射线衍射方法; (2) 理解定性、定量分析原理,PDF卡片的组成; (3) 掌握物相的定性、定量分析方法; (4) 了解XRD的典型应用。 2、扫描电镜(20-30%) (1) 了解采用的分析信号,电镜结构、成像原理及用途; (2) 掌握试样制备方法,图像的解释; (3) 掌握电子探针的原理、结构、用途及性能比较,谱图分析方法。 3、透射电镜(15-25%) (1) 了解电子与物质作用信号,透射电镜结构及成像原理; (2) 掌握薄膜及复型试样制备方法; (3) 掌握选区电子衍射及衍射花样的分析。 4、热分析技术(10-15%) 掌握差热分析、差示扫描量热分析和热重分析的基本原理和应用。 5、光谱分析(5-10%) (1) 掌握光谱分析的原理、特征和应用; (2) 了解有机化合物基团的特征吸收频率; (3) 熟悉红外光谱的解析方法。 6、其它现代分析方法(0-5%)

Ⅲ、考试方式 1、考试方法:笔试,闭卷,满分100分。 2、考试时间:120分钟。 Ⅴ、参考书: 1.材料科学研究与测试方法,第二版,朱和国,东南大学出版社,2013 2.材料现代分析方法,左演声,北京工业大学出版社,2000

材料现代分析方法试题 6

材料现代分析方法试题 一、基本概念题(共10题,每题5分) 1.什么是光电效应?光电效应在材料分析中有哪些用途? 2.当波长为λ的X射线在晶体上发生衍射时,相邻两个(hkl)晶面衍射线的 波程差是多少?相邻两个HKL干涉面的波程差又是多少? 3.测角仪在采集衍射图时,如果试样表面转到与入射线成30 0角,则计数管 与入射线所成角度为多少?能产生衍射的晶面,与试样的自由表面是何种几何关 系? 4.宏观应力对X射线衍射花样的影响是什么?衍射仪法测定宏观应力的方法 有哪些? 5.薄膜样品的基本要求是什么? 具体工艺过程如何? 双喷减薄与离子减薄 各适用于制备什么样品? 6.图说明衍衬成像原理,并说明什么是明场像、暗场像和中心暗场像。 7.说明透射电子显微镜成像系统的主要构成、安装位置、特点及其作用。 8.何为晶带定理和零层倒易截面? 说明同一晶带中各晶面及其倒易矢量与 晶带轴之间的关系。 9.含苯环的红外谱图中,吸收峰可能出现在哪4个波数范围? 10.陶瓷纳米/微米颗粒的红外光谱的分析样品该如何制,为什么? 二、综合及分析题(共5题,每题10分) 1.请说明多相混合物物相定性分析的原理与方法? 2.对于晶粒直径分别为100,75,50,25nm的粉末衍射图形,请计算由于晶粒细化引起的衍射线条宽化幅度B(设θ=450,λ=0.15nm)。对于晶粒直径为25nm的粉末,试计算θ=100、450、800时的B 值。 3.二次电子像和背散射电子像在显示表面形貌衬度时有何相同与不同之处? 4.何为波谱仪和能谱仪?说明其工作的三种基本方式及其典型应用,并比较波谱仪和能谱仪的优缺点。要分析钢中碳化物成分和基体中碳含量,应选用哪种电子探针仪? 为什么? 5.分别指出谱图中标记的各吸收峰所对应的基团? 材料现代分析方法试题(参考答案) 一、基本概念题(共10题,每题5分) 1.什么是光电效应?光电效应在材料分析中有哪些用途? 答:光电效应是指:当用X射线轰击物质时,若X射线的能量大于物质原子 对其内层电子的束缚力时,入射X射线光子的能量就会被吸收,从而导致其内层 电子被激发,产生光电子。材料分析中应用光电效应原理研制了光电子能谱仪和 荧光光谱仪,对材料物质的元素组成等进行分析。 2.什么叫干涉面?当波长为λ的X射线在晶体上发生衍射时,相邻两个(hkl) 晶面衍射线的波程差是多少?相邻两个HKL干涉面的波程差又是多少? 答:晶面间距为d’/n、干涉指数为nh、nk、nl的假想晶面称为干涉面。当波 长为λ的X射线照射到晶体上发生衍射,相邻两个(hkl)晶面的波程差是nλ, 相邻两个(HKL)晶面的波程差是λ。

相关主题
文本预览
相关文档 最新文档