当前位置:文档之家› 本田雅阁发动机结构原理2

本田雅阁发动机结构原理2

本田雅阁发动机结构原理2
本田雅阁发动机结构原理2

目录

摘要 (1)

关键词 (1)

1.本田雅阁发动机怠速不稳的原因分析 (1)

1.1 本田雅阁发动机结构原理 (1)

1.2 本田雅阁怠速控制原理 (1)

1.3 本田雅阁怠速不稳原因分析 (2)

2.本田雅阁发动机怠速不稳故障诊断与维修方法 (5)

2.1 汽车故障诊断基本原则 (5)

2.2 怠速不稳诊断流程 (6)

3.本田雅阁2.2EXI型怠速不稳检修实例 (7)

总结 (8)

参考文献 (8)

本田雅阁怠速不稳的故障诊断与维修

摘要:本文从汽车理论知识出发,对本田雅阁发动机怠速不稳进行原因分析,阐述发动机怠速不稳的诊断维修方法,并结合一辆本田雅阁2.2EXI型怠速不稳的实例,对其进行分析、诊断和维修,最后成功排除故障的过程。

关键词:怠速不稳诊断维修

1 本田雅阁发动机怠速不稳的原因分析

1.1 本田雅阁发动机结构原理

现代的小轿车发动机绝大部分采用电子控制燃油喷射技术,其核心部分电子控制单元根据各传感器采集的信息,例如发动机转速、曲轴位置、负荷、温度等,计算出最佳的空燃比和点火时间。

本田雅阁发动机电子控制系统包括多点程序控制燃油喷射系统(PGM-FI)、点火时间控制系统、怠速控制系统、废气再循环控制、燃油蒸发排放控制及一些其它的控制功能和故障自诊断、故障运行和保障功能。发动机控制系统如图1所示:

图 1 本田雅阁轿车F22B发动机PGM-F1控制系统图

1—预热氧传感器2—MAP(进所歧管绝对压力)传感器3—发动机冷却液温度(ECT)传感器4—进气温度(IA T)传感器5—怠速空气控制(IAC)阀6—快怠速温控阀7—喷油器8—燃油滤清器9—燃油压力调节器10—燃油泵11—燃油箱12—燃油蒸发排放(EVAP)阀13—空气滤清器14—共振腔15—喷油器空气控制电磁阀16—进气共鸣室单向阀17—时气共鸣室真空储气箱18—进气共鸣室控制电磁阀19—进气共鸣室控制膜片20—废气再循环(EGR)真空控制电磁阀21—废气再循环(EGR)控制电磁阀22—废气再循环(EGR)阀23—曲轴强制通风(PVC)阀24—燃油蒸发排放(EVAP)净化控制阀25—燃油蒸发排放(EV AP)活性炭罐26—燃油蒸发排放(EVAP)双向阀27—三无催化转换阀28—发动机稳定控制电磁阀

1.2 本田发动机怠速控制原理

发动机怠速可分为四种情况,即基本怠速、正常怠速、冷车快怠速、和负荷怠速。基本怠速即发动机在点火时恰当,火花塞良好,空气滤清器正常,PCV系统无故障,热车无负荷(空调、灯光和风扇等用电器都不工作)以及从怠速控制阀上拆下线束连接器(怠速控制阀不起作用)的情况下的怠速转速。本田F22B4发动机的基本怠速转速为620r/min±50r/min。正常怠速即发动机在基本怠速转速基础上,接上怠速控制阀线束连接器,消除发动机故障代码后重新起动,无负荷运转时的怠速转速。本田F22B4发动机的正常怠速为770 r/min±50r/min。冷车快怠速即发动机在冷车状态下,由于燃油不易雾化,机油黏度大等一些原因,发动机尚未处于正常工作状态,为使发动机尽快进入正常工作状态而提升发动机转速时的怠速转速。本田F22B4发动机的冷车快怠速转速为1650r/min±50r/min。负荷怠速指发动机在怠速工况下,由于发电机、空调、风扇、或动力转向、变速杆从P档(或N档)进入D档(或R档)或踩制动踏板时,发动机因增加负荷需维持稳定运转,为保证汽车顺利起步而发动机克服阻力而不致熄火的怠速转速。本田F22B4发动机在负荷怠速时,发动机ECU根据空调接通信号、动力转向信号、自动变速器空档(N档)或驻车档(P档)开关信号,以及制动踏板信号来调节怠速控制阀电压,使其改变进气量。如果怠速控制阀不增加进气量,发动机转速会下降200~ 300 r/min,并伴随怠速不稳现象发生。本田F22B4发动机的负荷怠速为700 r/min±50r/min。

1.3 发动机怠速不稳原因分析

参与电脑计算的数据当中,任何一个参数失真,都会导致电脑发出错误的指令,轻则令发动机运行不稳、功率下降,重则令发动机无法起动。

发动机怠速不稳就是一种电脑发出错误指令或其指令无法执行的症状。主要表现为:怠速时发动机抖动严重、易熄火或转速上下波动等。引起怠速不稳的根本原因可归结以下几点:

1)混合气过浓或过稀

2)个别缸不工作或工作不良

3)发动机超出该转速负荷

造成以上原因的涉及面又很广,几乎牵涉到发动机每一个系统,下面我们作些概括:(由于各系统相互交叉,所以没有严格分类)

1.3.1 燃油喷射系统

①供油压力不足。汽油滤清器脏堵、电动燃油泵磨损、燃油压力调节器弹簧弹力不足都会造成供油压力不足。而电脑是把喷油的绝对压力作为一个恒定值,靠改变开启喷油器的脉冲宽度来控制喷油量。如果喷油压力低于正常值,就会导致喷油量变小,使混合气变稀。

②油器堵塞、喷油器不工作、喷油器雾化不良都会引起怠速不稳。

1.3.2 火系统

点火系统引起的怠速不稳通常是高压分火线老化漏电、火花塞工作不良或失效,造成缺缸或点火不良。火花塞间隙应在1.0~1.1mm之间,中心电极无烧蚀;高压线无裂缝无老化,且电阻小于25KΩ。不符合要求更换火花塞或高压线。

1.3.3 速控制系统

怠速空气控制阀(IAC)脏污卡滞或其控制线路断路。当发动机要提升怠速时,电脑发出的指令无法执行,进气量无法满足负荷的要求,就会导致怠速不稳或熄火。怠速空气控制阀结构如下图2:

图 2 本田轿车IAC阀

1—线圈2—接进气歧管3—来自进气滤清器4—弹簧5—阀6—轴

1.3.4 废气再循环(EGR)系统

废气再循环是将一部分废气引入到进气管与新鲜空气混合,以降低燃烧温度抑制有生成的装置。这种完全是出于环保要求而牺牲汽车性能的装置,特别是在怠速、害气体NO

X

低转速、小负荷及发动机在冷态运行时,会明显降低汽车性能。所以发动机在冷态和怠速情况下,EGR阀是关闭的,否则会造成怠速不稳甚至熄火。如果我们怀疑是EGR阀故障引起怠速不稳时,我们可以断开其动力源——真空管(在怠速的时候),如果故障消失说明问题出在EGR系统。可能是因EGR阀有积炭卡滞关闭不严或EGR控制电磁阀关闭不严(如下图3,后者在拔下真空管时有漏气声)。

图 3 ACCORD EGR系统

1.3.5 燃油蒸气净化控制系统

发动机温度小于75℃或在怠速的情况下EVAP净化控制阀应关闭,否则可导致混合气过浓,引起怠速不稳。

图 4 燃油蒸气净化控制系统示意图

1.3.6 传感器部分

①节气门位置传感器

节气门在怠速情况下由于脏污不能回到正确的位置上,造成进气量加大,怠速过高。本田雅阁数据流测试在节气门全开时端电压应为4.5伏,怠速时端电压应为0.5伏。

②水温传感器

水温传感器是利用热敏电阻的电阻值变化来检测冷却水温变化的,并将电阻值的变化量换成电压的变化输入到控制模块当中,根据冷却水温的情况对基本喷射时间进行修正。

③进气温度传感器:

控制原理和水温传感器相同。进气量与进气的密度有关,而密度又和进气的温度有关。温度越高密度越小,进气量也就越小。发动机根据这一信号对基本喷油量进行修正。

④进气歧管绝对压力(MAP)传感器:

进气歧管绝对压力传感器是决定喷油量的最重要传感器。它反映给电脑的值是否准确,就决定了空燃比是否准确。如果发动机怠速不稳同时伴有排气管冒黑烟现象,我们就要怀疑是否MAP传感故障或是连接MAP传感器的真空软管脱落、漏气。ECM误以为是发动机大负荷运转,加大喷油量使混合气过浓。

⑤开关信号:

空调(AC)开关、动力转向(EPS)开关、制动开关等信号不能到达PCM。这些增加发动机负荷的开关接通,PCM将通过怠速空气控制阀提升怠速,以便让发动机有足够的动力来驱动。这种故障带有一种伴随性,通常在开空调、打转向盘或踩制动踏板时引起怠速不稳,而在其它时候怠速正常。这种有针对性的故障一般比较容易排除。

1.3.7 机械故障

①气缸压力不足:

气缸、活塞环因磨损导致配合间隙过大,或是某些缸活塞环折断造成漏气。发动机气缸压力不足表现为不易着车,发动机功率下降,在低速时运行不稳,特别在怠速的情况。本田雅阁气缸压力额定值为1230kpa,最小值为930kpa。

②正时不准:

正时皮带严重磨损或张紧轮弹力不当,造成正时皮带跳齿。这时的曲轴位置传感器所反映的一缸上止点位置与实际值有所偏差,导致点火时间不当。同时还会引起配气相位的偏差。这都会造成怠速不稳。

2 本田雅阁发动机怠速不稳故障诊断与维修方法

2.1 汽车故障的诊断基本原则:

①先备后用

最初从车主或接车员了解汽车的故障现象,我们脑海就要形成一个大概的思路,就要着手准备一些将要用到的东西。例如接入的一辆车怠速不稳且发动机故障指示灯亮,我们就要准备解码器和该车相关的技术资料,而且要确保配件充足,这样才能保证工作效率。

②先思后行

这样可以加深条理,避免盲目拆装,少走弯路。

③代码优先

我们维修电控轿车发动机的轿车,无论是怠速不稳还是其它故障,如果故障指示灯亮,我们都要遵循代码优先的原则,因为故障自诊断是一种最直接反应故障的方法。提取本田(HONDA)轿车发动机故障代码时,如果没有专用的解码器,我们可以用故障指示灯闪烁的方法来读取故障码。方法如下:点火开关置OFF位置,安装跨接线(SCS)至维修检查连接器,如(图6)所示。维修检查连接器位于仪表板乘员侧杂物箱下方。接通点火开头,则仪表板上的MIL指示灯会闪烁故障码。故障指示灯每秒闪两次表明系统是正常的。如果有故障将以(图7)的规律闪烁储存的二位数故障码。若有多个故障码,码与码之间间隔2.5s,并按从小到大的顺序显示。重复显示间隔4.5s。

图 5 安装跨接线(SCS )至维修检查连接器

图6

④先外后内 在电控发动机机当中,绝大多数的故障是由于传感器、执行器与发动机控制模块之间的线路发生故障。例如线束连接器松脱、线路老化、插头锈蚀等导致断路、短路、接触不良而引起怠速不稳。还有一些真空管路由于橡胶老化漏气都可能引起怠速不稳。其中一些人为故障也不可忽视,某些车主为贪方便或省钱在一些不规范的维修厂做过维修,有些维修人员对车型不够熟悉,造成一些线束连接器、真空管的错接引发故障。

我们在检修发动机的时候,要先对发动机的外观进行仔细观察,看线路、管路有没老化,连接器有松脱,线路、管路有没错接等。不要轻易对发动机部件进行拆检,这样往往能提高工作效率,起到事半功倍的效果。

⑤ 先简后繁

汽车故障通常是由一些简单原因引起的,我们在推测故障原因时,要先从简单入手。例如我们怀疑怠速控制阀故障时,我们先考虑是否怠速控制阀线路上有问题,否定之后我们才考虑拆检怠速控制阀。又例如我们怀疑ECM 有故障前,要确保与故障相关的传感器、执行器以及线路无故障。

2.2 怠速不稳故障诊断流程图

下面是本人对怠速不稳故障诊断流程,流程仅供参考或以供查漏补缺。其中一些步骤因人而异、因车而异,不必拘于模式。

3 本田雅阁2.2EXI型怠速不稳检修实例

一辆本田雅阁(HONDA ACCORD)2.2EXI型乘用车,发动机型号为F22B4。该发动机怠速时转速在1200r/min 和1800r/min之间上下波动,发动机运转很不平稳。

本田F22B4发动怠机怠速控制由怠速控制阀和快怠速控制阀共同作来完成。该车怠速空气控制阀(IAC),其结构类型为直线电磁式怠速控制机构,这是一种比例电磁阀的结构形式,由电磁线圈、阀轴、阀等主要部件构成。它利用电磁线圈产生的电磁力,使

阀轴在轴向作位移,从而改变控制阀的开度的。当弹簧力与电磁吸力相平衡时,阀门开度处于稳定状态。而电磁吸力的大小取决于ECM根据发动机式况送至电磁式怠速控制阀的驱动电流大小。当驱动电流大时,电磁吸力大,阀门开度也大;反之当驱动电流小时,电磁吸力也小,阀门开度也小。快怠速阀为蜡式感温开关式,感受从发动机引来的冷却液温度。当冷却液温度度时,蜡式感温器收缩,使空气经旁通阀绕过节气门进入进气管,从而提高冷车怠速,在冷却液温度升高后,快怠速阀蜡式感温器受热伸长,使旁通阀关闭,此时的怠速进气量由怠速控制阀和怠速调节螺钉控制。快怠速阀结构如图8

图 8 快怠速阀(温控阀)

1 空气旁通阀

2 蜡式感温控制阀

该车怠速如果稳定在1200 r/min至1800r/min之间的某一转速,则说明怠速转速过高,通常是由于管路漏气、某个控制阀失控或怠速控制阀因脏堵、阀芯卡滞不能复位等原因所致。而该车的故障现象是发动机转速忽高忽低地喘振,说明发动机转速有下降的趋势,只是由于某种原因而降不下来。

于是针对以上的可能原因作了常规检查,清洗了怠速控制阀,调整了怠速螺钉,情况没有明显好转。于是拆下空气滤清器与节气门之间的软管,把手伸入节气门体内,用手指把快怠速阀的进气口堵住,发动机怠速转速立即稳定在800r/min(此时发动机已在正常温度下)。由此可知,冷却液在正常温度时,快怠速阀应当关闭,用手指堵住快怠速阀的进气口,发动机转速不应该有什么变化。显然这是快怠速阀漏气关闭不严的结果。

为什么怠速转速忽高忽低呢?经分析认为发动机ECU根据发动机转速传感器送来转速升高的信号,同时又根据节气门位置传感器送来的怠速触点处于闭合状态的信号,以及自动变速器处于停车档(P)的信号,还有冷却液温度正常的信号作出判断,认为现发动机转速不应该那么高,便指令喷油器断油以节降低油耗。(本田车当节气门关闭,当发动机转速超过1250r/min时,ECM执行断油控制)断油后,发动机转速立即下降,降到一定程度再恢复供油。与此同时,怠速控制阀也由发动机ECU传来的电压和电流信号来控制进气歧管的空气量。但由于快怠速阀漏气,使发动机转速超过工况的正常转速。如此不断的反复,造成该车发动机怠速忽高忽低的不稳现象。

下面开始检修快怠速阀,拆卸时要先等发动机冷却到一定程度,然后打开散热器盖释放其中的压力,以防止高温高压的冷却液从快怠速阀冷却液管口喷出伤人。出乎意料,快怠速阀未发现异常。最后还是更换了一个新的快怠速阀,但故障依旧。但以前已证实故障是由于快怠速阀漏气所致,所以肯定和通过快怠速阀循环的冷却液温度有关。检查快怠速阀的进水管路没发现异常,于是怀疑是管路堵塞。快怠速阀进水管前有一段铁质的U形水管,该水管的两端各有一根橡胶管,一关接快怠速阀进水管,一关接节温器处发动机小循环出水口的小水管。检查时,用手触摸U形铁管两端的胶管,感觉温差较大。拆下U形管朝里面吹气,不通。用细铁线疏通,无法通过,最后用锯片把它锯断,由于管较小,里面全被灰白色的水垢堵死。

此时症结终于找到,其原因是由于使用劣质的冷却液引起水套和U形管的腐蚀并产生水垢。腐蚀物在大水道中不易滞留,最后滞留在内径只有7mm的U形水管的拐弯处造成的堵塞。这样,快怠速阀蜡式感温器感受的冷却液温度就不是发动机实际的工作温度,于是快怠速阀在任何时候都处于冷车快怠速的状态。

最后修复好U形水管,清洗冷却系统,加入优质防冻液。故障排除,发动机怠速运转平稳,转速正常。

4.总结

发动机怠速不稳是汽车的一种常见故障,由于其成因复杂、涉及面广,对我们的诊断造成一定困难。因此对汽车维修人员需要更高的要求。但在我们许多的维修人员中,对发动机的理论知识、各系统的工作原理不够了解,在分析问题时考虑不全面,同时在分析问题的过程中条理不清晰,不能对症下药,常带一种漫无目的碰运气的心理进行维修,往往花了大钱、更换了许多零件却仍不能解决问题。本文对雅阁轿车发动机怠速不稳原因进行了全面的分析,优化了诊断的程序。本田雅阁2.2EXI型怠速不稳检修实例,直接以“怠速高”为突破口,确定故障是由于快怠速阀漏气造成的,当发现快怠速阀正常时,确定是发动机冷却液不能到达快怠速阀所致,并最终找到症结所在。

致谢:

在顺利完成此篇论文之时,我不禁想起了那些给予我帮助和指点迷津的人,深深地感谢我的指导老师_ _老师,他不仅指导我如何写论文,如何找资料,提供宝贵的资料给我,还教会了我自学之道,做人之道,终生受益。在此也感谢本文参考文献的所有作者和单位。

参考文献:

1.李春明编著. 汽车发动机燃油喷射技术. 北京:北京理工大学出版社. 200

2.9.

2.戴冠军. 本田轿车电控系统维修手册. 北京:机械工业出版社. 2002.10.

3.许正文. 本田雅阁维修手册. 广州:广东科技出版社. 1999.2.

汽车构造原理图解

汽车构造(发动机,底盘,车身,电气设备) 1. 发动机:发动机2大机构5大系:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系;起动系。 2. 底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。 3. 车身:车身安装在底盘的车架上,用以驾驶员、旅客乘坐或装载货物。轿车、客车的车身一般是整体结构,货车车身一般是由驾驶室和货箱两部分组成。 4. 电气设备:电气设备由电源和用电设备两大部分组成。电源包括蓄电池和发电机;用电设备包括发动机的起动系、汽油机的点火系和其它用电装置。 性能参数 1. 整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。 2. 最大总质量(kg):汽车满载时的总质量。 3. 最大装载质量(kg):汽车在道路上行驶时的最大装载质量。 4. 最大轴载质量(kg):汽车单轴所承载的最大总质量。与道路通过性有关。 5. 车长(mm):汽车长度方向两极端点间的距离。 6. 车宽(mm):汽车宽度方向两极端点间的距离。 7. 车高(mm):汽车最高点至地面间的距离。 8. 轴距(mm):汽车前轴中心至后轴中心的距离。 9. 轮距(mm):同一车轿左右轮胎胎面中心线间的距离。 10. 前悬(mm):汽车最前端至前轴中心的距离。 11. 后悬(mm):汽车最后端至后轴中心的距离。 12. 最小离地间隙(mm):汽车满载时,最低点至地面的距离。 13. 接近角(°):汽车前端突出点向前轮引的切线与地面的夹角。 14. 离去角(°):汽车后端突出点向后轮引的切线与地面的夹角。 15. 转弯半径(mm):汽车转向时,汽车外侧转向轮的中心平面在车辆支承平面上的轨迹圆半径。转向盘转到极限位置时的转弯半径为最小转弯半径。 16. 最高车速(km/h):汽车在平直道路上行驶时能达到的最大速度。 17. 最大爬坡度(%):汽车满载时的最大爬坡能力。 18. 平均燃料消耗量(L/100km):汽车在道路上行驶时每百公里平均燃料消耗量。 19. 车轮数和驱动轮数(n×m):车轮数以轮毂数为计量依据,n代表汽车的车轮总数,m 代表驱动轮数。

发动机结构与原理

《发动机结构与原理》

培训内容 一、发动机的分类 二、发动机的工作原理 三、发动机的基本结构 四、发动机的性能指标 五、神龙公司系列发动机产品参数介绍

一、发动机的分类 往复活塞式内燃机可按不同的方式分类: 1、燃料:汽油机、柴油机、气体燃料、代用燃料 2、燃油供给方式:化油器式汽油机和直接喷射式汽油机 3、工作循环:二冲程和四冲程 4、气缸数量:单缸和多缸 5、气缸排列方式:单列和双列 6、冷却方式:水冷式、风冷式 7、进气系统是否增压:自然吸气和强制进气 现代汽车多采用水冷式、四冲程往复活塞式、多缸汽油机。

培训内容 一、发动机的分类 二、发动机的工作原理 三、发动机的基本结构 四、发动机的性能指标 五、神龙公司系列发动机产品参数介绍

二、发动机的工作原理 1、术语 A)工作循环:在气缸内进行的每一次将燃料燃烧的热能转化为机械能的一系列连续过程(进气、压缩、作功和排气) B)上止点、下止点: 活塞离曲轴回转中心最远处, 即活塞在最高位置,为上止点 活塞离曲轴回转中心最近处, 即活塞在最低位置,为下止点 C)活塞行程:上下止点间的距离S=2R D)冲程:活塞由一个止点到另一个止点运动 一次,为一个冲程。

二、发动机的工作原理 E)气缸工作容积/气缸排量:活塞从上止点到下止点所扫过的容积,记作Vs D-气缸直径(mm)S-活塞行程(mm) F)发动机工作容积/发动机排量:所有气缸工作容积的总和,记作V L i-气缸数 两冲程发动机:活塞往复两个行程完成一个工作循环。四冲程发动机:活塞往复四个行程完成一个工作循环

汽车发动机构造及原理

第1篇汽车发动机构造与原理 第1章发动机基本结构与工作原理 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 发动机:将其它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW)、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基 本结构及工作原理 1.1.1 四冲程汽油机基本结 构及工作原理 1.四冲程汽油机基本结构 (图1-2) 2.四冲程汽油机基本工 作原理(图1-2) 表1-1 四冲程汽油机工作过 程 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气 门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

3.工作过程分析 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S:指活塞在上、下两个止点之间距离; 气缸工作容积V s:一个活塞在一个行程中所扫过的容积。 式中V s——工作容积(m3); D——气缸直径(mm); S——活塞行程(mm)。 发动机的排量V st:一台发动机所有气缸工作容积之和。 式中V st——发动机的排量(L); i——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa,温度达600K~700K),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T1)升高,而排气的温度(T2)降低,导致热效率提高。 1860年,法国人Lenoir(勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto)制造出第一台四冲程内燃机,采用压缩行程,虽然压缩比只有2.5,但热效率却提高到12%,有力地证明了科学是第一生产力这个真理。 压缩比ε:气缸内气体被压缩的程度。 式中V a——气缸总容积(活塞处于下止点时,活塞顶部以上的气缸容积);

(完整版)汽车构造(发动机原理)试卷及标准答案

发动机构造试卷 考号姓名专业 装订线 一词语解释(14×1=14分) 1.EQ6100――1型汽油机 2.压缩比 3.发动机的工作循环 4.活塞环端隙 5.轴瓦的自由弹势 6.干式缸套 7.气门重叠角 8.配气相位 9.空燃比 10.发动机怠速 11.多点喷射 12.压力润滑 13.冷却水大循环 14.废气涡轮增压 二、选择(12×1=12分) 1.汽车用发动机一般按(C )来分类。 A.排量B.气门数目C.所用燃料D.活塞的行程 2.气缸工作容积是指(C )的容积。 A.活塞运行到下止点活塞上方B.活塞运行到上止点活塞上方C.活塞上、下止点之间D.进气门从开到关所进空气 3.湿式缸套上平面比缸体上平面( A ) A.高B.低C.一样高D.依具体车型而定,有的高有的低。 4.为了限制曲轴轴向移动,通常在曲轴采用( A )方式定位。 A.在曲轴的前端加止推片B.在曲轴的前端和后端加止推片C.在曲轴的前端和中部加止推片D.在曲轴的中部和后端加止推片5.液力挺柱在发动机温度升高后,挺柱有效长度( B )。 A.变长B.变短C.保持不变D.依机型而定,可能变长也可能变短。 6.排气门在活塞位于( B )开启。 A.作功行程之前B.作功行程将要结束时C.进气行程开始前D.进气行程开始后 7.发动机在冷启动时需要供给( A )混合气。 A.极浓B.极稀C.经济混合气D.功率混合气 8.在电喷发动机的供油系统中,油压调节器的作用是( C )。 A.控制燃油压力衡压B.在节气门开度大时燃油压力变小C.燃油压力与进气管压力之差保持恒定D.进气管压力大时燃油压力小9.在柴油机燃料供给系中,喷油压力的大小取决于( D )。 A.发动机的转速B.节气门开度的大小C.喷油泵的柱塞行程D.喷油器弹簧的预紧力 共2页第1页 10.当节温器失效后冷却系( A )。

汽车发动机构造与原理概要

汽车发动机构造原理Automobile engine configuration principle (申请学位) 专业:汽车制造与装调技术专业 学生:x x x 指导教师:x x x教授 二零一一年七月

独创性声明 本人声明所呈交的论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得xxxxxxx学校或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 论文作者签名:签字日期:年月日 学位论文版权使用授权书 本论文作者完全了解XXXX学校有关保留、使用论文的规定。特授权XXXX 学校可以将论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。 (保密的论文在解密后适用本授权说明) 论文作者签名:导师签名: 签字日期:年月日签字日期:年月日

中文摘要 发动机是汽车的心脏,为汽车的行走提供动力,汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将汽油(柴油)或天然气的热能,通过在密封汽缸内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,发动机伴随着汽车走过了100多年的历史,无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,但其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点,现在的汽车发动机不仅注重汽车动力的体现,更加注重能源消耗、尾气排放等与环境保护相关的方面。使得人们在悠闲的享受汽车文化的同时,也能保护环境,节约资源 关键词:发动机构造、工作原理、分类、

汽车发动机构造原理图解

汽车发动机原理图解 机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。<本文原载于-技巧网评> 一. 气缸体(图2-1) 水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,

气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。(图2-2) (1) 一般式气缸体其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差 (2) 龙门式气缸体其特点是油底壳安装平面低于曲轴

的旋转中心。它的优点是强度和刚度都好,能承受较大的机 械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。[ 录入者:周洋 | 时间:2007-09-22 13:49:12 | 作者: | 来源:技巧网评 | 浏览:471次 ] (3) 隧道式气缸体这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。 为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷(图2-3)。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。<本文原载于-技巧网评>

【精编】汽车发动机解剖结构原理图集

汽车发动机解剖结构 原理图集

汽车发动机解剖结构原理图集 (2012-06-0321:32:07) 转载▼ 分类:图纸资料 标签: 车展 空愁居 旅游 汽车 图片 汽油发动机的目的在于将汽油转换为运动,以便汽车能够开动。目前将汽油变成运动的最简单方法是在发动机中燃烧汽油。因此,汽车发动机是一种“内燃发动机”——燃烧发生在内部。需要注意两件事情: 有多种不同的内燃发动机。柴油发动机是一种,燃气轮机是另外一种。参见有关HEMI发动机、转子发动机和二冲程发动机的文章。每种发动机都有自己的优缺点。 还有一种外燃发动机。老式火车和蒸汽轮船中的蒸汽机是外燃发动机。在蒸汽机中,燃料(煤、木柴、石油等)在发动机外部燃烧并产生蒸汽,由蒸汽在发动机内部形成运动。内燃机的效率比外燃机高出许多(每公里消耗的燃料更少),而且内燃发动机比同等功率的外燃发动机要小巧很多。福特和通用这些公司之所以不使用蒸汽机,原因也在于此。 当前几乎所有汽车都使用往复式内燃发动机,因为这种发动机具有以下优点: 相对高效(与外燃发动机相比) 相对廉价(与燃气轮机相比)

相对来说易于加注燃料(与电动汽车相比) 这些优点使得其成为驱动汽车的首选技术。 为了了解往复式内燃发动机的工作原理,对“内部燃烧”的工作方式有一个直观的认识十分有帮助。加农炮是一个很好的例子。您可能在电影里看到过它们,士兵们向炮中填入火药和炮弹,然后点着它。这就是我们说的内部燃烧,但是很难想象发动机是如何完成这些过程的。下面是一个更为形象的例子:假如有一大段塑料的下水道管子,它的直径为8厘米,长度为90厘米,然后在它的一端安上一个盖子。接着,在管子中喷洒了一点WD-40,或者放了几滴汽油。然后,在管子里塞进一个土豆。就像这样: 我们现在拥有的这个装置通常称作土豆加农炮。 不建议您这样做!但是假如您这样做了,我们现在拥有的这个装置通常称作土豆加农炮。如果您在其中打出一个火花,那么就可以点着燃料。 有意思的是——而且我们讨论这样一个装置的目的就在于——土豆加农炮可以将土豆发射出大约150米远!几滴汽油就可以产生如此巨大的能量。 内部燃烧 土豆加农炮的基本原理与所有往复式内燃发动机完全一致:如果将一点儿高能燃料(例如汽油)放在一个小的密闭空间中并点燃它,它将以气体膨胀的形式释放出巨大能量。可以使用这些能量将土豆抛出150米远。在这个例子中,能量被转换为土豆的运动。也可以使用这些能量完成更有意思的工作。例如,如果可以建立一个循环,使得在每分钟内可以进行数百次爆炸,然后将能量用于有意义的事情,现在您已经接触到了汽车发动机的核心秘密! 目前几乎所有汽车都使用四冲程燃烧循环来将汽油转化为运动。四冲程方式又称作“奥托循环”,以此纪念1867年发明它的尼克劳斯?奥托(NikolausOtto)。这四个冲程如图1所示。它们分别是:

发动机的组成及工作原理

发动机的组成及工作原理 一、组成: 总的来说,目前发动机由两大机构、五大系统组成 1、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 2、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 3、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 4、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 5、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 6、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 7、起动系 理解这个并不难,要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动

柴油机结构原理分析解析

柴油机结构 一、发动机的工作原理 发动机的功能是将燃料在气缸内燃烧使其热能转换成机械能,从而输出动力。能量的转换是通过不断地依次反复进行“进气—压缩—做功——排气”四个连续过程来实现的,每进行这样一个连续过程就叫做一个工作循环。 1、进气冲程—活塞由曲轴带动从上止点向下止点运动,此时排气门关闭,进气门开启。活塞移动的过程中,气缸内的容积逐渐增大,形成一定的真空度,于是经过虑芯的空气通过进气门进入气缸。直至活塞到达下止点时,进气门关闭,停止进气。 2、压缩冲程—进气冲程结束时,活塞在曲轴的带动下,从下止点向上止点运动,气缸容积逐渐减小,由于进排气门均关闭,气体被压缩,气缸内温度上升,直至活塞到达上止点时,压缩结束。 3、做功冲程—在压缩冲程末,高压油嘴喷出高压燃油与空气混合,在高温、高压下混合气体迅速燃烧,使气体的温度、压力迅速升高而膨胀,从而推动活塞由上止点向下止点运动,再通过连杆驱动曲轴转动做功,至活塞到下止点时,做功结束。 4、排气冲程—在做功冲程结束时,排气门被打开,曲轴通过连杆推动活塞由下止点向上止点运动,废气在自身剩余压力和活塞的推力作用下,被排出气缸,直至活塞到达上止点时,排气门关闭,排气结束。排气冲程终了时由于燃烧室容积存在,气缸内还存少量废气,气体压力也因排气门和排气管的阻力而仍高于大气压。

二、发动机的总体构造 柴油机由两大机构四大系统组成。 1、柄连杆机构—曲柄连杆机构主要由构成气缸的机体、活塞、连杆、曲轴和飞轮等组成。 由发动机的工作循环可知,混合气在气缸内燃烧产生的高压是通过活塞、连杆、曲轴而变为有用的机械能输出的;反之,工作循环的准备过程也是由曲轴通过连杆通过活塞作往复运动来实现的。可见,曲柄连杆机构是发动机维持工作循环,实现能量转换的核心。 2、配气机构—为使发动机的工作循环能够连续进行,必须定时地开闭气门,以便向气缸内充入新鲜气体和排出废气。它主要由气门和控制气门开闭的凸轮轴及其他传动件等组成。 3、燃料供给系—从发动机的工作循环可知,柴油机要向气缸内提供纯空气并在规定时刻向气缸内喷入燃油。另外,需要将燃烧完的废气按规定的管路导出。柴油机的燃料供给系主要由燃油箱、喷油泵、喷油器、进、排气管、虑清器等组成。 4、润滑系—发动机内部有很多高速运动的摩擦表面,为了减小摩擦阻力和减缓磨损,需要向这些摩擦表面提供润滑油。润滑系主要由油底壳、机油泵、油道、虑清器等组成。 5、冷却系—发动机工作时,气缸内气体燃烧的热量在使气体膨胀做功的同时,不可避免地将会加热与它相接触的机件,为了保持正常的工作温度,需将机件的多余热量散发出去。冷却系有水冷和风冷两种,水冷主要由散热器、风扇、水泵、水套等组成;风冷主要由风扇、散

发动机无刷励磁结构及原理

发电机无刷励磁结构及原理 一、励磁系统作用 励磁系统的主要作用就是维持发电机的电压在给定范围,主要有以下三点: 1、是保证电力系统运行设备的安全。电力系统中的运行设备都有其额定运行电压和最高运行电压。保证发电机端电压在容许水平上,是保证发电机及其电力系统设备安全运行的基础条件之一,这就要求发电机励磁系统不仅能够在静态下,而且在大扰动后的稳态下保证发电机在给定的容许水平上,一般发电机运行电压不得高于额定值的10%。 2、保证发电机运行的经济性。发电机在额定值附近运行是最经济的,如果发电机电压下降,则输出相同的功率所需的定子电流将增加,从而使损耗增加。一般发电机运行电压不得低于额定值的90%;当发电机电压低于95%时,发电机应该限负荷运行。 3、提高维持发电机电压能力的要求和提高电力系统稳定的要求在许多方面是一致的。 二、有刷励磁和无刷励磁的优缺点 发电机励磁系统一般分为有刷励磁和无刷励磁,它们各有优缺点,具体区别如下: 1、有刷励磁是通过与发电机同轴的直流发电机发出直流电,再经过电刷和滑环加在发电机转子线圈上。

优点是:发电机与励磁系统界限明显,相对独立、直观明了,转子励磁电流、励磁电压容易取得,数值准确、检修方便。 缺点是:由于电刷的存在,增加了接触电阻,随着励磁电流的增加,电刷和滑环常常因接触不良导致发热,严重时会产生环火而烧毁刷架和滑环,并且电刷的质量也直接影响到运行的稳定性,故障率高;电刷磨损产生的碳粉对环境卫生有一定影响,容易污染轴承座,降低绝缘,给安全运行带来一定隐患;由于电刷存在磨损,运行人员要经常巡视、擦拭、更换电刷,在擦拭、更换时存有一定安全隐患。 2、无刷励磁系统是由发电机和与发电机同轴连接的励磁发电机组成,这种励磁发电机不同于和发电机同轴的直流发电机,这种励磁发电机实际上是交流发电机,它所发出的三相交流电通过连接在其轴上的旋转整流器进行整流,输出的直流电直接接在发电机转子绕组上,用来产生转子磁场。 优点是:由于没有电刷也就不存在接触不良以及因此产生的发热问题,更不会因产生电火花而烧毁设备;没有电刷也就没有磨损的碳粉,发电机两端会比较洁净;运行中不用更换电刷,运行维护少。 缺点是:因励磁发电机输出的直流电直接接在发电机转子绕组上,这样很难测量转子的实际电流,一般根据转子电压等相关参数计算出转子电流,计算值和实际值存在一定

发动机结构及原理图

发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。汽油机由两大机构和五大系统组成,即由曲柄连杆机构,配气机构、燃料供给系、润滑系、冷却系、点火系和起动系组成;柴油机由以上两大机构和四大系统组成,即由曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系和起动系组成,柴油机是压燃的,不需要点火系。 曲柄连杆机构起动系统 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始

发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。 点火系统冷却系统 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等

汽车发动机构造原理图解

汽车发动机构造原理图解 发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。 (1) 曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。

(2) 配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 (3) 燃料供给系统 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

(4) 润滑系统 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 (5) 冷却系统 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷

柴油发动机的工作原理与基本组成#(精选.)

柴油发动机的工作原理与基本组成 一、柴油发动机的概念: 柴油发动机是内燃机的一种,将柴油喷射到气缸内与空气混合,燃烧得到热能转变为机械能的热力发动机,即依靠燃料燃烧时的燃气膨胀推动活塞作直线运动,通过曲柄连杆机构使曲轴旋转,从而输出机械功。 二、四冲程工作原理: 1、四冲程分类:a进气冲程、b膨胀冲程、c压缩冲程、d排气冲程。 2、四冲程工作原理: 1、吸气冲程:活塞从上止点向下止点移动,目的是吸入新鲜空气为燃烧做好准备,此时进气门打开,排气门关闭。活塞到达下止点时进气门关闭,近期冲程结束。 2、压缩冲程:活塞从下止点向上止点移动,此时上气门关闭,气缸内空气受压缩温度、压力提高,为燃烧提供条件,活塞到达上止点时压缩冲程结束。 3、膨胀(做功)冲程:在压缩冲程结束时前,喷油器将燃油喷入气缸,与空气混合形成可燃气体并自燃,产生高温、高压推动活塞向下止点运动并带动曲轴旋转而做功,活塞到达下止点时,气缸内压力下降,直到排气门打开。 4、排气冲程:做工结束后,气缸内的气体已成为废气,活塞从下止点向上止点运动,排气门打开,进气门关闭,活塞将废气排出气缸,到达上止点时,排气冲程结束。 5、排气冲程结束后,排气门关闭,进气门又打开,重复进行下一个循环,周而复始不断对外做功。

三、柴油机的组成部分: 柴油机总体结构一般由以下几大系统或机构组成: 1、机体(缸体)

2、燃油系统 3、曲轴连杆机构

4、进排气系统 进排气系统工作原理图:

5、润滑系统 1)润滑系统的组成: 2)润滑系统的作用:将润滑油共给摩擦件以减少摩擦阻力,减轻机件的磨损,并部分地冷却摩擦零件,清洁摩擦表面。 6、冷却系统: 冷却系统内部工作示意图:

汽车发动机构造与原理

22 第1篇 汽车发动机构造与原理 第1章 发动机基本结构与工作原理 发动机:将其 它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW )、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基本结构及工作原理 1.1.1 四冲程汽油机基本结构及工作原理 1.四冲程汽油机基本结构(图1-2) 2.四冲程汽油机基本工作原理(图1-2) 表1-1 四冲程汽油机工作过 程 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

23 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S :指活塞在上、下两个止点之间距离; 气缸工作容积V s :一个活塞在一个行程中所扫过的容积。 S D V s 10 6 2 4?=π 式中 V s ——工作容积(m 3); D ——气缸直径(mm ); S ——活塞行程(mm )。 发动机的排量V st :一台发动机所有气缸工作容积之和。 i V V s st = 式中 V st ——发动机的排量(L ); i ——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa ,温度达600K~700K ),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 1 2 1T T - =η 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T 1)升高,而排气的温度(T 2)降低,导致热效率提高。 1860年,法国人Lenoir (勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto )制造出第一台四冲程内燃机,采用压缩 行程名称 曲轴转角 活塞行向 进气门 排气门 进气 0o~180o ↓ 开 关 压缩 180o~360o ↑ 关 关 作功 360o~540o ↓ 关 关 排气 540o~720o ↑ 关 开

发动机基本构造及其原理

发动机基本构造及其原理 一.发动机基本工作原理 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 1.汽油机 汽油发动机(Gasoline Engine),是以汽油作为燃料的发动机。由于汽油粘性小,蒸发快,可以用汽油喷射系统将汽油喷入气缸,经过压缩达到一定的温度和压力后,用火花塞点燃,使气体膨胀做功。汽油机的特点是转速高,结构简单,质量轻,造价低廉,运转平稳,使用维修方便。汽油机在汽车上,特别是小型汽车上大量使用,至今不衰。 汽油发动机的工作原理: 一个工作循环包括有四个活塞行程:进气行程、压缩行程、膨胀行程和排气行程。 (1)进气行程: 在这个过程中,发动机的进气门开启,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而使气缸内的压力降到大气压力以下,即在气缸内造成真空吸力,这样空气便经由进气管道和进气门被吸入气缸,同时喷油嘴喷出雾化的汽油与空气充分混合。在进气终了时,

气缸内的气体压力约为0.075-0.09MPa。而此时气缸内的可燃混合气的温度已经升高到370-400K。 (2)压缩行程 为使吸入气缸的可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机排气,发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小、密度加大、温度升高,即需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程,即压缩行程。此时混合气压力会增加到0.6-1.2Mpa,温度可达600-700K。 在这个行程中有个很重要的概念,就是压缩比。所谓压缩比,就是压缩前气缸中气体的最大容积与压缩后的最小容积之比。一般压缩比越大,在压缩终了时混合气的压力和温度便越高,燃烧速度也越快,因而发动机发出的功率越大,经济性越好。一般轿车的压缩比在8-10之间,不过现在最新上市的Polo就达到了10.5的高压缩比,因此它的扭矩表现相对不错。但是压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常燃烧现象。 爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃而造成的一种不正常燃烧除了爆燃,过高压缩比的发动机还可能要面对另一个问题:表面点火。这是由于缸内炽热表面与炽热处点燃混合气产生的另一种不正常燃烧。表面点火发生时,也伴有强烈的敲缸

柴油机工作原理

柴油机工作原理 国产上柴柴油发电机组 在柴油机汽缸内,经过空气滤清器过滤后的洁净空气与喷油嘴喷射出的高压雾化柴油充分混合,在活塞上行的挤压下,体积缩小,温度迅速升高,达到柴油的燃点。柴油被点燃,混合气体剧烈燃烧,体积迅速膨胀,推动活塞下行,称为‘作功’。各汽缸按一定顺序依次作功,作用在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。 将无刷同步交流发电机与柴油机曲轴同轴安装,就可以利用柴油机的旋转带动发电机的转子,利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。 这里只描述发电机组最基本的工作原理。要想得到可使用的、稳定的电力输出,还需要一系列的柴油机和发电机控制、保护器件和回路。 柴油机发电机主要品牌[回目录] Perkins 1932年的Perkins珀金斯公司是世界最早生产发动机公司的公司之一。所生产的以柴油和天然气作为 柴油发电机 燃料的发动机因其经济性,可靠性和耐久性的优点在各行业当中得到广泛的推广和应用。如汽车、工程机械、农业机械、工业用发电机组及船舶等。产品方面有100、3.152、4.236、1000、1300、2000、3000和4000系列。其中2000和3000系列出自享誉世界,在机械动力领域最具权威之一的英国ROLLS-ROYCE(劳斯莱斯)公司的设计及制造。 Cummins美国康明斯发动机公司始建于1919年,主要生产发电设备、工业及汽车等行业用发动机。康明斯公司在世界柴油发动机技术方面居领先地位,始终是200马力以上柴油发动机最大生产厂家及50马力以上柴油发动机第二生产厂家。其产品以优越的性能,卓越的品质,合理的价格,忠诚的服务遍及世界各地,早已发展成为美国500家著名跨国大公司之一。

相关主题
文本预览
相关文档 最新文档