当前位置:文档之家› Color of Scents Chromatic Stimuli Modulate Odor Responses in the

Color of Scents Chromatic Stimuli Modulate Odor Responses in the

Color of Scents Chromatic Stimuli Modulate Odor Responses in the
Color of Scents Chromatic Stimuli Modulate Odor Responses in the

You might find this additional information useful...56 articles, 19 of which you can access free at:

This article cites

https://www.doczj.com/doc/149207161.html,/cgi/content/full/93/6/3434#BIBL 1 other HighWire hosted article:

This article has been cited by

[PDF] [Full Text] [Abstract], July 1, 2006; 31 (6): 531-538. Chem Senses M Luisa Dematte, D. Sanabria and C. Spence

Cross-Modal Associations Between Odors and Colors including high-resolution figures, can be found at:

Updated information and services

https://www.doczj.com/doc/149207161.html,/cgi/content/full/93/6/3434 can be found at:

Journal of Neurophysiology about Additional material and information https://www.doczj.com/doc/149207161.html,/publications/jn This information is current as of April 17, 2008 . publishes original articles on the function of the nervous system. It is published 12 times a year Journal of Neurophysiology on April 17, 2008

https://www.doczj.com/doc/149207161.html, Downloaded from

Color of Scents:Chromatic Stimuli Modulate Odor Responses in the

Human Brain

Robert A.O ¨sterbauer,1Paul M.Matthews,1Mark Jenkinson,1Christian F.Beckmann,1Peter C.Hansen,2and Gemma A.Calvert 1,2,3

1Oxford Centre for Functional Magnetic Resonance Imaging of the Brain,John Radcliffe Hospital and 2University Laboratory of Physiology,University of Oxford,Oxford;and 3Department of Psychology,University of Bath,Bath,United Kingdom

Submitted 27May 2004;accepted in ?nal form 27January 2005

O ¨sterbauer,Robert A.,Paul M.Matthews,Mark Jenkinson,

Christian F.Beckmann,Peter C.Hansen,and Gemma A.Calvert.Color of scents:chromatic stimuli modulate odor responses in the human brain.J Neurophysiol 93:3434–3441,2005.First published February 2,2005;doi:10.1152/jn.00555.2004.Color has a profound effect on the perception of odors.For example,strawberry-?avored drinks smell more pleasant when colored red than green and descrip-tions of the “nose”of a wine are dramatically in?uenced by its https://www.doczj.com/doc/149207161.html,ing functional magnetic resonance imaging,we demonstrate a neurophysiological correlate of these cross-modal visual in?uences on olfactory perception.Subjects were scanned while exposed either to odors or colors in isolation or to color-odor combinations that were

rated on the basis of how well they were perceived to match.Activity in caudal regions of the orbitofrontal cortex and in the insular cortex increased progressively with the perceived congruency of the odor-color pairs.These ?ndings demonstrate the neuronal correlates of olfactory response modulation by color cues in brain areas previously identi?ed as encoding the hedonic value of smells.I N T R O D U C T I O N In everyday life,odors are often perceived together with visual cues.Both types of sensations interact to modulate the subjective experience of the stimuli from which they emanate.Behavioral studies demonstrated that the ability to correctly identify an odor relies heavily on visual inputs.For example,if subjects are presented with olfactory cues alone,only a few of the presented odors are identi?ed correctly (Desor and Beauchamp 1974).There is a general lack of awareness of how dif?cult it can be to identify a substance by its odor alone because visual cues are usually present to facilitate identi?ca-tion.One visual feature with a particularly strong in?uence on odor perception is color.The color of a fruit,for example,provides an important visual cue about its ripeness and palat-ability.Several reports of strong associations between certain odors and colors (Gilbert et al.1996;Zellner and Kautz 1990)imply that such color-smell associations are most likely acquired and may be subject to variation between cultures.Nonetheless,some of these associations are particularly robust across sub-jects (e.g.,yellow—lemon).Several color-smell associations are so compelling that an odor percept can change with color,e.g.,subjects may perceive a cherry-?avored drink as orange-?avored if it is colored orange (DuBose et al.1980).Further-more,color not only facilitates odor identi?cation but can also

in?uence judgments of odor intensity and pleasantness.For example,both the perceived intensity and pleasantness of an appropriately colored solution (e.g.,red—strawberry)is judged as higher than that of an inappropriately colored (e.g.,green—strawberry)or a colorless solution even when the actual con-centration of odorant remains constant (Zellner et al.1991).More recently it has been found that tasteless red coloring added to a white wine induces a perceptual olfactory illusion that causes the wine to be described with olfactory terms typically used only for red wines (Morrot et al.2001).

Despite the plethora of behavioral studies showing the in-?uence of color on various olfactory judgments,the neuro-physiological basis for these cross-modal interactions is still very poorly understood.In mammals,projections from the retina and olfactory bulb have been found to converge in the

piriform cortex,the olfactory tubercle,the cortical region of the

medial amygdala,and the lateral hypothalamus (Cooper et al.

1994).In primates,a prominent region for multisensory inte-

gration of olfactory and visual signals is the orbitofrontal

cortex (OFC),where afferent inputs from both primary olfac-tory cortex and higher-order visual areas converge (Ongur and Price 2000).Additionally,populations of bimodal neurons responsive to both visual and olfactory stimulation have been reported within the OFC of non-human primates (Rolls and Baylis 1994).Recently,a study using functional magnetic resonance imaging (fMRI)in humans reported that congruent picture-odor combinations (such as the image of a bus and the smell of diesel)enhance neural activity,in the OFC and hippocampus (Gottfried and Dolan 2003).Whether similar regions participate in the synthesis of odors and lower level visual features such as color remains to be explored.

Although the precise neuronal mechanisms underlying the integration of visual and olfactory cues have not yet been studied in detail,some general principles characterizing cross-modal integration at the neuronal level have emerged from the study of other combinations of sensory modalities (Stein 1998).Speci?cally,when two or more sensory cues occur at the same time and in approximate spatial correspondence,the ?ring rate of a multisensory neuron to a stimulus in one modality can be measurably altered by the presence of a second stimulus in another modality.This is referred to as “multisen-sory integration.”Rarely,this cross-modal modulation of the

cell’s output can exceed the sum of its response to either

Address for reprint requests and other correspondence:R.A.O ¨sterbauer,

Oxford Centre for Functional Magnetic Resonance Imaging of the Brain,University of Oxford,John Radcliffe Hospital,Oxford OX39DU,UK (E-mail:robert@https://www.doczj.com/doc/149207161.html,).The costs of publication of this article were defrayed in part by the payment of page charges.The article must therefore be hereby marked “advertisement ”in accordance with 18U.S.C.Section 1734solely to indicate this fact.

J Neurophysiol 93:3434–3441,2005.

First published February 2,2005;doi:10.1152/jn.00555.2004.

on April 17, 2008

https://www.doczj.com/doc/149207161.html, Downloaded from

modality in isolation (a phenomenon referred to as superaddi-tivity).Similar multisensory interactions have also been iden-ti?ed in the context of human neuroimaging experiments in-

volving the chemical senses (de Araujo et al.2003;Gottfried and Dolan 2003).In addition to the detection of cross-modal

superadditive responses,systematic manipulation of the per-ceived congruency of two multisensory cues have also been shown to affect the height of the blood-oxygen-level-depen-

dent (BOLD)response.In particular,increasingly better-matched cross-modal cues induce a corresponding enhance-ment of the hemodynamic response in areas thought to be involved in their combination.Parametric imaging designs such as these avoid some of the interpretation issues associated with superadditive interactions (see Calvert 2001and follow-ing text).We used fMRI to investigate whether similar multisensory mechanisms might underlie the interaction of visual color and olfactory cues in the generation of an olfactory percept in humans.Based on ?ndings of previous human neuroimaging studies of olfaction by others (Anderson et al.2003;Gottfried and Dolan 2003;Gottfried et al.2002a;Rolls et al.2003;Zald and Pardo 2000;Zatorre et al.1992),we hypothesized that if olfactory responsive areas including the piriform cortex,amyg-dala,and OFC participate in the integration of odor-color cues,activity in these regions should increase systematically with increasingly better matched odor-color pair trials as rated on an individual and subjective basis.M E T H O D S Subjects Ten healthy right-handed volunteers participated in this study (6females and 4males;mean age:27yr,age range:22–35yr).All

participants gave written informed consent after having received the instructions for the study.One subject had to be discarded from the study because of excessive motion during scanning.Data analysis at the group level thus includes nine subjects.The study was approved by the Central Oxford Research Ethics Committee (C99.179).Stimuli and task In a behavioral experiment prior to scanning,40subjects were asked to match 1of 17different odors (Quest Intl.)to 1of 10different isoluminant colors presented on a computer screen and to rate the intensity,familiarity,and pleasantness of each odor and then attempt to identify it.Thirteen of the 17odors were signi?cantly often matched to one particular color (P ?0.01).Of these,the four color-odor pairs showing the most consistent match across subjects were used in the fMRI study.These congruent pairings were yellow—lemon,strawberry—red,spearmint—turquoise,and caramel—brown and were presented during scanning as well as the variably less congruent pairings of each odor with the remaining three colors.The four smells were highly matched for pleasantness,intensity,and familiarity (Table 1).During scanning,subjects were presented for 6s with a visual stimulus (yellow,red,turquoise,or brown),an olfactory stimulus (lemon,strawberry,spearmint,or caramel)or a bimodal visual-olfactory stimulus.The order of each of the three conditions was randomized.Each presentation was followed by a rest period of 30s to avoid habituation to the odor stimuli.For the unimodal conditions,each of the four olfactory and color stimuli was presented three times.For the bimodal conditions,each odor was presented three times with a congruent color (i.e.,lemon—yellow)and once with each of the remaining three colors.Overall,12visual,12olfactory,and 24bimodal stimuli were presented over a period of 28min 48s.Before scanning,subjects were informed that odors may occur in isolation or in the presence of a simultaneously presented color.In addition,color patches could also occur in the absence of an odor.They were also told that the order of these events would be random so they should maintain their attention to both channels equally through-out the experiment.Subjects were also instructed that on the bimodal conditions only,they were to rate each color-smell combination with respect to “goodness of ?t between color and smell”on a rating scale ranging from 1?very good to 4?very bad using a four-button response box.Rating responses were cued by the word “rate”pre-sented 15s after the end of each bimodal presentation.To control for the motor response to the visual cue between the bi-and unimodal

conditions,the same visual cue also appeared 15s after each unimodal

presentation,and subjects were instructed to press any of the four

buttons.The advantage of a parametric design that requires a cross-

modal congruency judgment is that it allows multisensory color-odor

integration sites to be identi?ed in the covariance analysis between

bimodal trials and rating judgments.However,as the same judgment

cannot be made in the unimodal conditions (for example,it is not possible for humans to rate the congruency between 2simultaneously presented odors),contrasts between the bi-and unimodal conditions may be confounded by differences in the task requirements.Therefore superadditive effects [OV –(O ?V)]must be interpreted cautiously.Full-screen color images were generated using a video projector

located outside the scanner room and projected onto a translucent

screen placed directly outside the magnet bore.Subjects wore prism

glasses so that they could see the screen while lying in the scanner.

Olfactory stimuli were delivered using a custom-built,computer-

controlled olfactometer.This was identical in design to that used by Rolls and colleagues (for a detailed description,see Rolls et al.2003)so that switching between odorized and odorless air was free of any auditory,tactile,or thermal cues that could have alerted the subjects to the onset of odor delivery.Subjects were asked to breathe normally through their nose for the duration of the scan while an air stream of either odorized or odorless air was delivered at a ?ow rate of 6l/s through a Te?on tube placed directly under the subject’s nose.They were also informed that although during most presentations,the visual stimulus would be accompanied by an odor,they should refrain from snif?ng at the onset of a color cue and continue to breathe normally.This instruction was included to avoid sniff-related activation of olfactory areas (Sobel et al.1998)in the color-alone condition.Furthermore,in the absence of a color cue in the odor-alone condition,snif?ng only at the onset of trials containing a color stimulus could have resulted in a potential confound of the comparison between bimodal color-odor and odor-alone conditions.Instead,during the scan,subjects were asked to detect the onset and offset of odors and to signal these events by making an appropriate ON -OFF button re-sponse.This method resulted in a slight jitter in the onset and duration of the odor trials that was taken into account for data analysis.

TABLE 1.Ratings of pleasantness,intensity and familiarity for the 4odors

Lemon Strawberry Spearmint Caramel Pleasantness 5.6?1.2 4.9?1.5 5.3?1.6 3.3?1.6*Intensity 5.4?1.0 5.0?1.2 5.1?1.0 4.9?1.2

Familiarity 6.2?1.1 5.3?1.7? 6.0?1.3 4.5?1.7?Values are means ?SD of the behavioral ratings on a 7-point scale for 40subjects.*,signi?cantly (P ?0.05)different from the remaining three odors.?,signi?cantly (P ?0.05)different from lemon.?,signi?cantly (P ?0.05)different from lemon and spearmint.

3435

MULTISENSORY INTEGRATION OF COLOR AND SMELL on April 17, 2008

https://www.doczj.com/doc/149207161.html, Downloaded from

Data acquisition and analysis Both functional and structural MRI images were acquired on a Siemens/Varian 3T system ?tted with a birdcage head coil.For the functional data series,a total of 581T2*-weighted echo-planar imag-ing (EPI)volumes were taken over a time period of 28min 48s.Each volume consisted of 25continuous oblique coronal slices that were tilted ?20°toward the axial plane with an in-plane resolution of 3?

2.5mm and a thickness of 3mm,covering the anterior half of the brain dorsally reaching a y coordinate of ?4of the Montreal Neuro-logical Institute (MNI)standard space and a ventral coordinate of y ??12.This allowed coverage of all primary and secondary olfactory areas in OFC and the temporal lobes.Other imaging parameters were:TR ?3s,64?64matrix,FOV 192?160mm,TE ?25ms,?ip angle 90°.To minimize susceptibility artifacts in orbitofrontal brain

regions,slices were acquired in the oblique coronal orientation (Deichmann et al.2003)with a short echo time of 25ms and a small

in-plane voxel size.Additionally an automated frontal-weighted local shimming method was used (Wilson et al.2002).This imaging protocol is optimized for fMRI studies of OFC function and has been extensively used by other groups on the same scanner (Rolls et al.2003).

For registration into standard space,a whole brain T2*-weighted EPI volume (54slices,TR ?7s)and a high-resolution,whole brain T1-weighted morphological scan (1.5mm slice thickness,1.5?1.5mm in-plane resolution)was acquired after the experimental para-digm.Statistical image analysis was carried out using the FMRIB Soft-ware Library (https://www.doczj.com/doc/149207161.html,/fsl).The initial strategy for ana-lyzing the bimodal condition was to ?rst test for a linear correlation between the BOLD response and ratings of the congruency between smells and colors and then to assess superadditivity (i.e.,where the

activation to bimodal stimuli exceeds the sum of both unimodal

stimuli).Prior to data analysis,the ?rst 3volumes were deleted.Analysis was carried out using the FMRIB expert-analysis tool (FEAT).The following preprocessing was applied:motion correction using MCFLIRT (Jenkinson et al.2002);spatial smoothing using a

Gaussian kernel of FWHM 5mm;mean-based intensity normalization of all volumes by the same factor;nonlinear high-pass temporal ?ltering (Gaussian-weighted LSF straight line ?tting,sigma ?36.0s).Each of the three event types (visual,olfactory,and bimodal)was modeled as a separate explanatory variable.A fourth explanatory variable with the same time course as the bimodal one was used to model the linear correlation between the BOLD response and the behavioral rating for the degree of matching.This variable was orthogonalized with respect to the bimodal one.Statistical analysis was carried out using FMRIB’s improved linear model (FILM)with local autocorrelation correction (Woolrich et al.2001).

For group analysis,the individual results were registered both to high-resolution anatomical MR images and to the MNI 152standard image.Registration to high-resolution and standard images was car-

ried out using FMRIB’s linear image registration tool (FLIRT)(Jen-kinson et al.2002).Mixed-effects (often referred to as “random-

effects”)group analysis was carried out using FMRIB’s local analysis of mixed effects (FLAME)software (Beckmann et al.2003)with a cluster threshold of Z ?2.0and a cluster signi?cance threshold of

P ?0.05(corrected for multiple comparisons)(Forman et al.1995;Friston et al.1994;Worsley et al.1992).This threshold was specif-

ically chosen on the basis of pilot experiments that showed robust activation in olfactory areas in both temporal and orbitofrontal corti-

ces using these parameters.R E S U L T S Behavioral Analysis of the behavioral responses obtained during the fMRI experiment showed that for three odors (lemon,spear-mint,and caramel),the color-smell combinations rated as most congruent in our preliminary experiment were indeed rated as signi?cantly (Student’s t -test P ?0.05)better matching than combinations of the same odor with any of the other three colors (Table 2).Although the strawberry odor showed a trend toward higher perceived congruence with red than the other three colors,the only statistically signi?cant difference oc-

curred between red and the turquoise.Note,however,that for the fMRI data analysis,each individual congruency rating for a bimodal trial was used to model the BOLD response (i.e.,if a subject perceived the combination spearmint-brown as a very good match,then this was accounted for in the analysis model).Unimodal stimulation

Presentation of odors alone produced bilateral activation in the piriform cortex/amygdaloid region (x,y,z ?14,?6,?30;Z score ?3.81and x,y,z ??22,?2,?18;Z score ?3.29)and the

putamen (x,y,z ?14,?4,?10;Z score ?3.83and x,y,z ??

6,2,?8;Z score ?4.22;Fig.1A ).Lateralized activation was observed in the right orbitofrontal gyrus (x,y,z ?24/32/-24;Z

score ?4.38)and in the left insular cortex (x,y,z ??44,2,?14;Z score ?3.49).Both piriform and orbitofrontal areas are con-sidered to be primary and secondary olfactory cortices in primates (Tanabe et al.1975)and have been shown to activate in response to odorants in human neuroimaging studies (Zald and Pardo 2000).There was no signi?cant activation of these regions when colors were presented alone.

Bimodal modulation and congruency

Using the ratings of relative color-odor congruency as a parametrically varying explanatory variable for brain activa-tion changes,a network of brain areas exhibiting increasing

activity with progressively higher perceived congruency was identi?ed (Fig.2).This network was entirely left lateralized and was mainly localized within the caudal orbitofrontal cortex around the olfactory sulcus (x,y,z ??16,32,?4;Z score ?3.88),

inferior frontal gyrus pars orbitalis (x,y,z ??20,22,?

16;Z score ?2.92)and gyrus rectus (x,y,z ??8,16,?24;Z score ?3.34).Other brain regions exhibiting the same color-odor modulations were found in the anterior insular cortex (x,y,z ??32,22,?8;Z score ?2.75),the frontal operculum (x,y,z ??54,24,4;Z score ?2.68),and the

temporal pole (x,y,z ??56,18,?8;Z score ?3.03).Superadditivity

To assess whether indices of multisensory interactions sim-ilar to those previously reported in electrophysiological (Stein TABLE 2.Ratings of congruence for color-odor pairings Lemon Strawberry Spearmint Caramel Yellow 1.1?0.3* 2.6?1.0 3.8?0.4 3.2?0.8

Red 3.2?0.7 2.0?1.0? 3.2?1.1 4.0?0.0

Turquoise 3.1?0.6 3.0?0.9 1.6?1.1* 3.1?1.1

Brown 2.4?1.1 2.3?0.7 2.3?0.5 1.9?0.9*Values are means ?SD of the behavioral ratings of all color-odor combinations presented during the experiment on a 4-point scale (1?very good match and 4?very bad match)for all 9subjects.*,signi?cantly (P ?0.05)different from the

remaining three colors.?,signi?cantly (P ?0.05)different from turquoise.

3436O ¨STERBAUER,MATTHEWS,JENKINSON,BECKMANN,HANSEN,AND CALVERT

on April 17, 2008

https://www.doczj.com/doc/149207161.html, Downloaded from

1998)and neuroimaging experiments (Calvert 2001)could be identi?ed in the current imaging experiment,we compared the BOLD response to odor-color pairings to the activation of

odors and colors alone [bimodal ?(odors ?colors)].This included the behavioral ratings in the overall model,so that the

height of the BOLD response to a “very good ?t”was modeled as larger than the response to a “very bad ?t.”Several regions displayed effects of superadditivity (Fig.1,C and D ):the medial wall of the superior frontal gyrus (x,y,z ??8,48,26;Z score ?4.48),the superior transverse frontopolar gyrus extending caudally into the anterior cingulate cortex (x,y,z ?4,48,8;Z score ?3.96and x,y,z ??10,48,4;Z score ?3.83)and the OFC along the gyrus rectus (x,y,z ?4,28,?19;Z score ?3.16and x,y,z ??4,35,?18;Z score ?3.07).Neural suppression and incongruency Incongruency in stimulus properties has been shown to suppress neuronal activity for audiovisual stimulus combina-tions (Calvert 2001)and congruent olfactory-taste stimuli have been reported to cause neural suppression (Small et al.1997).To investigate whether similar effects are observable for ol-factory-visual stimuli,we tested the linear correlation of the BOLD response with incongruency (i.e.,brain areas that re-spond increasingly stronger the more incongruent the stimulus combinations are)and did not ?nd an effect.Similarly,incon-gruent visual-olfactory stimuli did not signi?cantly decrease the BOLD response below the levels observed to olfactory stimuli alone (Fig.3).

D I S C U S S I O N

The aim of this study was to probe the neurophysiological basis of visual in?uences on odor perception using fMRI.The presentation of odors in the absence of visual cues was ?rst shown to stimulate the piriform/amygdaloid region,the right OFC and left insular cortex—consistent with previous olfac-tory neuroimaging experiments (Anderson et al.2003;Gott-fried et al.2002a;Poellinger et al.2001;Rolls et al.2003;Zald

and Pardo 2000).These areas are understood to correspond to human primary olfactory and associative olfactory cortices,

respectively.A subset of these olfactory-responsive areas was

also found to be sensitive to the perceived congruency of

bimodal odor-color trials.Speci?cally,activation in the orbito-

frontal and insular cortices increased in strength with increas-

ingly higher ratings of the perceived congruency between speci?c odors and color patches.These ?ndings are consistent with the hypothesis that color modi?es the perception of odors at a relatively late stage of olfactory processing in heteromodal regions of the OFC and a region of the insular cortex previ-ously implicated in ?avor processing (de Araujo et al.2003).The detection of cross-modal modulatory effects in a net-work of areas including the OFC and insular cortex suggests that color may in?uence different aspects of olfactory process-ing.The OFC receives converging projections from

multiple

FIG .1.Group response to odor stimulation alone and brain

regions displaying effects of superadditivity [bimodal ?(vi-

sion ?smell)].Olfactory stimulation (A )evoked neural re-

sponses bilaterally in the piriform cortex/amygdala (white),the

ventral striatum (blue),and the left insular cortex (red)as well

as in the right orbitofrontal cortex (B ).Superadditive responses

were observed in medial orbitofrontal cortex (C,white)and the

superior frontal gyrus (blue)and the anterior cingulate (D,

white).Slice y coordinates are in the Montreal Neurological

Institute (MNI)standard space and the right side of the brain is

shown on the right side of the pictures.

3437

MULTISENSORY INTEGRATION OF COLOR AND SMELL on April 17, 2008

https://www.doczj.com/doc/149207161.html, Downloaded from

sensory modalities,including the primary olfactory cortex and the ventral visual pathway (Ongur and Price 2000;Rolls and

Baylis 1994),making it a plausible initial site of information exchange between the visual and olfactory systems.Electro-physiological studies in non-human primates and imaging experiments in humans have implicated the OFC in stimulus-reinforcement associative learning using olfactory and visual stimuli (Gottfried et al.2002b,2003).For example,responses in the OFC to olfactory,gustatory,or visual cues previously associated with certain foods,are diminished when subjects are fed to satiety (Rolls 2001),and activity in this region has been

shown to increase according to the perceived pleasantness of

olfactory stimuli (Anderson et al.2003).Together,these data

contribute to the mounting evidence that it is speci?cally the

rewarding properties of the sensory cues that are represented in

the OFC.The systematic BOLD increase observed in the

current study is therefore likely to re?ect the physiological

mechanism underlying the behavioral phenomenon whereby

the more appropriate the color-odor combination,the greater is

the perceived pleasantness of the odor (Zellner et al.1991).

In addition to changing the hedonic value of odors,colors

have also been shown to in?uence the perception of ?avor

(Rolls et al.1982).Visuo-olfactory modulated responses in the

current experiment were also detected in the left anterior

insular cortex and the adjacent frontal operculum.These re-

gions have previously been identi?ed as areas of primary taste

cortex in monkeys (Plata-Salaman et al.1995;Yaxley et al.1990)and are consistently activated during human imaging studies of taste (Frey and Petrides 1999;O’Doherty et al.2001;Small et al.1999,2003).However,the agranular insular,

located at the caudal border of the OFC,is also responsive to olfactory inputs (Weismann et al.2001),and neuroimaging studies of olfaction have reported activation in this region (Cerf-Ducastel and Murphy 2001;de Araujo et al.

2003;

FIG .2.Brain regions showing odor-color

modulation.A :the group activation map shows

the main cluster of activation (red crosshairs)in

the caudal region of the left orbitofrontal cortex

(OFC;x,y,z ??8,16,?24;Z score ?3.34)in

all 3slice orientations.Here,the blood-oxygen-

level-dependent (BOLD)signal increased with

greater perceived odor-color congruency.All ac-

tivated voxels were rendered onto the standard

MNI brain and the right side of the brain is

shown on the right side of the pictures.B :the

panel shows the parameter estimates for smell

alone and the 4different degrees of congruency

of the color-odor pairs (ranging from 1?very

good to 4?very bad)averaged across all 9

subjects.Black lines indicate the SE and aster-

isks signi?cance levels of t -test (**?P ?0.01,

*?P ?0.05,and NS ?not

signi?cant).

FIG .3.Time course of activation.The chart shows the group (n ?9)averaged time course of the percentage BOLD signal changes for both matching (rating of 1)and mismatching (rating of 4)odor-color trials as well as the odor alone trials in the peak voxel within the left OFC (x,y,z ??8,16,?24).Stimulation started at time 0and lasted for 6s.As can be seen,congruent odor-color pairs elicited a signi?cantly greater BOLD response than that observed to either incongruent pairs (t ?3.05,df ?8,P ?0.01)or odors in isolation (t ?3.26,df ?8,P ?0.01).Note,differences in the time to peak across conditions are most likely to re?ect corresponding differences in BOLD amplitude (Miezin et al.2000).3438O ¨STERBAUER,MATTHEWS,JENKINSON,BECKMANN,HANSEN,AND CALVERT

on April 17, 2008

https://www.doczj.com/doc/149207161.html, Downloaded from

Poellinger et al.2001;Savic et al.2002).Interestingly,this anterior region of the insular appears to be multimodal,i.e.,it responds to both retro-and orthonasal olfactory stimuli as well as trigeminal inputs and pure tastes,leading to speculation that it must be involved in the cortical representation of ?avor (de Araujo et al.2003;Savic et al.2002).To the extent that our experience of ?avor is predominantly derived from our sense of smell,it seems highly plausible that color cues do not only modulate odor representations but also the putative taste/?avor sensations that may be automatically retrieved in the presence of food odors.In the current study then,we believe cross-modal modulations have an effect not only in areas of visual-olfactory processing but also drive the observed enhancement of neuronal activity in adjacent downstream regions involved in ?avor perception.A topical issue of debate in the multisensory literature relates to the appropriateness of different analytic criteria used for identifying a putative multisensory integration site.One relatively well-established approach has been to expose sub-jects to bimodal cues,matched or mismatched,along some parameter (e.g.,time,space,or content)as well as to each modality independently and look for brain areas exhibiting positive and negative statistical interactions to congruent and incongruent bimodal cues,respectively [OV ?O ?V]and [OV ?either O or V,whichever is the greater].This strategy represents a reasonable attempt to capture BOLD responses that bear some resemblance to the known response properties (cross-modal response facilitation and suppression)of multi-sensory neurons.However,there are clearly theoretical com-plications involved in translating the behavior of individual neurons to neuronal population responses detected by fMRI (Beauchamp et al.2004;Calvert 2001).In the current study,we adopted an alternative strategy for identifying multisensory integration sites,which was to present bimodal odor-color cues that were perceived to match to a varying degree and look for brain areas showing response changes that were correlated with the extent of perceived congruency.Parametric designs such as these avoid some of the inherent problems associated with calculation of interactions designed to mirror cross-modal response facilitation and suppression at the cellular level.One such problem relates to the dif?culty in balancing task de-mands between bimodal and two independent unimodal con-ditions.For example,in the current study,it would have been unfeasible to match the congruency rating judgments required in the bimodal condition by having subjects similarly rate the co-presentation of two odors or two colors.Consequently,calculation of super-and subadditive responses in the current study may simply re?ect greater attentional demands in the bimodal condition consistent with having to evaluate the con-gruency of two sensory cues and prepare to make a response.Nevertheless,in view of prevalence of these criteria in previ-ous cross-modal imaging studies (Calvert 2001;Calvert et al.2000;Foxe et al.2002;Macaluso et al.2000),we included this additional analysis for comparison purposes.This computation revealed that bimodal activations in the OFC did not only exhibit a linear correlation with subjective odor-color congru-ency ratings but exceeded the sum of the response to either odors or colors presented alone.The identi?cation by both parametric and interaction analyses of the OFC is strongly suggestive of a prominent role for this area in the integration of odor-color cues.The additional detection,in the superadditive analysis only,of positive bimodal interactions in the anterior cingulate and superior frontal gyrus—areas previously impli-cated in studies manipulating attention (Badre and Wagner 2004;Kondo et al.2004;Smith and Jonides 1999)is more likely to re?ect the different task and associated attentional demands between the bi-and unimodal conditions.

The detection of BOLD responses resembling features of multisensory integration at the neuronal level,suggests that the same mechanism by which multisensory inputs are combined in non-human species—convergence onto sets of bimodal neurons (Stein 1998)—also underlies the integration of colors and odors.That such responses should have been identi?ed in the OFC in the present experiment is consistent with electro-physiological studies of visual-olfactory or olfactory-gustatory integration in non-human primates (Rolls and Baylis 1994)and humans (de Araujo et al.2003;Gottfried and Dolan 2003;Small et al.2004).It is noteworthy,however,that in the current study there was no evidence of multisensory “response depres-sion”in the presence of incongruent bimodal stimuli (i.e.,where the bimodal condition falls below the level of activity elicited by a unimodal stimulus)as has been reported in previous neuroimaging studies of audiovisual (Calvert 2001)and visuo-tactile integration (Macaluso et al.2000).Indeed,studies investigating cross-modal interactions between the

chemical senses in humans have also found little or no evi-dence (de Araujo et al.2003;Gottfried and Dolan 2003;Small et al.2004)of suppression responses to incongruent inputs.At the cellular level,this feature of multisensory neurons in the superior colliculus has been shown to be mediated by the presence of inhibitory surrounds that prevent spatially discrep-ant bimodal stimuli from being co-localized (Stein 1998).This characteristic of multisensory integration,however,does not appear to be shared by putative multisensory ?avor neurons in the OFC.

In a related imaging study by Gottfried and Dolan (2003),olfactory responses in the OFC have also been shown to be modulated by co-presentation of semantically congruent or incongruent pictures associated with odors.Interestingly,as in the current study examining odor-color interactions,the precise location of these putative intersensory effects within the OFC differed depending on the analytic criteria chosen to identify cross-modal convergence zones.Of note is the observation that the peak activation associated with generic superadditive (OV ?O ?V)responses in the current study is both bilateral and more medially located than that detected in the odor-picture experiment.However,it does overlap closely with the activation showing a linear correlation with subjective postscan ratings in the Gott?ed and Dolan (2003)study.The corre-sponding parametric model in the present study (albeit using ratings obtained during rather than post scanning)on the other hand,reveals that the region of OFC sensitive to subjective odor-color congruency matches lies both lateral and caudal to that implicated in the odor-picture study.Together,these ob-servations would suggest that different visual parameters as-sociated with objects (i.e.,color and features)modulate olfac-tory-responsive neurons in adjacent OFC zones that are addi-tionally context-sensitive (i.e.,dependent on experimental task requirements).

In contrast to the study by Gottfried and Dolan (2003),the current study failed to implicate a role for the hippocampus in odor-color integration.Due to our restricted coverage over the

3439

MULTISENSORY INTEGRATION OF COLOR AND SMELL on April 17, 2008

https://www.doczj.com/doc/149207161.html, Downloaded from

frontal third of the brain,we are not able to rule out the possibility that this structure is involved in the synthesis of odors with low-level sensory features such as color.However,an alternative possibility is that the hippocampus may only play a role in cross-modal binding when mediating the retrieval of semantic associations between odors and pictures—a ques-tion for further research.Finally,previous neuroimaging studies of olfaction suggest stronger engagement of the right OFC during unimodal odor stimulation (Yousem et al.1997;Zald and Pardo 2000;Zatorre et al.1992).We observed the same trend toward right OFC activation in the odor alone condition,consistent with this notion.However,we found that modulation of the bimodal responses according to congruency was entirely left lateralized,indicating a functional segregation between the two hemi-spheres with respect to the type of olfactory task performed.This is consistent with the observation that hedonic judgments of odors elicit brain responses predominantly in the left OFC,whereas judgments of familiarity appear to recruit mainly the right OFC (Royet et al.2001).Additionally,modulation of the BOLD response according to the perceived pleasantness of liquid ?avor stimuli has been found in the left,but not right,OFC (Kringelbach et al.2003).Last,cross-modal superaddi-tive effects and enhancement of activity as a function of bimodal semantic congruency in Gottfried and Dolan’s study (2003)were also observed to reside predominantly within the left OFC.Together,these data suggest that it is speci?cally the left OFC that integrates olfactory information with visual cues.We believe the current ?ndings provide a neurophysiologi-cal basis for behavioral effects such as changes in the percep-tion of a white wine’s odor when it is arti?cially colored red (Morrot et al.2001)and the increased pleasantness of an odor when paired with an appropriate color (Zellner et al.1991).A better understanding of how visual cues contribute to our sense of smell and taste could provide insights that will help guide the development of food products,particularly for those with an impaired sense of smell,a problem experienced by as many as 50%of the people ?65yr of age (Schiffman 1997).A C K N O W L E D G M E N T S We thank E.T.Rolls for helpful comments on this manuscript.G R A N T S This research was funded by a grant from the Sense of Smell Institute,New

York.R.A.O ¨sterbauer is funded by the McDonnell Centre for Cognitive Neuroscience,Oxford,United Kingdom,and G.A.Calvert is funded by the Wellcome Trust.Additionally,we thank the Medical Research Council for support.R E F E R E N C E S Anderson AK,Christoff K,Stappen I,Panitz D,Ghahremani DG,Glover G,Gabrieli JD,and Sobel N.Dissociated neural representations of inten-sity and valence in human olfaction.Nat Neurosci 6:196–202,2003.Badre D and Wagner AD.Selection,integration,and con?ict monitoring;assessing the nature and generality of prefrontal cognitive control mecha-nisms.Neuron 41:473–487,2004.Beauchamp MS,Lee KE,Argall BD,and Martin A.Integration of auditory and visual information about objects in superior temporal sulcus.Neuron 41:809–823,2004.Beckmann CF,Jenkinson M,and Smith SM.General multilevel linear modeling for group analysis in FMRI.Neuroimage 20:1052–1063,2003.Calvert GA.Crossmodal processing in the human brain:insights from functional neuroimaging studies.Cereb Cortex 11:1110–1123,2001.Calvert GA,Campbell R,and Brammer MJ.Evidence from functional magnetic resonance imaging of cross-modal binding in the human hetero-modal cortex.Curr Biol 10:649–657,2000.

Cerf-Ducastel B and Murphy C.fMRI activation in response to odorants orally delivered in aqueous solutions.Chem Senses 26:625–637,2001.Cooper HM,Parvopassu F,Herbin M,and Magnin M.Neuroanatomical

pathways linking vision and olfaction in mammals.Psychoneuroendocri-

nology 19:623–639,1994.

de Araujo IE,Rolls ET,Kringelbach ML,McGlone F,and Phillips N.Taste-olfactory convergence,and the representation of the pleasantness of ?avor,in the human brain.Eur J Neurosci 18:2059–2068,2003.Deichmann R,Gottfried JA,Hutton C,and Turner R.Optimized EPI for

fMRI studies of the orbitofrontal cortex.Neuroimage 19:430–441,2003.Desor JA and Beauchamp GK.The human capacity to transmit olfactory

information.Percept Psychophys 16:551–556,1974.

DuBose CN,Cardello AV,and Maller O.Effects of colorants and ?avorants on identi?cation,perceived ?avor intensity and hedonic quality of fruit-?avored beverages and cake.J Food Sci 45:1393–1399,1980.

Forman SD,Cohen JD,Fitzgerald M,Eddy WF,Mintun MA,and Noll

DC.Improved assessment of signi?cant activation in functional magnetic resonance imaging (fMRI):use of a cluster-size threshold.Magn Reson Med 33:636–647,1995.

Foxe JJ,Wylie GR,Martinez A,Schroeder CE,Javitt DC,Guilfoyle D,

Ritter W,and Murray MM.Auditory-somatosensory multisensory pro-cessing in auditory association cortex:an fMRI study.J Neurophysiol 88:

540–543,2002.

Frey S and Petrides M.Re-examination of the human taste region:a positron emission tomography study.Eur J Neurosci 11:2985–2988,1999.Friston KJ,Worsley KJ,Frakowiak RSJ,Mazziotta JC,and Evans AC.

Assessing the signi?cance of focal activations using their spatial extent.

Hum Brain Mapp 1:214–220,1994.

Gilbert AN,Martin R,and Kemp SE.Cross-modal correspondence between vision and olfaction:the color of smells.Am J Psychol 109:335–351,1996.Gottfried JA,Deichmann R,Winston JS,and Dolan RJ.Functional

heterogeneity in human olfactory cortex:an event-related functional mag-netic resonance imaging study.J Neurosci 22:10819–10828,2002a.

Gottfried JA and Dolan RJ.The nose smells what the eye sees:cross-modal visual facilitation of human olfactory perception.Neuron 39:375–386,2003.

Gottfried JA,O’Doherty J,and Dolan RJ.Appetitive and aversive olfactory

learning in humans studied using event-related functional magnetic reso-

nance imaging.J Neurosci 22:10829–10837,2002b.

Gottfried JA,O’Doherty J,and Dolan RJ.Encoding predictive reward value in human amygdala and orbitofrontal cortex.Science 301:1104–1107,2003.Jenkinson M,Bannister P,Brady M,and Smith S.Improved optimization

for the robust and accurate linear registration and motion correction of brain

images.Neuroimage 17:825–841,2002.

Kondo H,Osaka N,and Osaka M.Cooperation of the anterior cingulate

cortex and dorsolateral prefrontal cortex for attention shifting.Neuroimage 23:670–679,2004.

Kringelbach ML,O’Doherty J,Rolls ET,and Andrews C.Activation of the

human orbitofrontal cortex to a liquid food stimulus is correlated with its

subjective pleasantness.Cereb Cortex 13:1064–1071,2003.Macaluso E,Frith C,and Driver J.Selective spatial attention in vision and

touch:unimodal and multimodal mechanisms revealed by PET.J Neuro-physiol 83:3062–3075,2000.

Miezin FM,Maccotta L,Ollinger JM,Petersen SE,and Buckner RL.Characterizing the hemodynamic response:effects of presentation rate,

sampling procedure,and the possibility of ordering brain activity based on

relative timing.Neuroimage 11:735–759,2000.

Morrot G,Brochet F,and Dubourdieu D.The color of odors.Brain Lang

79:309–320,2001.

O’Doherty J,Rolls ET,Francis S,Bowtell R,and McGlone F.Represen-tation of pleasant and aversive taste in the human brain.J Neurophysiol 85:1315–1321,2001.

Ongur D and Price JL.The organization of networks within the orbital and medial prefrontal cortex of rats,monkeys and humans.Cereb Cortex 10:206–219,2000.

Plata-Salaman CR,Scott TR,and Smith-Swintosky VL.Gustatory neural coding in the monkey cortex:acid stimuli.J Neurophysiol 74:556–564,1995.

Poellinger A,Thomas R,Lio P,Lee A,Makris N,Rosen BR,and Kwong KK.Activation and habituation in olfaction—an fMRI study.Neuroimage 13:547–560,2001.

3440O ¨STERBAUER,MATTHEWS,JENKINSON,BECKMANN,HANSEN,AND CALVERT

on April 17, 2008

https://www.doczj.com/doc/149207161.html, Downloaded from

Rolls BJ,Rowe EA,and Rolls ET.How sensory properties of foods affect human feeding behavior.Physiol Behav 29:409–417,1982.Rolls ET.The rules of formation of the olfactory representations found in the orbitofrontal cortex olfactory areas in primates.Chem Senses 26:595–604,

2001.Rolls ET and Baylis LL.Gustatory,olfactory,and visual convergence within the primate orbitofrontal cortex.J Neurosci 14:5437–5452,1994.Rolls ET,Kringelbach ML,and de Araujo IE.Different representations of pleasant and unpleasant odours in the human brain.Eur J Neurosci 18:695–703,2003.Royet JP,Hudry J,Zald DH,Godinot D,Gregoire MC,Lavenne F,Costes N,and Holley A.Functional neuroanatomy of different olfactory judg-ments.Neuroimage 13:506–519,2001.Savic I,Gulyas B,and Berglund H.Odorant differentiated pattern of cerebral activation:comparison of acetone and vanillin.Hum Brain Mapp 17:17–27,2002.Schiffman SS.Taste and smell losses in normal aging and disease.J Am Med Assoc 278:1357–1362,1997.Small DM,Gregory MD,Mak YE,Gitelman D,Mesulam MM,and Parrish T.Dissociation of neural representation of intensity and affective valuation in human gustation.Neuron 39:701–711,2003.Small DM,Jones-Gotman M,Zatorre RJ,Petrides M,and Evans AC.Flavor processing:more than the sum of its parts.Neuroreport 8:3913–3917,1997.Small DM,Voss J,Mak YE,Simmons KB,Parrish TR,and Gitelman DR.Experience-dependent neural integration of taste and smell in the human brain.J Neurophysiol 92:1892–1903,2004.Small DM,Zald DH,Jones Gotman M,Zatorre RJ,Pardo JV,Frey S,and Petrides M.Human cortical gustatory areas:a review of functional neuro-imaging data.Neuroreport 10:7–14,1999.Smith EE and Jonides J.Storage and executive processes in the frontal lobes.Science 283:1657–1661,1999.Sobel N,Prabhakaran V,Desmond JE,Glover GH,Goode RL,Sullivan EV,and Gabrieli JD.Snif?ng and smelling:separate subsystems in the human olfactory cortex.Nature 392:282–286,1998.Stein BE.Neural mechanisms for synthesizing sensory information and producing adaptive behaviors.Exp Brain Res 123:124–135,1998.Tanabe T,Iino M,and Takagi SF.Discrimination of odors in olfactory bulb,pyriform-amygdaloid areas,and orbitofrontal cortex of the monkey.J Neu-rophysiol 38:1284–1296,1975.

Weismann M,Yousry I,Heuberger E,Nolte A,Ilmberger J,Kobal G,Yousry TA,Kettenmann B,and Naidich TP.Functional magnetic reso-nance imaging of human olfaction.Neuroimag Clin N Am 11:237–250,2001.

Wilson JL,Jenkinson M,de Araujo I,Kringelbach ML,Rolls ET,and Jezzard P.Fast,fully automated global and local magnetic ?eld optimiza-tion for fMRI of the human brain.Neuroimage 17:967–976,2002.Woolrich MW,Ripley BD,Brady M,and Smith SM.Temporal autocorre-lation in univariate linear modeling of FMRI data.Neuroimage 14:1370–1386,2001.

Worsley KJ,Evans AC,Marrett S,and Neelin P.A three-dimensional statistical analysis for CBF activation studies in human brain.J Cereb Blood Flow Metab 12:900–918,1992.

Yaxley S,Rolls ET,and Sienkiewicz ZJ.Gustatory responses of single neurons in the insula of the macaque monkey.J Neurophysiol 63:689–700,1990.

Yousem DM,Williams SC,Howard RO,Andrew C,Simmons A,Allin M,Geckle RJ,Suskind D,Bullmore ET,Brammer MJ,and Doty RL.Functional MR imaging during odor stimulation:preliminary data.Radiol-ogy 204:833–838,1997.

Zald DH and Pardo JV.Functional neuroimaging of the olfactory system in humans.Int J Psychophysiol 36:165–181,2000.

Zatorre RJ,Jones Gotman M,Evans AC,and Meyer E.Functional localization and lateralization of human olfactory cortex.Nature 360:339–340,1992.

Zellner DA,Bartoli AM,and Eckard R.In?uence of color on odor identi-?cation and liking ratings.Am J Psychol 104:547–561,1991.

Zellner DA and Kautz MA.Color affects perceived odor intensity.J Exp Psychol Hum Percept Perform 16:391–397,1990.

3441

MULTISENSORY INTEGRATION OF COLOR AND SMELL on April 17, 2008 https://www.doczj.com/doc/149207161.html, Downloaded from

小学英语“What colour is it”教学设计

一、教学设计说明: 本节课选自小学英语三年级上学期Lesson 9“What colour is it? ”.本课时主要学习用英语表达事物的颜色,其内容贴近小学生的生活和学习实际,有利于他们在真实的语言情境中培养运用英语进行交际的能力。教材强调学生在学习过程中的感悟、体验、实践、参与以及思维能力的发展,突出兴趣培养,重视学科内容的有效融合,注重培养学生自主学习的意识和能力。 二、学情分析: 本课的教学对象是刚刚涉足英语的三年级小学生,学生的好奇心强,大部分学生对于英语有着强烈的兴趣,敢于大胆开口说英语,愿意同他人合作,在交际中学习英语,感悟英语,在游戏中体验英语,认识英语。但三年级的新生刚刚入学,自制力较差,注意力不易集中。 三、设计理念: 《英语课程标准》中明确指出,基础教育阶段学习英语的目的旨在激发学生学习英语的兴趣,培养他们学习英语的积极态度,使他们建立初步的学习英语的自信心;培养学生一定的语感和良好的语音、语调基础,使他们形成初步用英语进行简单交流的能力,为进一步学习打下良好的基础。 要激发学生学习英语的兴趣,我们就要让学生变被动为主动地跟着教师参与教学活动,运用一些学生喜闻乐见的教学方法及措施。因此,教师在教学中发挥主导作用,以学生为主体,采用直观情境教学法、TPR(全身反应法),活动式教学法。充分采用了任务型教学途径,为学生提供了较大的实践空间,能较好地发挥学生的主动性和创造性。任务型教学途径适合多种活动类型和组织形式(如,游戏、比赛、竞猜等),它不但可以独立操作,也可以利于合作学习,使学生在乐中学、学中乐。 四、教法学法设计: 在本课中,我采用任务教学法,直观演示法、情境教学法、游戏教学法相结合的方法。在教学设计中一开始就把任务交给学生,让学生在任务的驱动下学习语言知识,利用多媒体课件,实物等创设情境,采用学生易于接受的游戏等方式组织课堂教学,提高了课堂效率。 生活化的情景有利于培养学生的语言运用能力,“情景交际法”是本课主要的教学方法。通过颜色学习,由green(绿色)red(红色)yellow(黄色)引向对学生的交通意识教育,打破学科本位的传统模式,将实际生活渗透于英语教学之中。 TPR教学法主要针对儿童的身心特点设计的,运用该法设计红绿灯绕口令,能充分调动学生的各种感官参与学习,有助于对知识的理解和内化。在学习方法上,主要运用全程式自主学习方式,从学生的需求入手,将学习内容与学生的日常生活经验相结合,在协同学习的环境中体验、参与,从而建构个人的经验,创造个人的知识。 五、教学内容: 1、五个新单词: blue, green, yellow,orange, red. 2、句型: What colour is it? It’s… 六、教学目标: (一) 知识目标:1、能听、说、认读五个颜色单词blue, green, yellow,orange, red,并能在实际情景中进行运用。 2、能掌握句型:What colour is it? It’s…,并且能灵活运用。 (二)技能目标:让学生在游戏活动中熟悉运用所学颜色单词,并能对身边的事物进行简单的描述。让学生学会用What colour is it ?和It’s…来提问和回答周围的事物的颜色。培养学生在课堂上进行自主评价的能力。 (三)情感目标:关注学生的内在需要,在活动中培养学生的协作精神和竞争意识,培养学生热爱生活的积极情感态度。

(完整版)小学英语一年级《colors》教案

小学英语一年级《colors》教案 关于小学英语一年级《colors》教案大家了解过多少呢!可能很多人都不是很清楚,下面就是分享的小学英语 一年级《colors》教案范文,一起来看一下吧。 ?小学一年级的学生刚刚开始接触英语,在前面的两 个单元里,学生的学习兴趣还很浓,充分利用他们的学习 劲头,多做互动和练习,本节课的话题非常贴近生活,也 是学生熟悉和感兴趣的,很容易调动学生的学习兴趣,取 得良好的教学效果。 ?本节课的内容是颜色,与日常生活有着密切的关系,重点让学生能听说单词 green,black,blue,red,yellow,white,能利用生活中的物 体进行各种形式的实物教学,对于上这节课来说是非常有 优势的。 1、知识目标:能听、说、认读单词red ,blue,green, yellow, black, white。能听懂、会说What color is it ? 2、能力目标:能用英语正确表达物品的颜色。 3、情感目标:在对话过程中培养学生的识别能力。 1、听、说、认读red blue green yellow black white。 2、听懂会说What colour is it ?

3、将本课的知识运用到真实的情景之中。 Step1、复习 ?师生互相问好,操练学过的句型,唱ABC歌曲。 Step2、导入和新课 1、我们生活在一个五彩缤纷的世界里,我们每天能看到各种各样的颜色,小朋友们喜欢这些颜色吗! 2、出示卡片,绿叶,提问:我们身边还有哪些绿色的东西!学生回答。 3、板书单词green,教读,反复操练,学生跟读。 4、分别出示红旗,黑夜,雪花,黄花,大海的卡片,用以上相同的方法教授单词 red,black,white,yellow,blue。 Step3、操练 1、随意指认教室里的物体,让学生用英语把它的颜色说出来。 2、男女生分组比赛,看谁说得又快又好。 ?教学反思 1、本节课主要围绕六种颜色展开话题,这些颜色都是我们在日常生活中常见的,在设计过程中,我以培养学 生的学习兴趣为主要出发点,尽可能的给学生创造愉悦的 情境,如课一开始,让学生唱英文歌曲,做游戏以便给学 生营造一个轻松欢快的氛围。

小学英语colours教学设计

《Colours》教学设计 万年县第二小学吴妤 一、设计理念 在本课的教学中,我主要按照新课标中的理念,以人为本、面向全体,采用任务型教学方式,让学生通过感知、体验、实践、参与、合作交流来实现任务目标。我在整个活动中只起一个活动者、组织者、指导者、参与者的作用,留足够的时间和空间给学生完成任务,努力做到教师用“爱”促进教育,用“趣”构建教育模式,用“玩”组织教学活动,使学生“为用而学、边用边学、学完就用”,充分发挥师生的互动作用,在“玩中学、玩中练、玩中见成效”。 二、教学内容:Colours 三、教学目标: (一)知识目标 1、能听、说、认读单词red,yellow,blue,green,orange. 2、能听懂、会说句型It’s red/yellow/...。The…is red/yellow/…。 (二)能力目标 培养学生在游戏中熟练运用单词的能力、知识迁移能力、灵活运用交际用语的能力,能听懂指令,并能按照指令做出各种动作。 (三)情感、文化等有关目标 1、情感态度:激发学生学习英语的兴趣,培养学生学习英语的积极态度,使学生乐于合作参与,勇于进行交际实践。 2、学习策略:注重合作学习。 四、教学重点难点 (一)重点: 单词red,yellow,blue,green,orange的教学。 句型It’s red/yellow/…的教学。 (二)难点: Blue及green的正确发音。 五、教学准备 1、CAI课件。 2、学生自备有颜色的实物。 3、调查表。

4、录音机、磁带、五种颜色的花瓣单词卡片、彩虹图。 5、玻璃杯、水、颜料。 六、教学过程 Step1:Warming up. 师生共同表演唱彩虹歌《I can sing a rainbow》。 Step2:Revision. (1)课件出示一只鸟。T:What’s this? Ss:It’s a bird.又飞来了二只鸟,T:Do you like birds? Ss:Yes,I like birds./No,I don’t like birds. (2)课件出示一只兔子,T:Is this a bird? Ss:No,it’s a rabbit.又跑来了三只兔子,T:Do you like rabbits? Ss:Yes,I like rabbits./No,I don’t like rabbits. (3)课件出示一只猴。T:What can you see? Ss:I can see a monkey.又跑来了三只猴子,T:Do you like monkeys? S:Yes ,I like monkeys./No, I don’t like monkeys. Step3:Learn the new words. 1.出示彩虹图。T:Do you like rainbow? Ss:I like rainbow.T:I like rainbow,too.Because it’s colourful.Today we’ll learn colours.(出示课题,贴彩虹图)。I have divided you into five teams.(红队、黄队、蓝队、绿队、桔黄队,老师边说队名边贴代表队的卡在黑板)看看今天哪队表现得最好. 2.课件出示一面红旗。T:The flag is red .It’s red .课件显示句子It’s red.教师贴红色花瓣单词卡red ,教读red,指名读red,纠正读音,然后手拿一朵红花教It’s red.T:Pass the flower and say “It’s red .”生边传递花边说It’s red .再教读The flower is red .然后教师请学生拿着课前准备的实物,用句型The …is red .说说红色的实物。 3.课件出示一只黄色的鸭子。T:Look,it’s a duck.The duck is yellow.It’s yellow.课件显示句子It’s yellow.贴黄色花瓣单词卡yellow.用不同的语气教读yellow,(咦yellow,啊yellow,嘿yellow,哎yellow),再让学生表演读yellow,指名读,教读It’s yellow.The duck is yellow.生跟读之后,教师又让学生拿课前准备的实物说说黄色的物品。 4.课件出示大海,T:The sea is blue.It’s blue.课件显示句子It’s

小学英语colors教学案例

小学英语c o l o r s教学案 例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

小学英语colors教学案例 江南镇中心校赵会媛 课题名称 Colours 教学内容词汇 red、yellow、blue、green、pink、purple、orenge 句型 A:What colour is it B:It’s… 教学目标 1、知识目标 学习怎样用英语表达事物的颜色,掌握相关的单词: red\yellow\blue\green\pink\purple\orenge和句型What colour is itIt’s…并能综合运用新、旧知识组织对话完成一定交际任务。 2、情感目标 激发学生学习英语的兴趣,调动学习积极性,引导学生积极与他人合作,在活动中培养学生的协作精神和竞争意识。 3、能力目标 培养学生的观察力、想象力、动手操作能力,提高学生感受美、欣赏美的水平,发展学生综合运用语言的能力。 4、德育目标 培养学生热爱大自然、保护环境的良好品德。 教学重点 创设语言情景,使学生正确理解和运用所学知识用英语表达事物颜色。教学难点

激发学生的求知欲,创设各种真实或接近真实的语言环境,让学生体验参与,主动学习事物颜色的表达法。 课前准备 1、CAI课件; 2、“red、yellow、blue、green、pink、purple、orenge”单词卡片及“What colour is itIt’s…”句型卡片; 3、调色板、水彩颜料、铅画纸若干及一些带颜色的实物; 4、小动物头饰、色块卡; 5、歌曲Colour Song录音、投影器; 6、在教室里挂上一些五彩气球和彩带,营造课堂气氛,同时作为奖品,激发学生兴趣。 学生情况分析 学生的年龄在九、十岁左右,生性活泼好动,喜欢直观形象思维,对游戏、竞赛、画画特别感兴趣。学生学英语不久,有可能说的不好,有的还不敢说,课堂上要以表扬为主,注重培养学习英语的兴趣,鼓励他们大胆说、积极做、努力唱! 教学步骤 Step1 Free talk 1、Sing a song:“Morning Song” 2、T:Good morning,boys and to see you. Ss:Nice to see you,too.

小学英语微评课colours

colours微评课 一、新旧结合,复习导入。 每节课的教与学都不是孤立的,它有承上启下的作用,是旧知识的拓展与深化。因此,在新课开始之前,对与本节课内容有关的知识与技能进行复习与巩固,既能弥补学生旧知识掌握中的缺漏,又能使学生很快地投入新知识的最佳学习状态。微课中教师主要教授的句型是What’s your favourite colo ur?及其回答My favourite colour is_______.教师在引出句型之前运用卡片复习了颜色单词,唤醒了学生的旧知,同时为本节课句型学习做好知识准备。 二、游戏操练,突破难点。 在英语单词教学中,如果总是采用教师领读、学生跟读的方法,学生会感到枯燥,所以不太愿意跟读。低年级学生活泼好动,乐于接受新奇、趣味性强的事物,在教学单词时融入游戏对帮助他们理解与母语迥异的另一种语言是必不可少的,是英语教学的重要手段。微课中favourite这个单词是今天所学的句型中的重点和难点,学生对其意思的理解和单词的发音掌握起来都具有一定的困难。教师在操练单词时设计了一个小游戏,出示笑脸学生就说favourite,不是笑脸就不能说,这个游戏可以防止学生注意力不集中,跟

读时偷懒,能让每个学生主动参与到游戏中,牢固掌握单词发音的同时也能对favourite的意思加深印象,为后面的句型教学扫除了障碍。 三、师生互动,实时评价。 教师从复习颜色,解决教学难点,到进入核心句型的学习,整个过程循序渐进,符合学生的认知和接受能力,过渡十分自然。颜色是学生平时生活中容易接触到并有所感知的话题,所以教师直接通过介绍自己最喜欢的颜色切入主题句型,并用What’s your favourite colour?询问,让学生一一进行操练。等学生较好的掌握答句之后,再通过全班问,个别答的方式巩固问句,关注发挥学生的主体作用,让学生真实的去感受知识,体验知识,积极参与,努力实践,在活动中学会用语言表达交流,较好的体现了从不懂到懂,从不会到会,从不熟练到熟练的过程。教学过程中,教师准备了各种不同颜色的小卡片,只要学生用正确的句型表达出自己最喜欢的颜色,就能得到相应的颜色卡片,这个小小的设计不仅能让学生体会到语言学习的功能性,营造出较真实自然的交际情景,而且学生所得到的卡片也可以视为教师对其敢于表达的及时评价和奖励,把学生对卡片的向往转化成课

小学英语colors教案

https://www.doczj.com/doc/149207161.html,/tresearch/a/83740115cid00001 课题名称 Colours 教学内容词汇 red、yellow、blue、green、pink、purple、orenge 句型 A:What colour is it? B:It’s… 教学目标 1、知识目标 学习怎样用英语表达事物的颜色,掌握相关的单词: red\yellow\blue\green\pink\purple\orenge和句型What colour is it?It’s…并能综合运用新、旧知识组织对话完成一定交际任务。 2、情感目标 激发学生学习英语的兴趣,调动学习积极性,引导学生积极与他人合作,在活动中培养学生的协作精神和竞争意识。 3、能力目标 培养学生的观察力、想象力、动手操作能力,提高学生感受美、欣赏美的水平,发展学生综合运用语言的能力。 4、德育目标 培养学生热爱大自然、保护环境的良好品德。 教学重点 创设语言情景,使学生正确理解和运用所学知识用英语表达事物颜色。 教学难点 激发学生的求知欲,创设各种真实或接近真实的语言环境,让学生体验参与,主动学习事物颜色的表达法。 课前准备

1、CAI课件; 2、“red、yellow、blue、green、pink、purple、orenge”单词卡片及“What colour is it?It’s…”句型卡片; 3、调色板、水彩颜料、铅画纸若干及一些带颜色的实物; 4、小动物头饰、色块卡; 5、歌曲Colour Song录音、投影器; 6、在教室里挂上一些五彩气球和彩带,营造课堂气氛,同时作为奖品,激发学生兴趣。 学生情况分析 学生的年龄在九、十岁左右,生性活泼好动,喜欢直观形象思维,对游戏、竞赛、画画特别感兴趣。学生学英语不久,有可能说的不好,有的还不敢说,课堂上要以表扬为主,注重培养学习英语的兴趣,鼓励他们大胆说、积极做、努力唱! 教学步骤 Step1 Free talk 1、Sing a song:“Morning Song” 2、T:Good morning,boys and girls.Nice to see you. Ss:Nice to see you,too. 分别与单个学生对话:Hello!/What’s your name?/How are you?/Where’s your nose?/Touch your face,please./Show me your pencil./What’s this?(头、手、铅笔、橡皮、蜡笔……) Step2 Introduce T:What’s this? CAI演示:一阵雷雨过后,太阳露出了笑脸,天边出现了一道美丽的彩虹。 引出rainbow T:Wow,how beautiful!Today we’ll learn a lesson about the colours of the rainbow.

小学英语What color is it

小学英语What color is it?教学设计 Teaching aims: 1、知识目标 学会用英语表达事物的颜色,掌握相关的单词: red\yellow\blue\green\pink\purple\orange和句型What color is it? It’s…并能综合运用新、旧知识组织对话完成一定交际任务。 2、情感目标 激发学生学习英语的兴趣,调动学习积极性,引导学生积极与他人合作,在活动中培养学生的协作精神和竞争意识。 3、能力目标 培养学生的观察力、想象力、动手操作能力,提高学生感受美、欣赏美的水平,发展学生综合运用语言的能力。 教学重点 创设语言情景,使学生正确理解和运用所学知识用英语表达事物颜色。 教学难点 激发学生的求知欲,创设各种真实或接近真实的语言环境,让学生体验参与,主动学习事物颜色的表达法。 课前准备 1、CAI课件; 2、“red、yellow、blue、green、pink、purple、orange”单词卡片及“What color is it? It’s…”句型卡片; 3、调色板、水彩颜料、铅画纸若干及一些带颜色的实物; 4、小动物头饰、色块卡; 5、歌曲Color Song录音、投影器; 6、五彩气球和彩带。 学生情况分析 三年级学生的年龄在九、十岁左右,生性活泼好动,喜欢直观形象思维,对游戏、竞赛、画画特别感兴趣。学生学英语不久,有可能说的不好,有的还不敢说,课堂上要以表扬为主,注重培养学习英语的兴趣,鼓励他们大胆说、积极做、认真唱! 教学步骤 Step1 Warming up 1、Sing a song:“Hello,teacher!” 2、T:Good morning,boys and girls.Nice to meet you. Ss:Nice to meet you,too.

小学英语教学反思:《Color》

小学英语教学反思:《Color》 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 这一课主要学习:red、green、yellow、blue、pink、black、brown、white 这八种颜色和句型Whatcoloristhis?It’swhite。 本课时的教学目的是要求学生能够听、说、认读这八种颜色的单词。在设计教案是我遵循了“听先于说,说先于读”及“词不离句”的词汇教学原则,以培养学生的学习兴趣为出发点,积极创造真实、自然、愉悦的气氛发展学生听、说、认读的综合语言技能。因此,在教学中我采用了多样化活动教学,将“动中学,学中动”有机结合,使学生动脑、动口、动眼、动耳、动手以及动表情,以最佳的心理状态投入到学习中去。 ”好的开头是成功的一半。”精彩的----------------精选公文范文----------------1课堂导入不仅能很快地集中学生的注意力,而且还会把学习当成一种乐趣,促使教学任务顺利完成。在导入这一环节,我扮演了学生喜爱,熟悉的圣诞老人来导入新课,增强英语课堂趣味性,引发学生的求知欲。 在新单词的教学中,将四种颜色的单词,利用很多的实物来出示,丰富的教学资源不易使学生产生疲劳感,通过听音看口形,调动学生的视觉、听觉等多种感官刺激,做到眼到、口到、心到,各部分协调活动达到了最佳的教学效果。 任何学习活动必须通过大量的练习才能达到消化融合的目的。如何使练习既达到目的又不会使学生感到枯燥乏味,我采取的方法是边玩边练,采用多种游戏,让学生在玩中学、学中玩。如游戏猜巧克力豆的颜色,让一名学生闭眼摸出一粒糖,睁开眼睛回答颜色。其他学生齐问“whatcoloristhis?It’sblack。还安排了活动,这既可以使学生----------------精选公文范文----------------2体会到了成功的快乐,又培养学生良好的心理品质和参与、合作精神。如游戏findcolor,让学生分组找颜色,看哪一组找到的多。这个游戏既巩固了所学内容,又培养学生的集体荣誉感,课堂气氛活跃。 在最后环节,我安排了拓展认识,让学生把课堂所学应用于现实生活,做到课堂和现实生活的结合。

pep小学英语三年级上册教学设计 unit2 colour

Pep小学英语三年级上册教学设计 Unit2 Colour 指导思想: 以学生为主体,激发和培养学生学习英语的兴趣,帮助他们建立学习的成就感和自信心,使他们在学习过程中发展综合语言运用能力,培养创新精神。 知识目标: 1. 能听说、认读颜色单词:blue, green, yellow, red, 2. 通过用“Show me...”的指令来练习和运用有关颜色的单词。 能力目标: 辨色彩,感受生活。 情感目标: 1. 通过游戏活动和歌曲培养学生说英语、学英语的兴趣。 2. 爱色彩,热爱自然,保护环境。 3. 通过用哑语说颜色,培养学生们关心他人的优秀品质。 教学重难点: 1. 听、说、认、读五个颜色单词。 2. 会说唱 Let's do,并会听音做出相应的反应。 教具准备: 1. 教师准备 blue, green, yellow, red, 的单词卡片和颜色卡片。 2. 教师和学生都准备红、黄、蓝、绿、紫色的蜡笔。 3. 教师准备颜色的教学课件。 4. 教师准备学生学过的文具并放在书包中。 教学教程: Warm-up: (1)教师生之间相互问候: T: Good morning/ Good afternoon/ Hello, boys and girls. S: Good morning/ Good afternoon/ Hello, teacher./... T: How are you? S: Fine, thank you./I'm fine, thank you./...

(2)游戏 T: Let's play a game, OK? S: OK. “猜一猜”的游戏。将学生学过的文具放入书包中,让学生摸一摸,猜一猜。从而复习学过的文具词。 (说明:“猜一猜”的游戏能调动学生大脑中所有相关记忆,使学生回忆起所有知道的有关文具的单词。) (3)课件展示学过的文具用品:橡皮(红色),钢笔(绿色),铅笔盒(蓝色),书(黄),书包(绿色),蜡笔。 Presentation: 1. Teach “red” (1) 教师从复习中引入新课,问:“What colour is the eraser?”教师自答:“It's red.” (2) 教师手拿红色的橡皮反复说“red”,让学生猜意思,并使他们明白“red”表示红色。 (3)教师领读“red”。 (4) 教师拿起其他红色的物体,指示说:“It's red.” (5) 让学生找出教室中红色的物体练习说:“It's red.”在练习过程中教师应注意纠正发音。 (6)教师板书“red”,让学生认读。 (说明:先练听说,后练认读,先易后难,循序渐进。此方式符合三年级学生的认知规律,难度低于出示单词并领读的传统教法。) 2. 用这种方法逐一介绍 blue,green,yellow,purple 并出示单词卡片让生认读。 注意:“green”一词的发音较难,教教师要多带读,引导学生感悟发音,从而了解英语的语音语调的知识。 3. 猜词游戏: a. 教师从颜色卡片中抽出一张,请每小组派一名学生猜,猜对的小组可加1分。

小学三年级英语课文《Colour》的教

小学三年级英语课文《Colour》的教 学评课稿 一、活动的设计有趣味性 1、陈老师能根据小学生的年龄特点,准备了很多五彩缤纷的实物,有黄的、红的、蓝的、紫的、绿的等,都是学生喜闻乐见的玩具,并设计生动活泼的课堂活动,如:通过图片猜颜色、听音涂色等游戏,特别在教授单词时,运用了多种形式,如:“大小声”、“火车接龙”等,避免了没趣、机械重复的操练,既培养了学生的语言运用能力,又培养了学生的注意力、观察力、思维力和想象力。激发学生兴趣! 2、关注教学方法,体现了一个活字.教师的教学方法灵敏,新单词呈现形式多样.应该说整堂课中,教师在引入新词时,都是比较新奇而又自然,而且具有生活化的.教师还注意利用实物,图片,卡片,身体语言,表情动作等作为教学资源,创设讲解,操练和运用英语的情景.季老师能贯彻以学生为中心的原则,关注教学过程,尽可能发挥学生的主体作用,让学生真实的去感受知识,体验知识,积极参与,努力实践,在活动中学会用语言表达交流,较好的体现了从不懂到懂,从不会到会,从不烂熟到烂熟的过程. 二、活动的设计有层次性 本课中,陈老师在教学中先让学生学说表示颜色的单词,如:red让学生掌握单词的音、型、意。再让学生找一找身边有什么东西是红色的,用简单的句型进行表达,如:Thisis red.My pencil is red.What colour is it? What colour do you like?最后,让学生运用所学语言进行拓展性练习,挖掘学生创造使用语言的能力,从教师的语言输入转为学生的语言输出,符合语言的习得规律。 三、活动设计有实用性 陈老师在培养学生在实际情景中运用英语方面花了很多功夫,积极践行“学中用,用中学”。新授完颜色单词之后,敖老师因势引导,过渡到句型“Ilike…What colour is it?What colour do you

小学英语三年级《colors》教学设计

小学英语三年级《colors》教学设计 小学英语三年级《colors》教学设计 教学目标: 1、会听、说、读、认:blue,pink,black,white. 2、会认读have,pet,it,rabbit,color,star,teacher….. 3、会说Ihavea…Whatcolorisit?It’s…. 4、能听、说、读、写Rr,Ss,Tt 教学重点: 1、会听、说、读、认:blue,pink,black,white. 2、能听、说、读、写Rr,Ss,Tt 教学难点: 会说Ihavea….Whatcolorisit?It’s…. 教学过程: 一、复习Lesson13,sayachant, Yellow,yellow,yellow,ayellowbanana Green,green,green,agreenfrog Orange,orange,orange,anorangefish Red,red,red,aredapple 二、由以上四种颜色,引出另外四种颜色的教学,拿出四张不同颜色的.图片,教学:blue,pink,black,white 三、出示四张图片教学并操练

1、出示一张ablackcat的图片,教学: T:Ihaveacat.Whatcolorisit? S:It’sblack. 2、出示一张apinkfish的图片,教学: T:Ihaveafish.Whatcolorisit? S:It’spink. 3、出示一张awhiterabbit的图片,教学: T:Ihavearabbit.Whatcolorisit? S:It’swhite. 4、出示一张abluekite的图片,教学: T:Ihaveakite.Whatcolorisit? S:It’sblue. 四、听录音,跟读课文 五、字母教学 1、学习字母Rr 出示arabbit的图片,问“What’sthis”操练arabbit,接着问:“What’sthefirstletter” 出示字母卡片,辨别大小写,教读音。 指着卡片:“BigletterR,smallletterr,Rrisforrabbit,Rr,Rr.Rr.” 2、同法教学Ss 3、同法教学Tt.

小学英语《Colours》教案

内容unit 2 Colours 第一课时 教学 目的 要求听懂,会说Good morning! This is …..并能在实际情景中进行运用。要求模仿正确,语调自然。 重点与难点教学重点:问候语Good morning. 以及介绍人物用语This is … 教学难点:This is …的发音。 教具与挂图Cheng Jie ,Mike, Wu Yifan, Sarah, Zip, Zoom 头饰;Kitty, Mickey 等卡通人物的手偶或头饰;教学课件[Unit 2 Let’s talk]一个小木偶。 教学过程 热身、复习(Warm-up/Revision) 1. 教师播放歌曲Hello ,师生共唱。教师边唱边用体态语示范和学生问候,并鼓励学生边唱边和戴有歌曲中人物头饰同学打招呼。 2. 用所学用语,师生互相问候:Hello/Hi, what’s your name? Hello/Hi, I’m… 3学生用英语名字,自由下座位同别人打招呼并询问姓名。 呈现新课(Presentation) (1). 教师告诉学生英语的打招呼用语有很多,除Hello/Hi 以外,在早上或上午可用Good morning. 来进行。教师在黑板上画一个升起的太阳,标上时间7:30和Good morning.一句。然后教师用学生的英文名字,以不同的身份和学生打招呼。(2)学生操练Good morning. (3)教师向学生打招呼:T: Good morning. I’m Miss Wang /Mr. …What’s your name? 学生回答S: My name’s …(4)教师呈现句式This is ….并把新朋友Miss Green 介绍给学生。 (5)学生操练句式This is ….(6)听录音或VCD来展示Let’s talk部分的对话时,教师联合几位学生表演一下,帮助学生理解。(7)学生跟读并模仿Let’s talk 部分的内容。(8)学生分小组,扮演对话中的人物或其他人物,进行实际交流。教师简单介绍Miss, Mr的用法,并鼓励学生说Miss , Mr 。(9)学生展示练习情况。 3、活动、操练(Activities/ Practice)(1)游戏1:“击鼓传花”(2)游戏2:“听声音,猜朋友” 4、课堂评价(Assessment)情景再现Let’t talk 5、课外活动(Add-activities) 听录音,仿读会话,并在实际情景中运用所学内容。 早上遇到老师时,要用Good morning!打招呼。 会用This is ….来介绍自己的老师、朋友和家长。 以小组为单位,准备下一节课表演本课A部分Let’s talk 的对话。 内容 unit 2 Colours 第2课时 教学 目的 要求1能听说、认读blue, green, yellow, red 这些表示颜色的单词。 2能听懂所接触的指示语,并能按照指示语做出相应的动作。 重点与难点教学重点:学习表示颜色的单词blue, green, yellow, red,

小学英语教案-colors

英语教案-colors 一年级英语教案 Topic Colors Teaching materials: words of colors: It’s red, blue, yellow, green, black. Teaching aims: Encourage them say the words of colors inEnglish. Importances: It’s red… and the other words of colors. Difficulties: Make an environment of using these words of colors. Teacing processions: Step 1.Greeting and warming-up. 1. Sing a song which named “Hello! How are you?” 2. --Hello! How are you? --I’m fine. How are you? --I’m fine. What’s your name? --I’m _____. Step 2. New materials and practise. 1. While greeting the child, tell the children that “How beautiful your coat is!” and so on. Then tell them the reason is the coat’s color is very nice. By this way lead out the new materials.

小学英语案例分析Colours

小学英语案例分析Colours 课题名称Colours 教学内容词汇red、yellow、blue、green 句型A:What’s your name? My name is…B:It’s… 教学目标 1、知识目标学习怎样用英语表达事物的颜色,掌握相关的单词:red\yellow\blue\green和句型What ’s your name? My name is…It’s…并能综合运用新、旧知识组织对话完成一定交际任务。 2、情感目标激发学生学习英语的兴趣,调动学习积极性,引导学生积极与他人合作,在活动中培养学生的协作精神和竞争意识。 3、能力目标培养学生的观察力、想象力、动手操作能力,提高学生感受美、欣赏美的水平,发展学生综合运用语言的能力。 4、德育目标培养学生热爱大自然、保护环境的良好品德。 教学重点创设语言情景,使学生正确理解和运用所学知识用英语表达事物颜色。 教学难点激发学生的求知欲,创设各种真实或接近真实的语言环境,让学生体验参与,主动学习事物颜色的表达法。 课前准备 1、课件; 2、“red、yellow、blue、green”单词卡片及“What ’s your name? My name is…It’s…”句型卡片; 3、调色板、水彩颜料、铅画纸若干及一些带颜色的实物; 4、小动物头饰或者图片、色块卡; 5、歌曲Colour Song录音; 学生情况分析学生的年龄在九、十岁左右,生性活泼好动,喜欢直观形象思维,对游戏、竞赛、画画特别感兴趣。学生学英语不久,有可能说的不好,有的还不敢说,课堂上要以表扬为主,注重培养学习英语的兴趣,鼓励他们大胆说、积极做、努力唱! 教学步骤

小学英语一年级课文《colors》教案及教学反思

小学英语一年级课文《colors》教案及 教学反思 一、学生分析: 小学一年级的学生刚刚开始接触英语,在前面的两个单元里,学生的学习兴趣还很浓,充分利用他们的学习劲头,多做互动和练习,本节课的话题非常贴近生活,也是学生熟悉和感兴趣的,很容易调动学生的学习兴趣,取得良好的教学效果。 二、教材分析: 本节课的内容是颜色,与日常生活有着密切的关系,重点让学生能听说单词green,black,blue,red,yellow,white,能利用生活中的物体进行各种形式的实物教学,对于上这节课来说是非常有优势的。 三、教学目标:

1、知识目标:能听、说、认读单词red ,blue,green, yellow, black, white。能听懂、会说What color is it ? 2、能力目标:能用英语正确表达物品的颜色。 3、情感目标:在对话过程中培养学生的识别能力。 四、教学重、难点: 1、听、说、认读red blue green yellow black white。 2、听懂会说What colour is it ? 3、将本课的知识运用到真实的情景之中。 五、教学过程: Step1、复习

师生互相问好,操练学过的句型,唱ABC歌曲。 Step2、导入和新课 1、我们生活在一个五彩缤纷的世界里,我们每天能看到各种各样的颜色,小朋友们喜欢这些颜色吗? 2、出示卡片,绿叶,提问:我们身边还有哪些绿色的东西?学生回答。(有效集中学生注意力,学生能积极思考) 3、板书单词green,教读,反复操练,学生跟读。(采取多种方式读,问学生是否喜欢该颜色,有喜欢的送给该学生) 4、分别出示红旗,黑夜,雪花,黄花,大海的卡片,用以上相同的方法教授单词red,black,white,yellow,blue。

小学英语《colors》教学设计

Colors教学设计 教学内容词汇 red、yellow、blue、green、pink、purple、orange 句型 A:What color is it? B:It’s… 教学目标 1、知识目标学习怎样用英语表达事物的颜色,掌握相关的单词:red\yellow\blue\green\pink\purple\orange和句型What color is it? It’s…并能综合运用新、旧知识组织对话完成一定交际任务。 2、情感目标激发学生学习英语的兴趣,调动学习积极性,引导学生积极与他人合作,在活动中培养学生的协作精神和竞争意识。 3、能力目标培养学生的观察力、想象力、动手操作能力,提高学生感受美、欣赏美的水平,发展学生综合运用语言的能力。 4、德育目标培养学生热爱大自然、保护环境的良好品德。 教学重点创设语言情景,使学生正确理解和运用所学知识用英语表达事物颜色。 教学难点激发学生的求知欲,创设各种真实或接近真实的语言环境,让学生体验参与,主动学习事物颜色的表达法。 课前准备 1、CAI课件; 2、单词卡片和句型卡片; 3、调色板、水彩颜料、铅画纸若干及一些带颜色的实物; 4、小动物头饰、色块卡; 5、歌曲Color Song录音、投影器;

6、在教室里挂上一些五彩气球和彩带,营造课堂气氛, 同时作为奖品,激发学生兴趣。 学生情况分析 学生的年龄在九、十岁左右,生性活泼好动,喜欢直观形象思维,对游戏、竞赛、画画特别感兴趣。学生学英语不久,有可能说的不好,有的还不敢说,课堂上要以表扬为主,注重培养学习英语的兴趣,鼓励他们大胆说、积极做、努力唱! 教学步骤 Step1 Free talk 1、Sing a song:“Morning Song” 2、T:Good morning,boys and girls.Nice to see you. Ss:Nice to see you,too. 分别与单个学生对话:Hello!/What’s your name?/How are you?/Where’s your nose?/Touch your face,please./Show me your pencil./What’s this?(头、手、铅笔、橡皮、蜡笔……) Step2 Introduce T: What’s this? CAI演示:一阵雷雨过后,太阳露出了笑脸,天边出现了一道美丽的彩虹,引出rainbow 。 T:Wow,how beautiful!Today we’ll learn a lesson about the colors of the rainbow.

小学英语三年级教案colors

Colours Teaching aims and demands 1.Enable them to say the colours. 2.Enable them to describe the things in the garden,using the structure;The …. is …. 3.Develop their cooperation spirit. Teaching emphasis and difficulty 1.The ability of saying the names of the colours. 2.The ability of describing the things,using the structure they?ve learned already. Teaching aids Some cards and pictures. Teaching procedure Step 1 warm-up 1.Daily talk Show them a colourful bag and ask:What is it? What colour is it? Revise colours. 2.A guessing game Put a banana in the bag ,let them guess. T: Touch it and guess,what?s in my bag? S: …. T: Right. What colour is it? S: …. T: Touch it and guess again: What?s in my bag? Step 2 Presentation 1.Present “flower” T: Look! This is a flower. Practise to say the word. Show them some paper flowers and ask: what colour is it? S: The flower is…. Blackboard writing: The flower is …. 2.Present “butterfly” and …tree”. T: The flower is so nice. Look, a butterfly and a bird are coming. (Practise to say the words butterfly and bird.) what colour is the butterfly? S: The butterfly is …. Practise it. 3.T: Yes, the butterfly is …. Oh, where is he bird? Oh, it?s in the tree. What colour is it? S: The tree is …. Practise. Step 3 Practice 1.OK,now let?s look at the picture again and answer me: What is it?

相关主题
文本预览
相关文档 最新文档