当前位置:文档之家› !!!北京玻钢院复合材料有限公司

!!!北京玻钢院复合材料有限公司

!!!北京玻钢院复合材料有限公司
!!!北京玻钢院复合材料有限公司

北京玻钢院复合材料有限公司

隶属于中国中材集团,是中材集团下述上市公司之一中材科技的子公司;

前身是国家建材局玻璃钢研究设计院,是1999年原国家经贸委管理的10个国家局所属242个科研机构转制院所之一,1999年转制成科技型企业。2003年,对优良资产进行整合,成立有限公司;并作为子公司之一,随中材科技上市;

公司拥有核心技术,承继于前身国家建材局玻璃钢研究设计院,研究院是国家最早从事玻璃钢复合材料研发的单位,中国第一块玻璃钢就诞生与此;

研究院成立之初,是为了服务于国防事业,早期一直使用北京二五一厂作为军口配套单位的代号名称;公司研发的玻璃钢材料作为弹头防热部件,为国家多型号导弹、火箭的成功研制做出了突出的贡献;同时,为水中兵器、潜艇、航空气瓶、等多兵种、多领域提供新材料的研发与制造,很多产品,目前仍然是公司的主要产品系列;

70年代后期,公司将玻璃钢材料向民用领域转移;由于玻璃钢材料的轻质高强性能,民用领域也涉及多种工业,如化工防腐、建筑建材、电气绝缘、仪器仪表外壳、汽车部件、城市轨道交通设施、水处理及

给排水、园林设施、游乐设施外壳等;

由于公司的国防配套职能,公司地处北京远郊区的偏远山区,曾一度由于交通不便、配套设施不足,制约了企业的发展;企业不得不发展成“厂办社会’”的模式,自建医院、学校、食堂,职工家属楼等设施,成为典型的老国营企业;知道90年代末期,才随着国家交通路网的不断发展,逐渐得到改善;并随着企业转制,逐渐实现了医院、学校等公共设施的社会化;企业也逐渐发展起来,但受各种旧体制的深远影响,发展速度并不尽人意;

公司特点一:

产业化发展线路不清晰:

由于公司前身是最早从事玻璃钢材料的研制单位,因此产业链纵深的特点明显,从最初的初级原材料到最终的制成品,都需要自行生产;因此早期的研究院,拥有从石头熔炼提取玻璃成份制成玻璃球,玻璃球拉丝制成纤维、纤维纺织织布、树脂合成,知道树脂玻璃纤维布复合制成玻璃钢制品的全部工序;同时,由于玻璃钢作为一种新材料,应用的领域逐渐推广,公司涉及的产业也多而杂;

在国防配套领域,公司几乎涉及了海军、陆航、二炮、航空、等所有兵种配套;

在民用领域,则涉及了化工防腐、建筑建材、电气绝缘、仪器仪表外壳、汽车部件、城市轨道交通设施、水处理及给排水、园林设施、游

乐设施外壳等多种产业;

目前公司总体可分为军品和民品两大系列,每种系列均涉及几十种材料应用领域,上百种产品;而每种产品,都是未能形成较大规模;因此造成了产业格局不清晰、重点不突出的产业格局特点;

公司特点二:

旧的国营体制未能有效根除,企业负担严重,企业文化背景复杂;

虽然专制成为企业已经十余年,但原有的旧的国营体制任然未能完全摒除,老职工老观念仍旧成为阻碍企业高效发展的绊脚石;同时,专制带来的负担任然未能摆脱,企业目前仍有退休、退养职工800余人,对于产值仅仅1个多亿的企业,造成了沉重的经济负担;虽然国家对于老的科研院所专制,仍有相关的补贴和扶植政策,但往往由于政策解读到具体企业特点的过程中不能完全清晰造成矛盾;

公司特点三:

综合研发能力及复合材料技术雄厚,但技术转化市场的能力和机制欠缺;不能有效的转化为市场,带来巨大的经济效益;

虽然随着新材料的普及,公司的营业收入逐年增长,从最初的二、三千万,发展成1.7亿的规模,但小而杂的产品结构任然是主基调;成规模的产品最大年收入也只在2~3前文,小的产品则只能在几十万甚至几万的规模,一方面分散了技术研发力量,另一方面,没有足够的市场支撑,产能规模不够,造成了产品杂而不精,且成本居高不下;

同时,重研发轻市场的问题不能有效解决,没有建立起良好的市场激励机制,市场队伍不健全,加上国有企业在机制和手段上没有乡镇企业灵活,市场工作严重跟不上,造成了很多领域里面,只能为他人做嫁衣,真正开发出一项好的产品,往往最终市场变成了他人的囊中之物;

公司特点四:

多年来实行事业部运营的机制,

公司设有5个事业部,大的实业部年收入规模在7-8千万,小的事业部在1千多万,还有针对若干新兴产业的项目部;

一方面,事业部具有相对的运营独立性,每年按照公司制定的目标完成任务;

但另一方面,造成了资源的分散,甚至重复,同时,公司管理机构臃肿,管理费用庞大,很多事项是二级管理,费人费物;

同时,由于事业部受年度目标制约,往往只以取得订单为第一要务,最求短期效果,而忽视了产业的培育,

特点五:

由于地处远郊,人力资源不够充足;往往是真正的人才留不住,而碌碌无为者大有人在又不能淘汰;

公司近期对战略的思路:

自2005年后,随着复合材料产业的发展,也出现了一些新的机遇;结合集团公司的发展规划,公司有若干产业得到了一定的发展,先后有复合材料叶片、复合材料汽车两项产业得到了一定的发展;在发展起来后,集团公司调整了产业格局,将两个产业剥离出北京玻钢院复合材料有限公司,独立为公司单独运营;并取得了一定的业绩;

正是基于这样的发展的成功,公司提出了以北京玻钢院复合材料有限公司为产业孵化器的战略设想:

利用公司在多领域均有涉足、材料研发实力充足的特点,结合国家各产业的发展,将公司打造成产业孵化器,成功一个产业,剥离独立成一个公司单独运营;

在公司保有军品产业,并稳步发展;

民品产业,要紧盯国家产业发展基于,争取培养出新的产业增长点;

这样一来,从集团公司的角度,培育出的新产业,将成为新的公司和业绩增长点,

但北京玻钢院复合材料有限公司的角度,剥离了产业,对集团公司的发展增加了新动力,而公司自身,也不能仅仅为新公司铺路,如何发挥产业孵化器的特点制定自身的战略发展,则成为公司研讨的重点,也是本论文希望阐述的方案;因此在开题报告中,提到了如何发挥企业孵化器的特点,为自身公司发展战略提出一个战略规划;

金属基复合材料的现状与展望

金属基复合材料的现状与 展望 学院:萍乡学院 专业:无机非金属材料 学号:13461001 姓名:蒋家桐

摘要综述了金属基复合材料的进展情况,重点阐述了颗粒增强金属基复合材料和金属基复合 涂层的进展,包括其性能、现有品种、制备工艺、应用情况. 同时报道了目前本领域研究存在的问 题,如:力学问题、界面问题、热疲劳问题,并在此基础上展望发展前景. 关键词颗粒增强金属基复合材料,复合涂层材料,界面,热疲劳,功能梯度材料 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展[1 ] . 复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展.金属基复合材料(MMC) 是以金属、合金或金属间化合物为基体,含有增强成分的复合材料. 这种材料的主要目标是解决航空、航天等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60 年代末才有了较快的发展,是复合材料一个新的分支. 目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性,以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料. 1 进展情况 目前,金属基复合材料基本上可分为纤维增强和颗粒增强两大类,所用的基体包括Al , Mg ,Ti 等轻金属及其合金以及金属间化合物等,也有少量以钢、铜、镍、钴、铅等为基体. 增强 纤维主要有碳及石墨纤维、碳化硅纤维、硼纤维、氧化铝纤维等,增强颗粒有碳化硅、氧化铝、硼 化物和碳化物等. 用以上的各种基体和增强体虽可组成大量金属基复合材料的品种,但实际上 只有极少几种有应用前景,多数仍处在研究开发阶段,甚至也有不少品种目前尚看不到其应用 前景[2 ] . 1. 1 纤维增强金属基复合材料 纤维增强金属基复合材料,由于具有高温性能好、比强度、比模量高、导电、导热性好等优 点,而成为复合材料的主要类型. 1. 2 颗粒增强金属基复合材料 由于纤维增强金属基复合材料存在上述缺点,从而未能得以大规模工业应用,只有美国、 日本等少数发达国家用于军事工业. 为此,近年来国际上又将注意力逐渐转移到颗粒增强金属 基复合材料的研究上. 这一类金属基复合材料与纤维增强金属基复合材料相比制备工艺简单, 成本低,可采用常规金属加工设备来制造,这样有利于其开发和应用. 可见,颗粒增强金属基复 合材料是非常有发展前途的. 金属基颗粒复合材料通常是作为耐磨、耐热、耐蚀、高强度材料开发的,目前用于颗粒增强

玻璃钢复合材料天线罩

玻璃纤维知识 玻璃钢复合材料天线罩广泛应用于各种通信设施。该系列产品外形美观、质轻、加工运输及安装方便、电绝缘性佳、透波性强、防紫外线、抗冲击,在高温、低寒等恶劣环境中依然性能良好。在通信行业日益发达的今天,雷达天线居功至伟,作为其最外围的保护罩,玻璃钢发挥了独特的电性能、质轻等优势,大大提高了天线的优良物性。常用于板式天线、管式全向天线、吸顶天线等。可根据客户提供图纸、样品加工,按客户需求设计各种规格款式。 绝缘单梯的主要技术要求: (一)绝缘单梯外观、装配 1、绝缘梯外观:绝缘梯各部件外形不得有尖锐棱角,应倒圆弧。 2、绝缘梯装配:应符合YB3205之规定 (二)绝缘单梯一般要求 1、绝缘梯原材料应预选检验 2、绝缘梯使用的铝合金材料制件应做表面阳极氧化处理,轴类钢制件表面应有防护镀层;绝缘层压类材料制件加工表面应用绝缘漆进行处理。 3、绝缘梯金属部件表面粗糙度应≤6.3 绝缘梯各部件加工表面应规则、平整。绝缘部件表面应光滑、无气泡、皱纹或开裂,无明显的擦伤和过热痕迹,颜色应为本色(从浅黄绿到棕色) (三)绝缘单梯技术参数 产品别名:绝缘合梯,玻璃钢合梯,玻璃钢人字梯 产品材料: 绝缘玻璃钢 耐压等级: 220KV 产品规格:1.5米绝缘人字梯 同类产品规格: 2.0米绝缘人字梯、 2.5米绝缘人字梯、3.0米绝缘人字梯、3.5米绝缘人字梯、 4.0米绝缘人字梯、

5.0米绝缘人字梯、 6.0米绝缘人字梯。

绝缘单梯的主要技术要求: (一)绝缘单梯外观、装配 1、绝缘梯外观:绝缘梯各部件外形不得有尖锐棱角,应倒圆弧。 2、绝缘梯装配:应符合YB3205之规定 (二)绝缘单梯一般要求 1、绝缘梯原材料应预选检验 2、绝缘梯使用的铝合金材料制件应做表面阳极氧化处理,轴类钢制件表面应有防护镀层;绝缘层压类材料制件加工表面应用绝缘漆进行处理。 3、绝缘梯金属部件表面粗糙度应≤6.3 绝缘梯各部件加工表面应规则、平整。绝缘部件表面应光滑、无气泡、皱纹或开裂,无明显的擦伤和过热痕迹,颜色应为本色(从浅黄绿到棕色) (三)绝缘单梯技术参数 产品别名:绝缘合梯,玻璃钢合梯,玻璃钢人字梯 产品材料: 绝缘玻璃钢 耐压等级: 220KV 产品规格:1.5米绝缘人字梯 更多文章 https://www.doczj.com/doc/179233365.html, 玻璃纤维厂编辑:blxwwk 同类产品规格: 2.0米绝缘人字梯、 2.5米绝缘人字梯、3.0米绝缘人字梯、3.5米绝缘人字梯、 4.0米绝缘人字梯、5.0米绝缘人字梯、6.0米绝缘人字梯。 绝缘单梯的主要技术要求: (一)绝缘单梯外观、装配 1、绝缘梯外观:绝缘梯各部件外形不得有尖锐棱角,应倒圆弧。 2、绝缘梯装配:应符合YB3205之规定 (二)绝缘单梯一般要求 1、绝缘梯原材料应预选检验

玻璃钢

玻璃钢 玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回 收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 玻璃钢学名玻璃纤维增强塑料,俗称FRP(Fiber Reinforced Plastics),即纤维增强复合塑料。根据采用的纤维不同分为玻璃纤维增强复合塑料(GFRP),碳纤维增强复合塑料(CFRP),硼纤维增强复合塑料等。它是以玻璃纤维及其制品(玻璃布、带、毡、纱等)作为增强材料,以合成树脂作基体材料的一种复合材料。纤维增强复合材料是由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在10μm以下,缺陷较少又较小,断裂应变约为千分之三十以内,是脆性材料,易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度、模量都要低很多,但可以经受住大的应变,往往具有粘弹性和弹塑性,是韧性材料。 中文名玻璃钢外文名GFRP称谓玻璃纤维增强塑料俗称FRP 原理 复合材料的概念是指一种材料不能满足使 用要求,需要由两种或两种以上的材料复合在一起,组成另一种能满足人们要求的材料,即复合材料。例如,单一种玻璃纤维,虽然强度很高,但纤维间是松散的,只能承受拉力,不能承受弯曲、剪切和压应力,还不易做成固定的几何形状,是松软体。如果用合成树脂把它们粘合在一起,可以做成各种具有固定形状的坚硬制品,既能承受拉应力,又可承受弯曲、压缩和剪切应力。这就组成了玻璃纤维增强的塑料基复合材料。由于其强度相当于钢材,又含有玻璃组分,也具有玻璃那样的色泽、形体、耐腐蚀、电绝缘、隔热等性能,象玻璃那样,历史上形成了这个通俗易懂的名称“玻 璃钢”,这个名词是由原国家建筑材料工业部部长赖际发同志于1958 年提出的,由建材系 统扩至全国。玻璃钢的含义就是指玻璃纤维作增强材料、合成树脂作粘结剂的增强塑料,国外称玻璃纤维增强塑料。随着我国玻璃钢事业的发展,作为塑料基的增强材料,已由玻璃纤维扩大到碳纤维、硼纤维、芳纶纤维、氧化铝纤维和碳化硅纤维等,无疑地,这些新型纤维制成的增强塑料,是一些高性能的纤维增强复合材料,再用玻璃钢这个俗称就无法概括了。考虑到历史的由来和发展,通常采用玻璃钢复合材料,这样一个名称就较全面了。 分类 玻璃钢产品分类:

复合材料结构及其力学复习要点

考试要求 1、考试要求:笔试,主要包括概念、主要公式及推导、原理图和计算题等形式问题;可带计算器,计算和推导要求有必要的过程; 2、看清题的每个问题,概念要清晰、计算要准确; 3、请给助教留好联系方式,以便通知考试时间和地点。 复习要点 一、基本概念和理论 1、非均匀性、各向异性以及正交各向异性的含义。P6 2、复合材料层合板的典型力学特点,能否举例说明,复合材料的高比强度、高比刚度的优势。 3、掌握几种典型纤维的力学性能。 玻璃纤维:密度大、高强低模、高伸长率、低线膨胀系数、低热导率 碳纤维:高密度、高比强度、高比模量、高耐热 纤维:高拉伸强度、高模量、低密度、吸能性和减震性能好 4、用工程常数表示正交各向异性材料的柔度矩阵。P22 3121 12 33212123 13231 2 32331121000 1 00010001000001000001000 ij v v E E E v v E E E v v E E E S G G G ??--??????--?? ????--?? ????=??? ??? ?????? ????????? ?,j ij i v εε=- 5、简单层板在任意方向上的应力-应变关系。P31

6、正交各向异性简单层板的最大应力P45、最大应变P4 7、蔡-希尔P4 8、霍夫曼准则等强度理论表达式及其特点。 7、等强度纤维模型(强度-纤维体积分数示意图、公式及相应的解释)。P48 8、经典层合理论的基本假设及其A、B、D刚度矩阵表达式。P93 9、层合板强度分析程序的主要步骤。P114 10、层间应力产生的原因及危害。P125 11、复合材料层合板的弯曲、屈曲和振动问题主要解决什么,哪些问题值得关注。 12、Halpin-Tsai计算公式及特点。P70 二、重点复习题 1、利用最小余能原理,证明复合材料弹性模量的下限。P62 2、利用材料力学分析方法,推导简单层板弹性模量E1、E2的细观力学表达式。P56 3、对每一层性质和厚度都相同,按[0,45,-45,90]s 铺设的层合板来说,下面三个刚度矩阵哪些项为零? 4、判断: 层合板层数的增加总会提高X方向或Y方向的轴向刚度

玻璃钢复合材料GFRP

玻璃钢复合材料 GFRP 在游艇船舶上的应用 在工业部门中,船舶是复合材料(composite material, 简称CM )应用最多的领域之一。目前船舶中用量最大、范围最广的复合材料是玻璃纤维增强塑料,即玻璃钢(glass fiber reinforced plastics, 简称GFRP )。 船用GFRP 具有下列优点: (1) 质轻、高强。 (2) 耐腐蚀,抗海生物附着。 (3) 无磁性。 (4) 介电性和微波穿透性好。 (5) 能吸收高能量,冲击韧性好。 (6) 导热系数低,隔热性好。 (7) 船体表面能达到镜面光滑,并可具有各种色彩。 (8) 可设计性好。 (9) 整体性好,船体无接缝和缝隙。 (10) 成型简便,批量生产性特别好。 (11) 维修保养方便,全寿命期的经济性能好。 由于GFRP 具有传统造船材料所无法比拟的优点,故倍受造船界的重视。经多年的开发应用,已成为一种重要的船用材料。但因其弹性模量低和受成型技术等的限制,尚不能建造太大的舰船,加之价格较贵,故在整个造船工业中的用量比钢材少。 自40 年代中期第一艘GFRP 船问世以来,世界各国相继开始研制各种GFRP 船舶,25 年间CM 船舶开发的业绩超过了钢质船舶近一个世纪的发展历程,尤其是美、英、日、意等国迄今仍保持强劲的势头。美国的GFRP 造船量居世界首位;日本1993 年GFRP 渔船的数量已超过32 万艘,GFRP 游艇则超过了20 万艘;据统计英国20 米以下的船有80 %是采用GFRP 制造,而且还批量建造了世界上最大的GFRP 反水雷舰;意大利和瑞典也分别建成了各具特色的新颖硬壳式和夹层结构的大型GFRP 猎扫雷舰。中国从1958 年开始试制GFRP 船,迄今也已制造了数以万计的各种GFRP 船艇。下面对一些主要国家GFRP 船艇产品的研制和开发情况作一概述。 美国是使用CM 最早和最多的国家,40 年代初就宣告GFRP 研制成功。1946 年美国海军建成了长米的世界第一艘聚酯GFRP 艇,拉开了CM 造船的序幕。1954 年前

复合材料结构与力学设计复结习题(本科生)

《复合材料结构设计》习题 §1 绪论 1.1 什么是复合材料? 1.2 复合材料如何分类? 1.3 复合材料中主要的增强材料有哪些? 1.4 复合材料中主要的基体材料有哪些? 1.5 纤维复合材料力学性能的特点哪些? 1.6 复合材料结构设计有何特点? 1.7 根据复合材料力学性能的特点在复合材料结构设计时应特别注意到哪些问题? §2 纤维、树脂的基本力学性能 2.1 玻璃纤维的主要种类及其它们的主要成分的特点是什么? 2.2 玻璃纤维的主要制品有哪些?玻璃纤维纱和织物规格的表示单位是什么?2.3 有一玻璃纤维纱的规格为2400tex,求该纱的横截面积(取玻璃纤维的密度 为2.54g/cm3)? 2.4 有一玻璃纤维短切毡其规格为450 g/m2,求该毡的厚度(取玻璃纤维的密 度为2.54g/cm3)? 2.5 无碱玻璃纤维(E-glass)的拉伸弹性模量、拉伸强度及断裂伸长率的大致 值是多少? 2.6 碳纤维T-300的拉伸弹性模量、拉伸强度及断裂伸长率的大致值是多少?密 度为多少? 2.7 芳纶纤维(kevlar纤维)的拉伸弹性模量、拉伸强度及断裂伸长率的大致值 是多少?密度为多少? 2.8 常用热固性树脂有哪几种?它们的拉伸弹性模量、拉伸强度的大致值是多 少?密度为多少?热变形温度值大致值多少? 2.9 简述单向纤维复合材料抗拉弹性模量、抗拉强度的估算方法。 2.10 试比较玻璃纤维、碳纤维单向复合材料顺纤维方向拉压弹性模量和强度值,指出其特点。 2.11 简述温度、湿度、大气、腐蚀质对复合材料性能的影响。 2.12 如何确定复合材料的线膨胀系数? 2.13已知玻璃纤维密度为ρf=2.54g/cm3,树脂密度为ρR=1.20g/cm3,采用规格 为450 g/m2的玻璃纤维短切毡制作内衬时,其树脂含量为70%,这样制作一层其GFRP的厚度为多少? 2.14 采用2400Tex的玻璃纤维(ρf=2.54g/cm3)制造管道,其树脂含量为35% (ρR=1.20g/cm3),缠绕密度为3股/10 mm,试求缠绕层单层厚度? 2.15 试估算上题中单层板顺纤维方向和垂直纤维方向的抗拉弹性模量和抗拉强度。 2.16已知碳纤维密度为ρf=1.80g/cm3,树脂密度为ρR=1.25g/cm3,采用规格为300 g/m2的碳纤维布制作复合材料时,其树脂含量为32%,这样制作一层其CFRP的厚度为多少?其纤维体积含量为多少? 2.17 某拉挤构件的腹板,厚度为5mm,采用±45°的玻璃纤维多轴向织物(面密

玻璃纤维复合材料的十大应用领域

玻璃纤维复合材料的十大应用领域 玻璃纤维(英文原名为:glassfiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 一、船艇 玻璃纤维复合材料具有耐腐蚀性、重量轻、增强效果优越等特点,被广泛用于制造游艇船体、甲板等。 二、电子电气

玻璃纤维增强复合材料在电子电气方面的运用主要是利用了它的电绝缘性、防腐蚀性等特点。复合材料在电子电气领域的应用主要有以下几个部分: 1、电器罩壳:包括电器开关盒、电器配线盒、仪表盘罩等。 2、电器原件与电部件:如绝缘子、绝缘工具、电机端盖等。 3、输线电包括复合电缆支架、电缆沟支架等。 三、风能

风能是无污染、可持续的能源之一,采用风能发电是开发新能源的一种途径。玻璃纤维具有优越的增强效果、重量轻等特点,是用于制造玻璃钢叶片和机组罩的一种良好材料。 四、航空航天、军事国防 由于航空航天、军事等领域对材料的特殊要求,玻纤复合材料所具有的重量轻,强度高,耐冲击及阻燃性好等特色能为这些领域提供了广泛的解决方案。 复合材料在这些领域的应用如下: --小飞机机身 --直升机外壳和旋翼桨叶 --飞机次要结构部件(地板、门、座椅、辅助油箱) --飞机发动机零件

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

复合材料结构力学作业

复合材料结构力学作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一. 对材料AS4/3501-6进行设计 已知61.1,134.0,3.0,86.6,65.9,2.147======ρυmm t GPa G MPa E MPa E T L MPa S MPa Y MPa Y MPa X MPa X C T c T 105,186,4.49,1468,2356=-==-== 最大正应力准则为pi pi T pi T pi C pi T S Y Y X X R 12 222211 11 , , min σσσσσ= 1 2 STEP I Special Stacking Sequence (SSS) (一) 在Task I 载荷作用下 已知Longitudinal Load =100 kN ,Transverse Load =-5 kN , Shear Load =30 kN 外加载荷可等效为{}{}m kN N N N N T T /600502000 1222 11-== 对[]0n S 度铺设层合板, {}MPa T 4478373 14925 }{-=σ,带入最大正应力准则得 N=max{6.3349,2.0054,42.6476}=42.6476,所以[]0n S 所需的最小层数为42.6层,且12σ先破坏 对[]90n S 度铺设层合板 {}{}MPa T 447814925 373 --=σ N=max{0.2541,302.1255,42.6476}=302.1255,所以[]90n S 所需的最小层数为302.1255层,且22σ先破坏 对[](45)n S ±度铺设层合板

玻璃钢复合材料发展概述

玻璃钢玻璃钢发展概述 我国FRP/CM(玻璃钢/玻璃钢)工业肇始于1958年。处于当时的时代背景下,一开始是为国防配套的,1978年后,从计划经济转型为市场需求导向,生产社会化,国家建设与人民生活所需的FRP/CM日益发展。 在党中央、国务院的领导下,原国家建筑材料工业部(局)对我国玻璃钢/玻璃钢工业的发展起了先导性和基础性的作用。 上世纪60年代中叶,我国即已研发与生产火箭发动机壳体、导弹头部、火箭筒、枪托、炮弹引信、高压气瓶、飞机螺旋桨、贮罐、风机叶片、农用喷雾器、撑杆、弓、跳水板、滑翔机尾翼等多种玻璃钢制品。 1965年10月,国家科委、国防科委、建材部联合召开全国玻璃钢工作会议,并举办展览会。党和国家领导人朱德、邓小平莅临参观。这期间,引进英国UPR(不饱和聚酯树脂)生产线,促进了我国UPR及其玻璃钢制品生产的技术进步与普及,对日后我国基体树脂及GRP的发展起了启蒙和基础性作用。 改革开发30年来,引进了纤维缠绕管道与罐生产线(包括工艺管、夹砂管、高压管、卧式与立式贮罐)、拉挤、SMC/BMC、RTM、连续采光板及LFT-D生产线等装备;引进了环氧树脂与不饱和聚酯生产软硬件。我国在吸收日、美技术之后,自行研发,建成了具有世界先进水平的玻纤工业。 基体材料与增强材料工业已为中国玻璃钢的进一步发展奠定了雄厚的基础。 我国玻璃钢产量跃居世界第二 历经50年、半个世纪,尤其是改革开发以来的30年,通过自主创新与吸收国际先进技术,FRP/CM在中国已成为朝阳产业。神舟飞船上天,其返回舱主承力结构,低密度SMC 等FRP件荣获国家科技进步二等奖,标志着我国玻璃钢科学技术已臻世界先进水平。 1986年~2007年,我国玻璃钢(热固性)增长近160倍。总量在上世纪90年代末期超过德国,本世纪初超过日本,热固性玻璃钢已超过欧洲总和。如今,我国FRP/CM年产量已超过日本、西欧,仅次于美国,居世界第二。 打下丰厚的原辅材料基础 (一)增强材料

复合材料结构力学认识

暨南大学研究生课程论文 题目:复合材料结构力学认识 学院:理工学院 学系:土木工程 专业:建筑与土木工程 课程名称:复合材料结构力学 学生姓名:陈广强 学号:1339297001 电子邮箱:chengq09@https://www.doczj.com/doc/179233365.html, 指导教师:王璠

复合材料结构力学认识 主题词:复合材料力学;复合材料结构力学;力学特性;力学基础复合材料结构力学研究复合材料的杆、板、壳及基组合结构的应力分析、变形、稳定和振动等各种力学问题,,在广议上属于复合材料力学的一个分支。由于其内容丰富,问题重要和研究对象不同,已成为和研究复合材料力学问题的狭义复合材料力学并列的学科分支。 一、复合材料结构力学研究内容和办法 目前复合材料结构力学以纤维增强复合材料层压结构为研究对象,主要研究内容包括:层合板和层合壳结构的弯曲,屈曲与振动问题,以及耐久性、损伤容限、气功弹性剪裁、安全系数与许用值、验证试验和计算方法等专题。研究中采用宏观力学模型,可以分辩出层和层组的应力。这些应力的平均值为层合板应力。研究方法以各向异性弹性力学方法为主,同时采用有限元素法、有限差分法、能量变分法等方法。对耐久性、损伤容限等较新的课题则采用以试验为主的研究方法。 二、复合材料结构的力学特性 1、复合材料的比强度和比刚度较高 材料的强度除以密度称为比强度;材料的刚度除以密度称为比刚度。这两个参量是衡量材料承载能力的重要指标。比强度和比刚度较高说明材料重量轻,而强度和刚度大。这是结构设计,特别是航空、航天结构设计对材料的重要要求。现代飞机、导弹和卫星、复合电缆支架、复合电缆夹具等机体结构正逐渐扩大使用纤维增强复合材料的

复合材料玻璃钢

玻璃钢的发展、应用和展望 【摘要】随着科技技术的发展,玻璃钢复合材料已成为新材料领域的重要先导材料,是发展现代工业、国防和科学技术不可或缺的基础材料,行业发展潜力巨大。文章重点介绍了玻璃钢复合材料的材料性能、行业发展、应用现状、趋势展望。 通过这学期“航空复合材料”这门课的学习,我开始了解并接触到一些复合材料,由于复合材料领域家族庞大,我特地选择一种常用的复合材料-玻璃钢展开进一步的学习。受到老师上课介绍复合材料的启发,我将从材料的成型,性能,国内外进展,应用和未来趋势进行引述。 近年来各种复合材料在工业技术中获得了日益广泛的应用。其中玻璃钢复合材料就是目前使用比较广泛的有机高分子基复合材料,简称玻璃钢,是以高分子有机树脂为基体,采用玻璃纤维进行性能增强的复合材料。用玻璃纤维增强热固性塑料的玻璃钢叫做热固性玻璃钢(FRP);用玻璃纤维增强热塑性塑料的玻璃钢叫做热塑性玻璃钢(FIP)。目前在生产中使用比较多的是热固性塑料玻璃钢。那么我简要介绍FRP的成型方法,其中有手糊成型工艺、喷射成型工艺、模压法、RTM(树脂传递模塑)成型工艺。手糊成型工艺主要是在涂有脱模剂的模具上,将加有固化剂的树脂混合料和玻璃纤维织物手工逐层铺放,浸胶并排除气泡,叠层至要求的厚度后固化,形成所需的制件。喷射成型工艺是将混有引发剂和促进剂的两种聚酯树脂分别从喷枪两侧喷出,同时将切断的玻纤粗纱由喷枪中心喷出,使其与树脂均匀混合,沉积到模具上,当沉积到一定厚度时,用辊轮压实,使纤维浸透树脂,排除气泡固化后成制品。模压法分为热压法和冷压法,模压工艺主要控制两个关键参数,即温度和压力。RTM成型工艺

基本原理是将璃纤维增强材料放到封闭的模腔内,用压力将树脂胶液注入腔,浸透玻纤增强材料,然后固化,脱模后成制品。玻璃钢的密度小,耐腐蚀、耐老化、不生锈、防水、密封效果好,甚至还有吸振、隔音、隔热的效果。其力学性能也十分出色,抗拉强度略低于碳钢,比强度较一般碳钢大2-5倍,比模量较一般碳钢大得多,刚度也比较大,抗疲劳强度几乎接近钢材的一半,且发生疲劳破坏前有明显的征兆。 1958年第一块玻璃钢板的成功压制,标志着中国玻璃钢工业正式诞生,改革开放后,特别是“十五”计划以来,我国玻璃钢在生产技术、产品种类、生产规模等方面迈过了由小到大的台阶,形成了较为完善的工业体系。工艺技术及装备已与国际同步,产品种类齐全,产量已超过德国、日本和美国,居全球第一,标准化体系和研发生产测试体系不断完善。产品应用领域不断扩大,由最初的航天耐烧蚀防热部件发展到现在的航天、航空、船舶、交通运输、能源、建筑、石油、化工、节能环保、电子电器、医疗、体育运动器械等国防和国民经济各领域。玻璃钢复合材料经过70多年的发展,在全球范围内已经成为一个重要的技术产业,产量大幅提升,2013年全球产量已达1060万t,是1978年产量的 5.3倍;产值大幅提高,2013年产值达900亿欧元。北美、欧洲和亚洲为主要的生产和应用地区,2011年,三个地区分别占全球产量的35%、22%和43%,占全球产值的36%、33%和31%;最近两年,美国玻璃钢产量和产值均有所下降,2013年占全球产量的28%,占全球产值的32%;欧洲玻璃钢产量增长缓慢,

复合材料力学沈观林编着清华大学出版社

《复合材料力学》沈观林编著清华大学出版社 第一章复合材料概论 1.1复合材料及其种类 1、复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料。 2、复合材料从应用的性质分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能。 3、结构复合材料由基体材料和增强材料两种组分组成。其中增强材料在复合材料中起主要作用,提供刚度和强度,基本控制其性能。基体材料起配合作用,支持和固定纤维材料,传递纤维间的载荷,保护纤维。根据复合材料中增强材料的几何形状,复合材料可分为三大类:颗粒 复合材料、纤维增强复合材料(fiber-reinforced composite)、层禾口 复合材料。 (1)颗粒:非金属颗粒在非金属基体中的复合材料如混凝土;金属颗粒在非金属基体如固体火箭推进剂;非金属在金属集体中如金属陶 '瓷O (2)层合(至少两层材料复合而成):双金属片;涂覆金属;夹层玻璃。 (3)纤维增强:按纤维种类分为玻璃纤维(玻璃钢)、硼纤维、碳纤维、碳化硅纤维、氧化铝纤维和芳纶纤维等。 按基体材料分为各种树脂基体、金属基体、陶瓷基体、和碳基体。按纤维形状、尺寸可分为连续纤维、短纤维、纤维布增强复合材料。 还有两种或更多纤维增强一种基体的复合材料。如玻璃纤维和碳纤维增强树脂称为混杂纤维复合材料。 5、常用纤维(性能表见P7表1-1) 玻璃纤维(高强度、高延伸率、低弹性模量、耐高温) 硼纤维(早期用于飞行器,价高)碳纤维(主要以聚丙烯腈PAN纤维或沥青为原料,经加热氧化,碳化、石墨化处理而成;可分为高强度、高模量、极高模量,后两种成为石墨纤维(经石墨化2500~3000°C);密度比玻璃纤维小、弹性模

玻璃钢与碳素钢

一、玻璃钢(FRP)的优点 (1)玻璃钢(FRP)轻质高强 相对密度在1.5~2.0之间,只有碳钢的1/4~1/5,可是拉伸强度却接近,甚至超过碳素钢,而比强度可以与高级合金钢相比。因此,在航空、火箭、宇宙飞行器、高压容器以及在其他需要减轻自重的制品应用中,都具有卓越成效。某些环氧FRP的拉伸、弯曲和压缩强度均能达到400Mpa以上。 (2)玻璃钢(FRP)耐腐蚀性能好 FRP是良好的耐腐材料,对大气、水和一般浓度的酸、碱、盐以及多种油类和溶剂都有较好的抵抗能力。已应用到化工防腐的各个方面,正在取代碳钢、不锈钢、木材、有色金属等。 (3)玻璃钢(FRP)电性能好 是优良的绝缘材料,用来制造绝缘体。高频下仍能保护良好介电性。微波透过性良好,已广泛用于雷达天线罩。 (4)玻璃钢(FRP)热性能良好 FRP热导率低,室温下为1.25~1.67kJ/(m·h·K),只有金属的1/100~1/1000,是优良的绝热材料。在瞬时超高温情况下,是理想的热防护和耐烧蚀材料,能保护宇宙飞行器在2000℃以上承受高速气流的冲刷。 (5)玻璃钢(FRP)可设计性好 ①可以根据需要,灵活地设计出各种结构产品,来满足使用要求,可以使产品有很好的整体性。 ②可以充分选择材料来满足产品的性能,如:可以设计出耐腐的,耐瞬时高温的、产品某方向上有特别高强度的、介电性好的,等等。 (6)工艺性优良 ①可以根据产品的形状、技术要求、用途及数量来灵活地选择成型工艺。 ②工艺简单,可以一次成型,经济效果突出,尤其对形状复杂、不易成型的数量少的产品,更突出它的工艺优越性。 二、玻璃钢(FRP)的不足之处 (1) 玻璃钢(FRP)弹性模量低 FRP的弹性模量比木材大两倍,但比钢(E=2.1×106)小10倍,因此在产品结构中常感到刚性不足,容易变形。可以做成薄壳结构、夹层结构,也可通过高模量纤维或者做加强筋等形式来弥补。 (2) 玻璃钢(FRP)长期耐温性差 一般FRP不能在高温下长期使用,通用聚酯FRP在50℃以上强度就明显下降,一般只在100℃以下使用;通用型环氧FRP在60℃以上,强度有明显下降。但可以选择耐高温树脂,使长期工作温度在200~300℃是可能的。 (3) 玻璃钢(FRP)老化现象 老化现象是塑料的共同缺陷,FRP也不例外,在紫外线、风纱雨雪、化学介质、机械应力等作用下容易导致性能下降。 (4) 玻璃钢(FRP)层间剪切强度低 层间剪切强度是靠树脂来承担的,所以很低。可以通过选择工艺、使用偶联剂等

复合材料力学

目录 复合材料细观力学 (1) 简支层合板的自由振动 (9) 不同条件下对称层合板的弯曲分析 (14)

复合材料细观力学 ——混凝土细观力学 一、研究背景 复合材料细观力学 复合材料细观力学是20世纪力学领域重要的科学研究成果之一,是连续介质力学和材料科学相互衍生形成的新兴学科。 近20年来,我国科技工作者应用材料细观力学的理论和方法,成功研究了许多复合材料的增强,断裂和破坏问题,给出了一些特色和有价值的研究成果。 混凝土细观力学 混凝土作为一种重要的建筑材料已有百余年的历史,它广泛应用于房屋、桥梁、道路、矿井、及军工等诸多方面。在水工建筑方面,混凝土也被大量使用,特别是大体积混凝土,它是重力坝和拱坝的主要组成部分,对混凝土各项力学性能的准确把握及应用,在一定程度上决定了水工建筑物的质量和安全性能。 二、研究目的 长期以来,在混凝土应用的各个领域里,人们对混凝土的力学特性进行了大量的研究。如何充分的利用混凝土的力学性能,建造出更经济、更安全和更合理的建筑物或工程结构,一直都是结构工程设计领域研究的重要课题。 三、研究现状 混凝土是由粗骨料和水泥砂浆组成的非均质材料,它的力学性能

受到材料的品质、组分、施工工艺和使用条件等因素的影响。过去,人们对混凝土力学性能的研究很大程度上是依靠实验来确定的。随着实验技术的发展,混凝土各种力学性能被揭示出来。但由于实验需要花费大量的人力、物力和财力,而且所得到的实验成果往往由于实验条件的限制也是很有限的。 现代科学的一个重要的思维方式与研究方法就是层次方法,在对客观世界的研究中,当停留在某一层次,许多问题无法解决时,深入到下一个层次,问题就会迎刃而解。 对混凝土断裂问题的研究归纳为如下四个研究层次: 1)宏观层次:混凝土这种非均质材料存在着一个特征体积,经验的 特征体积相应于3~4倍的最大骨料体积。当混凝土体积大于这种特征体积时,材料被假定为均质的,当小于这种特征体积时,材料的非均质性将会十分明显。有限元计算结果反映了一定体积内的平均效应,这个特征体积的平均应力和平均应变称之谓宏观应力和宏观应变。 2)细观层次:在这个层次中,混凝土被认为是一种由骨料、砂浆和 它们之间的粘结带组成的三相非均质复合材料,细观内部裂隙的发展将直接影响混凝土的宏观力学性。细观层次的模型一般是毫米或厘米量级。 3)微观层次:在这个层次上,认为砂浆的非均质性是由浆体中的孔 隙所产生的。由于砂浆中孔隙很小而且量多,随机分布,水泥砂

玻璃钢的材质说明

纤维增强环氧树脂复合材料(玻璃钢)成型工艺及应用一、前言 相比传统材料,复合材料具有一系列不可替代的特性,自二次大战以来发展很快。尽管产量小(据法国Vetrotex公司统计,2003年全球复合材料达700万吨),但复合材料的水平已是衡量一个国家或地区科技、经济水平的标志之一。美、日、西欧水平较高。北美、欧洲的产量分别占全球产量的33%与32%,以中国(含台湾省)、日本为主的亚洲占30%。中国大陆2003年玻班纤维增强塑料(玻璃纤维与树脂复合的复合材料、俗称“玻璃钢”)逾90万吨,已居世界第二位(美国2003年为169万吨,日本不足70万吨)。 复合材料主要由增强材料与基体材料两大部分组成: 增强材料:在复合材料中不构成连续相赋于复合材料的主要力学性能,如玻璃钢中的玻璃纤维,CFRP(碳纤维增强塑料)中的碳纤维素就是增强材料。 基体:构成复合材料连续相的单一材料如玻璃钢(GRP)中的树脂(本文谈到的环氧树脂)就是基体。 按基体材料不同,复合材料可分为三大类: 树脂复合材料 金属基复合材料 无机非金属基复合材料,如陶瓷基复合材料。 环氧树脂基复合材料的优点: 1、为什么采用环氧树脂做基体? 1)固化收缩率代低,仅1%-3%,而不饱和聚酯树脂却高达7%-8%; 2)粘结力强; 3)有B阶段,有利于生产工艺; 4)可低压固化,挥发份甚低; 5)固化后力学性能、耐化学性佳,电绝缘性能良好。 6)值得指出的是环氧树脂耐有机溶剂、耐碱性能较常用的酚醛与不饱和聚酯树脂为佳,然耐酸性差;固化后一般较脆,韧性较差。 2、环氧玻璃钢性能(按ASTM) 以FW(纤维缠绕)法制造的玻纤增强环氧树脂的产品为例,将其与钢比较。

国内外玻璃钢+复合材料工业发展现状

国内外玻璃钢/复合材料工业发展现状 张耀明:中国工程院院士 一、玻璃钢复合材料工业发展回顾 上个世纪30年代美国伊里诺玻璃公司与康宁公司成立合资企业,先后开发出玻璃棉、连续玻璃纤维等生产技术。1939年E玻璃纤维正式问世。几乎与此同时,环氧树脂及不饱和聚酯相继出现,从而为玻璃纤维增强塑料工业的发展奠定了物质基础。1945年年玻璃钢用的主要增强材料——短切原丝毡及连续原丝毡投入生产,1952年美国杜邦公司发明了沃兰偶联剂解泱了增强塑料中玻纤与树脂的界面粘结问题,同一年硅烷偶联剂也问世,此后一系列的偶联剂产品的出现全面改进了玻纤——树脂基复合材料的性能, 为其在各个领域的应用铺平了道路。 第二次世界大战对玻纤、玻钢的发展起了催化剂的作用,许多适应战争需要的玻璃钢产品如防弹片刺穿的玻璃钢油桶、雷达罩、军用盔甲被研制出来并投入为战争服务。战后的1945年,美国的二十几家玻璃钢公司成立了美国塑料工业协会低压层合材料工业分会,它标志着玻璃钢/复合材料作为一门独立的工业体系已从传统的塑料工业中分离出来。 1958-1959年期间,玻纤池窑拉丝投入生产,这是对传统的玻璃球法拉丝工艺的重大技术突破。初期的玻纤池窑日产量只有3吨,时至今日全世界95%以上的连续玻璃纤维都已用池窑法生产,最大的无碱玻纤池窑达到日熔化玻璃150吨以上。池窑拉丝的普遍推广为玻璃纤维产品大规模经济有效的生产提供了可能,并使玻纤产品的质量得以保证。半年多世纪的发展历史证明,玻璃纤维与玻璃纤维增强塑料工业的发展是相辅相成、互相依赖互相促进的。近些年来,出现了一些高性能的增强纤维,如高模量碳纤维、陶瓷纤维、芳伦纤维、高强玻璃纤维等,它们推动了高性能、高附加值复合材料的发展,但由于这些高性能纤维价格昂贵,阻碍了它们在复合材料工业中的大规模应用,放至今95%以上的纤维——树脂基复合材料仍然使用玻璃纤维,在可以预见的未来一段时间里,这种情况仍将持续。 我国的玻璃纤维及玻璃钢工业均奠基于1958年,在改革开放年代之前,玻璃纤维与玻璃钢发展缓慢,截止到1978年玻璃钢全国年产量只有6000吨左右,主要是一些手糊的和模压的军工产品,而玻璃纤维只有3万吨左右,其中大多为我国自行研发的中碱玻璃纤维,主要产品为细纱薄布,主要工艺为代铂炉球法拉丝。改革开放以后特别是近十年来我国玻纤玻钢工业显现出前所未有的发展活力,无论是工艺技术装备还是产量质量品种均发生了巨大的变化,这两门工业已成为我国国民经济体系中不可缺少的环节。

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1. 1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标 GB/T1447 进行测试;对于缠绕成型的,用国标 GB/T1458 进行测试;对于定向纤维增强的,用国标 GB/T33541 进行测试;对于拉挤成型的,用国标GB/T13096-1 进行测试。使用最多的是 GB/T1447 。 国标 GB/T1447 ,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带 R 型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力--------------------------- 应变曲线的直线段的斜率则为弹性模量,试样横向应变 与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用 MPa (兆帕)表示, 1MPa 相当于 1N/mm2 的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1 玻璃钢,拉伸强度为(200-250 )MPa ,弹性模量为(10-16 )GPa;4:1 玻璃钢,拉伸强度为(250-350 )MPa ,弹性模量为(15-22 )GPa ;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa ,弹性模量大于 24GPa ; SMC 材料,拉伸强度为( 40-80 ) MPa ,弹性模量为( 5-8 )GPa ;DMC 材料,拉伸强度为( 20-60 ) MPa ,弹性模量为( 4-6 )GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标 GB/T1449 进行测试;对于拉挤材料,用国标 GB/T13096.2 进行测试;对于单向纤维增强的,用国标 GB/T3356 进行测试。测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。采用当中加载的三点弯曲法。梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,横截面积上还要承受剪切应力,中性层剪应力最大,因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种的。原材料品种、性能及成型工艺参数对弯曲性能很敏感,试验方法和试样尺寸同样也很敏感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比( l/h )有一定要求,一般要求 l/h >16,对于单向纤维增强的材料,要求l/h >32。 由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 1.1 节中拉伸性能,或小于 1.1 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 1. 3 压缩性能

相关主题
文本预览
相关文档 最新文档