当前位置:文档之家› 椭偏光法测量薄膜的厚度和折射率

椭偏光法测量薄膜的厚度和折射率

椭偏光法测量薄膜的厚度和折射率
椭偏光法测量薄膜的厚度和折射率

椭偏法测薄膜厚度和折射率

摘要

本实验通过椭圆偏振光法测量了氟化镁(MgF2)、氧化锆(ZrO2)及二氧化钛(TiO2)等介质薄膜的厚度和折射率,以及Cu和Al金属薄膜的厚度和消光系数。

关键词

椭圆偏振光法介质薄膜金属薄膜椭偏参数复折射率消光系数

一、引言

椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。

二、实验原理

在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1)

图(1-1)

这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ,用r1p、r1s表示光线的p分量、s分量在界面1、2间的反射系数,用r2p 、r2s表示光线的p分、s分量在界面2、3间的反射系数。由多光束干涉的复振幅计算可知:

其中Eip和Eis 分别代表入射光波电矢量的p分量和s分量,Erp和Ers分别代表反射光波电矢量的p分量和s分量。现将上述Eip、Eis 、Erp、Ers四个量写成一个量G,即:

我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。上述公式的过程量转换可由菲涅耳公式和折射公式给出:

G是变量n1、n2、n3、d、λ、φ1的函数(φ2 、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程:

[tgψe iΔ]的实数部分=

的实数部分

[tgψe iΔ]的虚数部分=

的虚数部分

若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:

由上式经计算机运算,可制作数表或计算程序。这就是椭偏仪测量薄膜的基本原理。若d 是已知,n2为复数的话,也可求出n2的实部和虚部。那么,在实验中是如何测定ψ和Δ的呢?现用复数形式表示入射光和反射光:

由式(3)和(12),得:

其中:

这时需测四个量,即分别测入射光中的两分量振幅比和相位差及反射光中的两分量振幅比和相位差,如设法使入射光为等幅椭偏光,Eip/Eis = 1,则tgψ=|Erp/Ers|;对于相位角,有:

因为入射光βip-βis连续可调,调整仪器,使反射光成为线偏光,即βrp-βrs=0或(π),则Δ=-(βip-βis)或Δ=π-(βip-βis),可见Δ只与反射光的p波和s波的相位差有关,可从起偏器的方位角算出。对于特定的膜,Δ是定值,只要改变入射光两分量的相位差(βip-βis),肯定会找到特定值使反射光成线偏光,βrp-βrs=0或(π)。

三、测量方法

1)等幅椭圆偏振光的获得(实验光路如图1-2)

平面偏振光通过四分之一波片,使得具有±π/4相位差。

使入射光的振动平面和四分之一波片的主截面成45°。

图1-2

2)反射光的检测

将四分之一波片置于其快轴方向f与x方向的夹角α为π/4的方位,E0为通过起偏器后的电矢量,P为E0与x方向间的夹角。,通过四分之一波片后,E0沿快轴的分量与沿慢轴的分量比较,相位上超前π/2。

在x轴、y轴上的分量为:

由于x轴在入射面内,而y轴与入射面垂直,故Ex就是Eip,Ey就是Eis。

图1-3

由此可见,当α=π/4时,入射光的两分量的振幅均为E0 / √2,它们之间的相位差为2P-π/2,改变P 的数值可得到相位差连续可变的等幅椭圆偏振光。这一结果写成:

四、 实验内容和操作步骤

1) 测量氟化镁(MgF 2)、二氧化硅(SiO 2)、硫化锌(ZnS)、氧化锆(ZrO 2)及二氧化钛(TiO 2)薄膜

样品的折射率和厚度

2) 测量Cu 和Al 金属厚膜的折射率和消光系数

五、 实验结果及数据处理

表1 实验数据处理

材料

P1/° A1/° P2/° A2/° ψ/° △/°

n d/mm

氟化镁(MgF 2) 140 14 50 167.5 13.25 -10 1.38 1806.807

142 15 52 166.5 14.25 -14

144 13.5 54 168 12.75 -18 146 14.5 56 167 13.75 -22 148 15 58 167 14 -26

平均值 13.6 -18 二氧化钛(TiO 2) 70 11.75 160 176.5 7.625 -50

2.4 2889.89

76 11.5 166 174.9 8.3 -62 72 12.25 162 174.5 8.875 -54

74 13.5 164 174 9.75 -58 78 12 168 174 9 -66

平均值 8.71 -58 氧化锆(ZrO 2) 50 11 140 176 7.5 -10 2.196 1570.571

48 11.5 138 175.5 8 -6

46 11 136 175 8 -2 44 12 134 174.5 8.75 2 42 12.5 132 174 9.25 6

平均值 8.3 -2

n k

Al 58 48 148 136 46 -26

0.8362

3 -0.02017 56 48.5 146 136.5 46 -22 5

4 49 144 133.

5 47.75 -18 52 52 142 134 49 -14 50 51 140 132 49.5 -10

平均值 47.65 -18

Cu 54 49 144 131 49 -18

0.8031

-0.04621

56 49 146 130 49.5 -22

58 48 148 129 49.5 -26

60 50 150 133 48.5 -30

62 50 152 134 48 -34

平均值48.9 -26

实验误差分析:

薄膜表面不干净会给实验带来系统误差,另外光路调节和读数也会给实验带来一定的测量误差。

六、结论及总结

通过本实验了解了椭圆偏振光法的原理和实验方法,并且熟悉了椭偏仪的结构和调

试方法。测量了几种介质薄膜的厚度和折射率分别为氟化镁(MgF2)的n=1.38,

d=1806.807mm、氧化锆(ZrO2)的n=2.196,d=1570.571mm,及二氧化钛(TiO2)的n=2.4,

d=2889.89mm。以及金属薄膜的折射率和消光系数分别为Cu的n=0.8031,k=-0.04621

和Al的n=0.83623,k=-0.02017 。

七、参考文献

[ 1 ]熊俊.近代物理实验.北京.北京师范大学出版社.2007

椭偏仪测量薄膜厚度与折射率

椭偏仪测量薄膜厚度和折射率 近代科学技术中对各种薄膜的研究和应用日益广泛。因此,能够更加迅速和精确地测量薄膜的光学参数例如厚度和折射率已变得非常迫切。 在实际工作中可以利用各种传统的方法来测定薄膜的光学参数,如布儒斯特角法测介质膜的折射率,干涉法测膜。另外,还有称重法、X 射线法、电容法、椭偏法等等。其中,椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。因为椭偏法具有测量精度高,灵敏度高,非破坏性等优点,已广泛用于各种薄膜的光学参数测量,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。 实验目的 了解椭圆偏振测量的基本原理,并掌握一些偏振光学实验技术。 实验原理 光是一种电磁波,是横波。电场强度E 、磁场强度H 和光的传播方向构成一个右旋的正交三矢族。光矢量存在着各种方位值。与光的强度、频率、位相等参量一样,偏振态也是光的基本量之一。 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n 1、n 2、n 3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉。 这里我们用2δ表示相邻两分波的相位差,其中222cos /dn δπφλ=,用r 1p 、 r 1s 表示光线的p 分量、s 分量在界面1、2间的反射系数, 用r 2p 、r 2s 表示光线的p 分量、s 分量在界面2、3间的反射系数。 由多光束干涉的复振幅计算可知: 2122121i p p rp ip i p p r r e E E r r e ?δ --+= + (1) 2122121i s s rs is i s s r r e E E r r e ? δ --+=+ (2) 其中E ip 和E is 分别代表入射光波电矢量的p 分量和s 分量,E rp 和E rs 分别代表反射光波电矢量的p 分量和s 分量。现将上述E ip 、E is 、E rp 、E rs 四个量写成一个量G ,即:

折射率的测定

3.3 折射率的测定 一、实验目的 1.了解测定折射率的原理及阿贝折光仪的基本构造,掌握折光仪的使用方法。 2.了解测定化合物折射率的意义。 二、实验原理 折射率是物质的物理常数,固体、液体和气体都有折射率。折射率常作为检验原料、溶剂、中间体和最终产物的纯度及鉴定未知样品的依据。 在确定的外界条件(温度、压力)下,光线从一种透明介质进入另一种透明介质时,由于光在两种不同透明介质中的传播速度不同,光传播的方向就要改变,在分界面上发生折射现象。 根据折射定律,折射率是光线入射角的正弦与折射角的正弦之比,即 当光由介质A进入介质B时,如果介质A对于介质B是光疏物质,则折射角β必小于入射角α,当入射角为90°时,sinα=1,这时折射角达到最大,称为临界角,用β0表示。很明显,在一定条件下,β0也是一个常数,它与折射率的关系是 可见,测定临界角β0,就可以得到折射率,这就是阿贝折光仪的基本光学原理,如图3-6所示。 图3-6 光的折射现象图3-7 折光仪在临界角时的目镜视野图 为了测定β0值,阿贝折光仪采用了“半暗半明”的方法,就是让单色光由0~90°的所有角度从介质A射入介质B,这时介质B中临界角以内的整个区域均有光线通过,因此是明亮的,而临界角以外的全部区域没有光线通过,因此是暗的,明暗两区界线十分清楚。如果在

介质B的上方用一目镜观察,就可以看见一个界线十分清楚的半明半暗视场,如图3-7所示。 因各种液体的折射率不同,要调节入射角始终为90°,在操作时只需旋转棱镜转动手轮即可。从刻度盘上可直接读出折射率。 实验用品 WAY阿贝折光仪1台。乙酸乙酯(A.R),丙酮(A.R)。 三、实验操作 1.折光仪的使用方法 熟悉阿贝折光仪的基本结构,其结构如图3-8所示。 1-底座;2-棱镜转动手轮;3-圆盘组(内有刻 度盘);4-小反射镜; 5-支架;6-读数镜筒;7-目镜;8-望远镜筒; 9-物镜调整镜筒; 10-色散棱镜手轮;11-色散值刻度圈;12-折 3-8阿贝折光仪的结构射棱镜琐紧扳手; 13-折射棱镜组;14-温度计座;15-恒温计接头;16-主轴;17-反射镜 ①将折光仪置于靠近窗户的桌子上或普通照明灯前[1],但不能曝于直照的日光中。 ②用乳胶管把测量棱镜和辅助棱镜上保温套的进出水口与恒温槽串接起来,装上温度计,恒温温度以折光仪上温度计读数为准[2]。 ③旋开棱镜锁紧扳手,开启辅助棱镜,用镜头纸蘸少量丙酮或乙醚轻轻擦洗上下镜面,风干。滴加数滴待测液于毛镜面上,迅速闭合辅助棱镜,旋紧棱镜锁紧扳手。若试样易挥发,则从加液槽中加入被测试样。 ④调节反射镜,使入射光进入棱镜组,调节测量目镜,从测量望远镜中观察,使视场最亮、最清晰。旋转棱镜转动手轮,使刻度盘标尺的示值最小。 ⑤旋转棱镜转动手轮,使刻度盘标尺上的示值逐渐增大,直至观察到视场中出现彩色光带或黑白临界线为止。 ⑥旋转色散棱镜手轮,使视场中呈现一清晰的明暗临界线。若临界线不在叉形准线交点上,则同时旋转棱镜转动手轮,使临界线明暗清晰且位于叉形准线交点上,如图3-5所示。 ⑦记下刻度盘数值即为待测物质折射率。重复2~3次,取其平均值[3]。并记下阿贝折光仪温度计的读数作为被测液体的温度。 ⑧按操作③擦洗上下镜面,并用干净软布擦净折光仪,妥善复原。

电阻测量的六种方法

电阻测量的六种方法 电阻的测量是恒定电路问题中的重点,也是学生学习中的难点。这就要求学生能够熟练掌握恒定电路的基本知识,并能够灵活运用电阻测量的六种方法,从而提高学生的综合分析问题、解决问题的能力。 一.欧姆表测电阻 1、欧姆表的结构、原理 它的结构如图1,由三个部件组成:G是内阻为Rg、 满偏电流为Ig的电流计。R是可变电阻,也称调零电阻, 电池的电动势为E,内阻为r。 图1 欧姆档测电阻的原理是根据闭合电路欧姆定律制成的。 当红、黑表笔接上待测电阻Rx时,由闭合电路欧姆定律可知: I = E/(R+Rg+Rx+r)= E/(R内+R X) 由电流的表达式可知:通过电流计的电流虽然不与待测电阻成正比,但存在一一对应的关系,即测出相应的电流,就可算出相应的电阻,这就是欧姆表测电阻的基本原理。 2.使用注意事项: (1)欧姆表的指针偏转角度越大,待测电阻阻值越小,所以它的刻度与电流表、电压表刻度正好相反,即左大右小;电流表、电压表刻度是均匀的,而欧姆表的刻度是不均匀的,左密右稀,这是因为电流和电阻之间并不是正比也不是反比的关系。 (2)多用表上的红黑接线柱,表示+、-两极。黑表笔接电池的正极,红表笔接电池的负极,电流总是从红笔流入,黑笔流出。 (3)测量电阻时,每一次换档都应该进行调零 (4)测量时,应使指针尽可能在满刻度的中央附近。(一般在中值刻度的1/3区域)

(5)测量时,被测电阻应和电源、其它的元件断开。 (6)测量时,不能用双手同时接触表笔,因为人体是一个电阻,使用完毕,将选择开关拨离欧姆档,一般旋至交流电压的最高档或OFF 档。 二.伏安法测电阻 1.原理:根据部分电路欧姆定律。 2.控制电路的选择 控制电路有两种:一种是限流电路(如图2); 另一种是分压电路。(如图3) (1)限流电路是将电源和可变电阻串联,通过改变电阻的阻值,以达到改变电路的电流,但电流的改变是有一定范围的。其优点是节省能量;一般在两种控制电路都可以选择的时候,优先考虑限流电路。 (2)分压电路是将电源和可变电阻的总值串联起来,再从可变电阻的两个接线柱引出导线。如图3,其输出电压由ap 之间的电阻决定,这样其输出电压的范围可以从零开始变化到接近于电源的电动势。在下列三种情况下,一定要使用分压电路: ① 要求测量数值从零开始变化或在坐标图中画出图线。 ② 滑动变阻器的总值比待测电阻的阻值小得多。 ③ 电流表和电压表的量程比电路中的电压和电流小。 3.测量电路 由于伏特表、安培表存在电阻,所以测量电路有两种:即电流表内接和电流表外接。 (1)电流表内接和电流表外接的电路图分别见图4、图5 图 2 图3

折射率的测量与运用

折射率的测量与运用 1、周凯宁,肖宁,陈棋,钟杰,李登峰《3种测量三棱镜折射率方法的对比》实验室研究与探索,第30卷第4期,第22--26页,2011年4月 摘要:为了提高实验效率,并找一种更加简捷的测量三棱镜折射率方法,对垂直底边入射法进行了研究,并和传统的最小偏向角法和全反射法进行了比较。垂直底边入射法让入射光线垂直于三棱镜顶角的临边入射,通过测量出射角度间接测量三棱镜折射率。比较了3种方法操作的简繁程度、测量数据的准确性和结果不确定度。实验结果表明,垂直底边入射法的操作较之传统方法更加简便,数据和最小偏向角法的结果符合很好,数据准确性次于最小偏向角法。最小偏向角法在数据的准确性方面优于其他两种方法.全反射法的不确定度明显高于其他2种测量方法。采用垂直底边入射法可以有效地达到简化测量三棱镜折射率的目的。 2、黄凌雄,赵丹,张戈,王国富,黄呈辉,魏勇,位民《Er :SGB 晶体主轴折射率测量》人工晶体学报,第35卷第3期,第442--448页,2006年6月 摘要:根据Er :sbGd(BO ,),(Er :sGB)的透过率曲线粗略估计了该晶体的折射率,再利用白准直法,精确测量了30—170℃范围内,O .4880m μ、O .6328m μ、1.0640m μ、1.338m μ等波长下Er :sGB 晶体的主轴折射率,得到seumeier 方程并计算了1319m μ下Er :sGB 晶体的主轴折射率,与实验测量的结果进行比较,两者的差异不大于2×410-,处在测量误差的范围内,验证了实验结果的可靠性。 3、杨爱玲,张金亮,唐明明,孙步龙《LFI 法测量半透明油的折射率》光子学报,第38卷第3期,第703--704页,2007年 摘要:LFl 方法曾被用来测量大直径光纤的折射率.用一半盛油一半为空气的毛细管代替光纤,并用聚焦的条形光束照射毛细管,空气与油的干涉奈纹同时产生.根据空气的条纹可以确定参数6,根据一组已知折射率的标准样品可确定另一参数f ,同时可以建立标准液体最外条纹的偏折角与折射率的标准曲线.对于未知折射率的样品,一旦测量出其最外条纹的偏折角,从标准曲线上就可以读出其折射率.实测了一组半透明油的折射率,其结果与阿贝折射仪测量结果接近. 4、廖焕霖,罗淑云,王凌霄,彭吉虎,吴伯瑜,沈嘉,高悦广,宋琼《LiNbo 。电光调制器行波电极微波等效折射率的测量》电子与信息学报,第25卷第2期,第284--288页,2003年2月 摘要:LINb03电光调制器器的设计中,行波电射的微波等效折射率是一个重要的参数,该文通过自行设计的微波探针架及探针,采用差值的方法,在微波同络分析仪上对样品CPW 电极的微波等效折射率进行了测量.分析了实测值与理论值的偏差,给出了修正因子,研究了微波等效折射率随频率变化的色散现象,并对这种测量方法进行了误差分析,提出了减小误差的方法。 5、黄凌雄,赵玉伟,张戈+,龚兴红,黄呈辉,魏勇,位民《LYB 晶体主轴折射率测量与评价》光子学报,第37卷第1期,第185--187页,2008年1月 摘要:采用自准直法测量了在30℃~170℃范围内,0.473m μ、0.6328m μ、1.0640m μ、1.338m μ等波长下LYB 晶体的主轴折射率,得到Sellmeier 方程并

大学物理实验多种方法测量直流电阻

用多种方法测量直流电阻 一、实验目的 1、熟悉各种电学仪器及电路技巧; 2、掌握多种方法测量直流电阻 3、巩固不确定度的评定方法 二、仪器 DH6108赛电桥综合实验仪,直流稳压电源,万用电表,电阻箱,两个待测电阻,千分尺,直流电流表,直流电压表,滑线变阻器,检流计等 三、实验原理 电阻是电磁学实验工作中的常用元件,可分为高值电阻(兆欧以上)、中值电阻(10欧~兆欧)、低值电阻(10欧以下)。测量电阻的方法有许多种,常用的如伏安法、电桥法、比较测量方法(电压比等于电阻比)。 (一)伏安法测量电阻的原理(适用于测中值电阻) 1、实验线路的比较和选择 当电流表内阻为0,电压表内阻无穷大时,下述两种测试电路的测量不确定度是相同的。 图1 电流表外接测量电路 图2 电流表内接测量电路 被测电阻的阻值为: I V R = 。 但实际的电流表具有一定的内阻,记为R I ;电压表也具有一定的内阻,记为R V 。因为R I 和R V 的存在,如果简单地用I V R = 公式计算电阻器电阻值,必然带来附加测量误差。为了减少这种附加误差,测量电路可以粗略地按下述办法选择:

比较(R/R I )和(R V /R )的大小,比较时R 取粗测值或已知的约值。如果前者大则选电流表内接法,后者大则选择电流表外接法。 如果要得到测量准确值,就必须按下(1)、(2)两式,予以修正。 即电流表内接测量时,I R I V R -= (1) 电流表外接测量时, V R V I R 11-= (2) 2、测量误差与不确定度的评定 实验使用的电压表和电流表的量程和准确度等级一定时,可以估算出U V 、U I ,再用简化公式I R I V R -= 计算时的相对不确定度 (3) 式中U R 表示测量R 的不确定度,并非指R 的电压值。 可见要使测量的准确度高,应选择线路的参数使数字表的读数尽可能接近满量程,因为这时的V 、I 值大,U R /R 就会小些。 当电压表、电流表的内阻值R V 、R I 及其不确定度大小U RI 、U RV 已知时,可用公式(1)、(2)更准确地求得R 的值,相对不确定度由下式求出: 电流表内接时: (4) 电流表外接时: (5) 这就知道由公式(1)、(2)来得到电阻值R 时,线路方案和参数的选择应使U R /R 尽可能最小(选择原则3)。 (二)惠斯通电桥测量未知电阻的原理 (适用于测中值电阻) 现代计量中直流电桥正逐步被数字仪表所替代. 以往在电阻测量中电桥起了重要作用。 惠斯通电桥(Wheatstone ,s bridge )沿用了近二百年,1833年由克里斯泰(Cheistie )首先提出,后来以惠斯通名字命名. 电桥产生的背景是: 1)在数字仪表发展之前的时期,如果用伏安法测量电阻/R V I =,需要同时准确测量电压V 和电流I ,当时0.2级模拟式电表的制造成本与价格就已经显著高于准确度约0.05% 6位旋转式电阻箱. 2)伏安法测量的条件要求较高,如0.2级电表的使用与检定的条件要求较高,对电源 2 2?? ? ??+??? ??=I U V U R U I V R ?? ????-??? ?????? ??+??? ??+??? ??=I V R I V R R U I U V U R U I I I R I V R I /1/2222????? ?-???? ?????? ??+??? ??+??? ??=V V V R I V R R I V R I V R U I U V U R U V /1/222 2

大学物理实验设计性实验液体折射率测定

评分:大学物理实验设计性实验实验报告 实验题目:液体折射率测定 班级: 姓名:学号: 指导教师:

《液体的折射率测定》实验提要 实验课题及任务 《液体的折射率测定》实验课题任务方案一:光从一种介质进入另一种介质时会发生折射现象,当入射击角为某一极值(掠射)时,会产生一特殊的光学现象,能同时看到有折射光和无折射光的现象,就可以实现液体折射率的测量。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《液体的折射率测定》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解 仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶测量5组数据,。 ⑷应该用什么方法处理数据,说明原因。 ⑸实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 分光仪、钠光灯、毛玻璃与待测液体 实验提示 掠入射法测介质折射率的原理如图示3-1所示。将待测介质加工成三棱镜,用扩展光源(用钠光灯照光的大毛玻璃)照明该棱镜的折射面AB,用望远镜对棱镜的另一个折射面AC进行观测。在AB界面上图中光线a、b、c的入射角依次增大,而c光线 i。在棱镜中再也不可能有折射角为掠入线(入射角为 90),对应的折射角为临界角 c i的光线。在AC界面上,出射光a、b、c的出射角依次减小,以c光线的出射角大于 c 'i为最小。因此,用望远镜看到的视场是半明半暗的,中间有明显的明暗分界线。证

测量折射率

介质的折射率通常由实验测定,有多种测量方法。对固体介质,常用最小偏向角法或自准直法;液体介质常用临界角法(阿贝折射仪);气体介质则用精密度更高的干涉法(瑞利干涉仪)。

实验原理 阿贝折射仪是测量物质折射率的专用仪器,它能快速而准确地测出透明、半透明液体或固体材料的折射率(测量范围一般为1.300~1.700),它还可以与恒温、测温装置连用,测定折射率随温度的变化关系。 阿贝折射仪的光学系统由望远镜和读数系统组成,如图1所示。 图1 1反射镜2棱镜3折射棱镜4阿米西色散棱镜5物 镜6分划板7、8目镜9分划板10物镜11转向棱 镜12刻度盘13毛玻璃14小反光镜。 1.若待测物为透明液体,一般用掠入射法来 测量其折射率n (见图2),有 x 图2 图3 阿贝折射仪直接标出了与φ角对应的折射率,测量时只要使明暗线与望远 。 镜叉丝对准,就可从读数装置上直接读出n x

2.若待测固体有两个互成90°角的抛光面,则可用透射光测定其折射率。(见图3) 接触液的存在不影响n x 的测量,但要求其折射率n 2 >n x 。接触液的作用是使待测 样品面和折射棱镜面形成良好的光学接触。任何物质的折射率都与测量时使用的光波波长有关。阿贝折射仪因有光补偿装置(阿米西棱镜组),所以测量时可用白光光源,且测量结果相当于钠黄光的折射率。另外,液体的折射率还与温度有关。 仪器用具 阿贝折射仪、白炽灯、恒温水浴、温度计、待测液体(酒精、甘油、液体石蜡)、待测固体(透明玻璃块) 实验内容 1.校准阿贝折射仪。 2.开动恒温水浴,测出三种不同液体(酒精、甘油、液体石蜡)在不同温度下的的折射率(温度范围10~50℃)。 3.根据实验结果分析待测液体折射率随温度的变化关系。 预习思考题 1.试分析望远镜中观察到的明暗分界线是如何形成的。 2.用掠入射法求n x 的公式是否同样适用于反射法? 3.阿贝折射仪中的进光棱镜起什么作用?

(教师版)电阻的特殊测量方法

(教)电阻的特殊测量的方法 (一)伏安法 1.原理:由欧姆定律推出R=U/I 2.电路图: 3.滑动变阻器的作用: (1)保护电路; (2)改变电路中的电压和电流,多次测量取平均值减小误差。 4.本实验中多次测量的目的是:把滑变的作用和多次的量的目的改成填空形式比较好,并且提出问题:对于小灯泡的电阻,能用此方法,多次测量取平均值吗?为什么? 图1多次测量取平均值减小误差 图2测出小灯泡在不同情况(亮度)下的电阻。 (二)测电阻的几种特殊方法 一、安阻法:在用“伏安法测电阻”的实验中,如果电压表坏了,但又没有多余的电压表,手头却还有一只已知电阻R 0,此实验怎样继续进行? 方法一:没有电压表,不能测电压。但有了定值电阻,可以用电流表和定值电阻组合起来,起到电压表的作用。但必须和R x 并联。(可以用电流表和定值电阻来代替电压表) 电路图: 步骤:如上图所示,先用电流表测R 0中的 电流,其示数为I 1,这时可求 出电源电压U =I 1R 0 ;再测R x 中的电流,其示数是I 2; 表达式R x =02 1R I I 方法二:上述方案中电流表要两次连接,能否只连接一次完成实验? 电路图: 步骤:如上图所示,当开关S 1闭合时,电流表的示数为I 1;当开关S 2闭合 时,电流表示数是I 2 表达式R x =02 1R I I 方法三:能否用一只单刀单置开关? 电路图: 步骤:如图所示。当开关S 断开时,电流表的示数为I 1;当S 闭合时,电流示数 是I 2, 表达式R x = 02 11R ΙΙI

方法四:能否将R 0 、Rx 串联起来测量? 电路图: 步骤:如图所示,当开关S 闭合时,电流表的示数为I 1;当S 断开时, R 0和Rx 串联,电流表示数是I 2; 表达式R x =02 12R ΙΙI - 方法五:能否用一只滑动变阻器代替上题中的R 0 电路图: 步骤:如图所示,滑动变阻器的的最大值为R 0,当滑动变阻器的滑片在最左边时, 电流表的示数为I 1;当滑动变阻器的滑片在最右边时,电流表的示数为I 2 表达式R x =02 12R ΙΙI - 二、伏阻法:在用“伏安法测电阻”的实验中,如果电流表坏了,但又没有多余的电流表,手实却还有一只已知电阻R 0,此实验怎样继续进行?学生应该能够根据上一方法解决下面问题,所以可以让学生设计电路图(用电压表和定值电阻代替电流表) 方法一电流表,不能测电流。但有了定值电阻,可以用电压表和定值电阻组合起来,起到电流表的作用。但必须和R x 串联。 电路图: 步骤:如图所示,当开关S 闭合时,先用电压表测R 0两端的电压,其示数为 U 1;再用电压表测R x 两端的电压,其示数是U 2 表达式R x = 012R U U 方法二:能否只连接一次电路? 电路图: 步骤:如图所示,R 0 与Rx 串联,当开关S 1闭合时,电压表测的是电源电 压,电压表的示数为U 1;当开关S 2时,电压表测的是R 0两端的电压,电压 表的示数为U 2; 表达式R x =02 21R U U U - 方法三:能否用一只单刀单置开关? 电路图: 步骤:如图所示,当开关S 2闭合时,电压表示数为U 1 ;当S 2断开时,电 压表其示数为U 2 ; 表达式R x =02 21R U U U -

玻璃折射率的测量方法

课程论文 题目:对玻璃折射率测定方法的探究 班级:2010级物理学本科班 姓名: 学号: 指导老师: 对玻璃折射率测定方法的探究

摘要:通过不同的方法测定玻璃的折射率,在对实验现象观察的同时,比较不同的方法之间的区别,并将实验结果与真实值比较。 关键词:玻璃,分光计,顶角,偏向角,折射率。 引言:运用钠灯灯光或激光照射玻璃,通过观察折射或反射光的性质来确定玻璃的折射率。 实验方法: (一) 最小偏向角法: 1. 实验仪器与用具:分光计,玻璃三棱镜,钠灯。 2. 实验原理: (1)将待测的光学玻璃制成三棱镜,可用最小偏向角法测其折射率n .测量原理见图1,光线α代表一束单色平行光,以入射角i 1投射到棱镜的AB 面上,经棱镜两次折射后以i 4角从另一面AC 射出来,成为光线t .经棱镜两次折射,光线传播方向总的变化可用入射光线α和出射光线t 延长线的夹角δ来表示,δ称为偏向角.由图1可知δ=(i 1-i 2)+(i 4-i 3)=i 1+i 4-A .此式表明,对于给定棱镜,其顶角 A 和折射率n 已定,则偏向角δ随入射角i 1而变,δ是i 1的函数. (2)用微商计算可以证明,当i 1=i 4或i 2=i 3时,即入射光线a 和出射光线t 对称地“站在”棱镜两旁时,偏向角有最小值,称为最小偏向角,用δm 表 示.此时,有i 2=A /2, i 1=(A +δm )/2,故2 2m A A n sin sin δ+=。用分光计测出棱 镜的顶角A 和最小偏向角δm ,由上式可求得棱镜的折射率n . 3.实验内容: 3.1棱镜角的测定 图1

置光源于准直管的狭缝前,将待测棱镜的折射棱对准准直管,由准直管射出的平行光束被棱镜的两个折射面分成两部分。在棱镜的另外两侧分别找到狭缝像与竖直叉丝重合,分别记录此时分光计的读数''1212,,,V V V V ,望远镜的两位置所对应的游标读数之差为棱镜角A 的两倍。 3.2最小偏向角的测定 (1)将待测棱镜放置在棱镜台上,转动望远镜使能清楚地看见钠光经棱镜折射后形成的黄色谱线。 (2)刻度内盘固定。缓慢转动载物台,改变入射角,使谱线往偏向角减小的方向移动,用望远镜跟踪谱线观察。 (3)当载物台转到某一位置,该谱线不再移动,如继续按原方向转动载物台,可看到谱线反而往相反的方向移动,即偏向角变大。该谱线偏向角减小的极限位置即为最小偏向角位置。 (4)反复实验,找出谱线反向移动的确切位置。固定载物台,微动望远镜,使叉丝中间竖线对准谱线中心,记录此时分光计的读数12,V V 。 (5)转动载物台,使光线从待测棱镜的另一光学面入射,转动望远镜至对称位置,使光线向另一侧偏转,同上找出对应谱线的极限位置,相应的游标读数为 ' ' 12V V 和。同一游标左右两次数值之差是最小偏向角的2 倍,即 '' 1122()/4m V V V V δ=-+- 4.实验数据记录 表2:最小偏向角

测电阻的几种方法总结

V A 图1 R X0 I I X I V U A V R X0 图2 I A I X0 I U U A U X0 电阻测量 一、伏——安法 伏安法是用一个电压表V和一个电流表A来测量电阻,其测量 原理:R X= U I 。实际测量中有电流表外接法和电流表 内接法两种电路。 设电压表V内阻为R V,电流表A内阻为R A,待测电阻 真实值为R X0,测量值为R X,通过R X0的电流为I。 测量时,电压表V的示数为U,电流表A的 示数为I。 1、电流表外接法:小外偏小 2、电流表内接法:大内偏大 3、伏安法测电阻的电路的改进 如图3、图4的两个测电阻的电路能够消除电表的内阻带来的误差, 为什么?怎样测量? 二、测电阻的几种特殊方法 1.只用电压表,不用电流表 图3 图4

图6 方法一:伏——伏法----是用两个电压表(其中一个内阻已知,另 一个内阻未知)测量电压表的内阻。 测量电路如图5所示。 电路满足:R V1》R ,R V2》R 。 设电压表V 1内阻R V1未知,电压表V 2内阻 R V2已知;电压表V 1示数为U 1,电压表V 2示数 为U 2。由图5可得: R V1= 11V U I R V2=22 V U I 通过电压表V 1、V 2的电流为I V1=I V2 由以上三式得:R V1= 1 2 U U R V2 方法二:伏——伏——R 法(变式:伏——伏——R X 法) 伏——伏——R 法是用两个电压表(内阻均未知)和一个定值电阻R 0测量电压表的未知内阻。 测量电路如图6所示。 电路满足:R V1》R ,R V2》R ,R 0》R 。 设电压表V 1示数为U 1,电压表V 2示数为U 2,电压表V 2的量程电压大于 电压表V 1的量程电压。实验测量电压表V 1的内阻R V1。由图6可得: R V1= 1 1V U I R 0=00 R R U I 定值电阻R 0 两端电压:U R0=U 2—U 1 图5

台阶仪测试薄膜厚度实验

东南大学材料科学与工程 实验报告 学生姓名班级学号实验日期2014.9.5 批改教师 课程名称电子信息材料专业方向大型实验批改日期 实验名称台阶仪测试薄膜厚度实验报告成绩 一、实验目的: 掌握测试薄膜厚度原理和方法,了解台阶仪操作技术。 二、实验原理: LVDT是线性差动变压器的缩写,为机电转换器的一种。利用细探针扫描样品表面,当检测到一个高度差别则探针做上下起伏之变化,此变化在仪器内部的螺旋管先圈内造成磁通量的变化,再有内部电子电路转换成电压讯号,进而求出膜厚。LVDT线性位置感应器,可测量的位移量小到几万分之一英寸至几英寸。 LVDT的工作原理是由振荡器产生一高频的参考电磁场,并内建一支可动的铁磁主轴以及两组感应线圈,当主轴移动造成强度改变由感应线圈感应出两电压值,相比较后即可推算出移动量。三、实验步骤: (1)开机准备 (2)放置样品 (3)参数设置 (4)扫描结果分析 (5)数据保存 四、实验内容: Si基底上沉积金属Cr薄膜的厚度的测量 五、实验结果与分析: 样品:硅片上镀铬薄膜; 实验参数:长度1000μm;持续时间40s;针压力3mg;表面轮廓是Hills and Valleys.

由实验曲线及数据,可得薄膜厚度约为(868.8-617.0)=251.8μm。 六、思考题: 1、对于用台阶仪对非完美薄膜的厚度测量,Step Hight的M和R Cursor点 的选择? 两个点分别选在图线中的拐点处,这样倾斜的曲线会水平,比较容易得到薄膜的厚度 2、怎么样才能得到一个比较shape的台阶? 在制备时在衬底上覆盖一个形状规则比如长方形的陪片,且覆盖片要尽量薄,边缘应整齐,这样产生的台阶才会陡峭,方便测量

薄膜厚度和消光系数的透射光谱测量方法

薄膜厚度和消光系数的透射光谱测量方法 项目完成单位:国家建筑材料测试中心 项目完成人:刘元新 鲍亚楠 孙宏娟 王廷籍 摘 要 本文提出薄膜厚度和消光系数的标准曲线测量法,论述了方法的测量原理和测量程序。该法的膜厚的测量范围为~80nm 到2000nm ;膜厚的测量误差大约为13nm 。 关键词 薄膜、厚度、消光 自洁净玻璃的自洁净性能、低幅射玻璃的低幅射性能都与其膜层的厚度、折射率和消光系数有着密切的关系[1]。近代微电子学装置,如成像传感器、太阳能电池、薄膜器件等都需要这些参数[2] 。这些参数的数据是薄膜材料、薄膜器件设计的必不可少的基础性数据。 通常都是单独测量这些参数,薄膜厚度用原子力显微镜、石英震荡器、台阶仪、椭偏仪、干涉法来测量。薄膜折射率的测量就比较麻烦,因为它是波长的函数,它可以用基于干涉、反射原理的方法测量。从薄膜的吸收谱就可测量其消光系数。显然,取得这些数据是很麻烦、很费时、成本也很高,特别是对于纳米级薄膜。 2000年,美国Princeton 等大学提出[2] ,从物理角度建立透射光谱模型,调整模型中的未知的参数,即薄膜厚度、折射率、消光系数,使透射光谱的理论曲线同实验曲线重合,这就同时取得薄膜的厚度、折射率、消光系数等数据。他们用这种方法同时测量了“玻璃-薄膜” 系统的薄膜的厚度、折射率、消光系数等数据。显然,这是取得这些数据的简便、快速、低成本的方法,是这领域的一个发展趋势。 镀膜玻璃的透射光谱既包含玻璃参数的信息,也包含薄膜参数的信息,如果能从中解析出薄膜参数的信息,也就得到了薄膜参数的测量值,这就是透过光谱法测量薄膜参数的基本思路。本文基于这个基本思路提出测量薄膜参数的另一方法,姑且称为标准曲线法,方法的原理是基于这样的实验现象,即薄膜的吸收越强,镀膜玻璃的透过率越低;在薄膜吸收的光谱区内,薄膜越厚,镀膜玻璃的透过率也越低;这就是说,镀膜玻璃在指定波长处的透过率T 是薄膜厚度t 和薄膜消光系数 的函数, ),,(λκt T T = 但镀膜玻璃透过率和薄膜参数有什么函数关系?这就是本文要研究的问题。知道这函数关系之后,如何利用这函数关系测量薄膜参数?这也是本文要研究的问题。

透明薄片折射率测定实验报告

透明薄片折射率的测定 迈克尔逊干涉仪是用分振幅的方法实现干涉的光学仪器,设计十分巧妙。迈克尔逊发明它后,最初用于著名的以太漂移实验。后来,他又首次用之于系统研究光谱的精细结构以及将镉(Cd)的谱线的波长与国际米原器进行比较。迈克尔逊干涉仪在基本结构和设计思想上给科学工作以重要启迪,为后人研制各种干涉仪打下了基础。迈克尔逊干涉仪在物理学中有十分广泛的应用,如用于研究光源的时间相干性,测量气体、固体的折射率和进行微小长度测量等。 【实验目的】 1. 掌握迈克尔逊干涉仪的结构、原理和调节方法; 2. 熟悉白光的干涉现象 4. 学习一种测量透明薄片折射率的方法。 【实验仪器】 迈克尔逊干涉仪,He-Ne 激光器,扩束镜,小孔光阑,透明薄片,白光光源 【实验原理】 一、透明薄片折射率的测量原理 干涉条纹的明暗决定于光程差与波长的关系,用白光光源只有在d=0的附近才能在M 1 和 M 2′交线处看到干涉条纹,这时对各种光的波长来说,其光程差均为2/λ(反射时附加2/λ),故产生直线黑纹,即所谓中央黑纹,两旁有对称分布的彩色条纹。d 稍大时,因对各种不同波长的光满足明暗条纹的条件不同,所产生的干涉条纹明暗互相重叠,结果就显不出条纹来。因而白光光源的彩色干涉条纹只发生在零光程差附近一个极小的范围内,利用这一点可以定出d =0的位置。利用白光的彩色干涉条纹可以测量透明薄片的 图1 透明薄片折射率测定 二、点光源干涉条纹的特点 不论平面镜M 1往哪个方向移动,只要是使距离d 增加,圆条纹都会不断从中心冒出来并扩大,同时条纹会变密变细。反之,如果使距离d 减小,条纹都会缩小并消失在中心处,同时条纹会变疏变粗。这表明0=d (即两臂等长)是一个临界点。当往同一个方向不断地移动1M 时,只要经过这个临界点,看到的现象就会反过来(见图2)。因此,实现点光源的非定域干涉后,最好先把两臂的长度调成有明显差别(0>>d ),避免在移动1M 时不小心通过了临界点,造成不必要的麻烦。 用眼睛观察 M 2

折射率的测定

折射率的测定

3.3 折射率的测定 一、实验目的 1.了解测定折射率的原理及阿贝折光仪的基本构造,掌握折光仪的使用方法。2.了解测定化合物折射率的意义。 二、实验原理 折射率是物质的物理常数,固体、液体和气体都有折射率。折射率常作为检验原料、溶剂、中间体和最终产物的纯度及鉴定未知样品的依据。 在确定的外界条件(温度、压力)下,光线从一种透明介质进入另一种透明介质时,由于光在两种不同透明介质中的传播速度不同,光传播的方向就要改变,在分界面上发生折射现象。 根据折射定律,折射率是光线入射角的正弦与折射角的正弦之比,即 当光由介质A进入介质B时,如果介质A对于介质B是光疏物质,则折射角β必小于入射角α,当入射角为90°时,sinα=1,这时折射角达到最大,称为临界角,用β0表示。很明显,在一定条件下,β0也是一个常数,它与折射率的关系是 可见,测定临界角β0,就可以得到折射率,这就是阿贝折光仪的基本光学原理,如图3-6所示。 图3-6 光的折射现象图3-7 折光仪在临界角时的目镜视野图

为了测定β0值,阿贝折光仪采用了“半暗半明”的方法,就是让单色光由0~ 90°的所有角度从介质A射入介质B,这时介质B中临界角以内的整个区域均 有光线通过,因此是明亮的,而临界角以外的全部区域没有光线通过,因此是暗 的,明暗两区界线十分清楚。如果在介质 B的上方用一目镜观察,就可以看见 一个界线十分清楚的半明半暗视场,如图3-7所示。 因各种液体的折射率不同,要调节入射角始终为90°,在操作时只需旋转 棱镜转动手轮即可。从刻度盘上可直接读出折射率。 实验用品 WAY阿贝折光仪1台。乙酸乙酯(A.R),丙酮(A.R)。 三、实验操作 1.折光仪的使用方法 熟悉阿贝折光仪的基本结构,其结构如图3-8 所示。 1-底座;2-棱镜转动手轮;3-圆盘组 (内有刻度盘);4-小反射镜; 5-支架;6-读数镜筒;7-目镜;8-望 远镜筒;9-物镜调整镜筒; 3-8阿贝折光仪的结构10-色散棱镜手轮;11-色散值刻度 圈;12-折射棱镜琐紧扳手; 13-折射棱镜组;14-温度计座;15-恒温计接头;16-主轴;17-反射镜 ①将折光仪置于靠近窗户的桌子上或普通照明灯前[1],但不能曝于直照的日光 中。 ②用乳胶管把测量棱镜和辅助棱镜上保温套的进出水口与恒温槽串接起来,装 上温度计,恒温温度以折光仪上温度计读数为准[2]。 ③旋开棱镜锁紧扳手,开启辅助棱镜,用镜头纸蘸少量丙酮或乙醚轻轻擦洗上 下镜面,风干。滴加数滴待测液于毛镜面上,迅速闭合辅助棱镜,旋紧棱镜锁紧扳 手。若试样易挥发,则从加液槽中加入被测试样。 ④调节反射镜,使入射光进入棱镜组,调节测量目镜,从测量望远镜中观察, 使视场最亮、最清晰。旋转棱镜转动手轮,使刻度盘标尺的示值最小。

测量电阻的四种巧法

测量电阻的四种巧法文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

测量电阻的四种巧法 一.等效替代法测电阻 【方法解读】等效替代法测电阻:测量某电阻(或电流表、电压表的内阻)时,用电阻箱替换待测电阻,若二者对电路所起的作用相同(如电流或电压相等),则待测电阻与电阻箱是等效的。 1.电流等效替代 该方法的实验步骤如下: (1)按如图电路图连接好电路,并将电阻箱R0的阻值调至最大,滑动变阻器的滑片P置于a端。 (2)闭合开关S 1、S 2 ,调节滑片P,使电流表指针指在适当的位置,记下此时 电流表的示数为I。 (3)断开开关S 2,再闭合开关S 3 ,保持滑动变阻器滑片P位置不变,调节电 阻箱,使电流表的示数仍为I。 (4)此时电阻箱连入电路的阻值R0与未知电阻R x的阻值等效,即R x=R0。 2.电压等效替代 该方法的实验步骤如下: (1)按如图电路图连好电路,并将电阻箱R0的阻值调至最大,滑动变阻器的滑片P置于a端。 (2)闭合开关S 1、S 2 ,调节滑片P,使电压表指针指在适当的位置,记下此时 电压表的示数为U。 (3)断开S 2,再闭合S 3 ,保持滑动变阻器滑片P位置不变,调节电阻箱使电 压表的示数仍为U。

(4)此时电阻箱连入电路的阻值R0与未知电阻R x的阻值等效,即R x=R0。 【针对练习】1.某同学准备把量程为0~500 μA的电流表改装成一块量程为0~ V的电压表。他为了能够更精确地测量电流表的内阻,设计了如图甲所示的实验电路,图中各元件及仪表的参数如下: A.电流表G 1 (量程0~ mA,内电阻约100 Ω) B.电流表G 2 (量程0~500 μA,内电阻约200 Ω) C.电池组E(电动势 V,内电阻未知) D.滑动变阻器R(0~25 Ω) E.电阻箱R1(总阻值9 999 Ω) F.保护电阻R2(阻值约100 Ω) G.单刀单掷开关S 1,单刀双掷开关S 2 (1)实验中该同学先合上开关S 1,再将开关S 2 与a相连,调节滑动变阻器 R,当电流表G2有某一合理的示数时,记下电流表G1的示数I;然后将开关S2与b相连,保持________不变,调节________,使电流表G1的示数仍为I时,读取 电阻箱的读数r。 (2)由上述测量过程可知,电流表G 2 内阻的测量值r g=________。 (3)若该同学通过测量得到电流表G 2 的内阻为190 Ω,他必须将一个 ________kΩ的电阻与电流表G 2 串联,才能改装为一块量程为 V的电压表。 (4)该同学把改装的电压表与标准电压表V 进行了核对,发现当改装的电压 表的指针刚好指向满刻度时,标准电压表V 的指针恰好如图乙所示。由此可知,该改装电压表的误差为________%。 解析:(1)当电流表G 2有某一合理的示数时,记下电流表G 1 的示数I;然后 将开关S 2 与b相连,保持滑动变阻器R阻值不变,调节R1,使电流表G1的示数仍

椭偏仪测折射率和薄膜厚度

物理实验报告 实验名称:椭偏仪测折射率和薄膜厚度 学院:xx 学院专业班级:xxx 学号:xxx 学生姓名:xxx 实验成绩 预习题(一空一分,共10 分) 1.(单选题)起偏器和检偏器的刻度范围为多少?(B) A.0 ° ~180° B.0 ° ~360° 2.(单选题)黑色反光镜在仪器调整中起什么作用?

实验预习题成绩: (B) A. 确定起偏器的方位 B. 确定检偏器的方位 C.确定波片的方位 3.(单选题)在椭偏仪实验中坐标系是选在待测薄膜的(B)上。 A 入射面 B 表面 4.(单选题)椭偏仪的数据处理方法有三种,即查图法、查表 法、迭代法解非线性超越方程,本实验中使用(B) A 查图法 B 查表法 5.(填空题))调整椭偏仪光路的步骤是,首先使激光光线与分光计仪器主轴垂直,并通过载物台中心,然后确定(C)的0 刻度位置,这要利用(A)的布鲁斯特角特性,然后再确定(B)0 刻度位置,最后调整1/4 波片,使其快轴与(C)成± 45° 选择答案: A 黑色反光镜 B 检偏器 C 起偏器

6.(填空题)将起偏器套在平行光管上,使0°位置朝上,从载物台上取下黑色反射镜,将检偏器管转到共轴位置,整体调节起偏器使检流计(A),固定起偏器螺钉。此时起偏器与检偏器通光方向(C)。选择答案: A 光强最小 B 光强最大 C 平行 D 垂直

原始数据记录 成绩: 1/4 玻片起偏器角度检偏器角度+45°(> 90°)103.4 91.7 +45°(< 90°)21.2 51.6 -45 °(> 90°)106.5 98.6 -45 °(< 90°)21.2 51.6 薄膜厚度: 110.0000 折射率: 1.4800

薄膜厚度的测量

薄膜厚度的测量 ——台阶仪安装操作说明 一、台阶仪的安装 1、硬件的安装 1)打开电脑机箱盖,将台阶仪自带的电视卡插入PCI扩展槽,插好后将电脑机箱盖合上; 2)接上台阶仪电源线,将台阶仪上的USB线和视频线与电脑箱连接; 2、软件的安装 1)打开电脑机箱和显示器,将台阶仪自带的光盘插入电脑光驱; 2)将光盘上所有的内容都复制到电脑C盘根目录下; 3)安装光盘中的两个驱动程序,安装完成后重启计算机; 4)计算机重启后将拷入C盘中的注册表文件导入,导入成功后将台阶仪操作软件图标发送到桌面; 二、台阶仪的操作 1、台阶仪的标定 1)打开电脑机箱和显示器,打开台阶仪电源,等待10秒后将电脑桌面上的操作软件打开,几秒后自动弹出两个对话框,点击确认后进入操作界面; 2)拿出标定用的标准样品,拿出样品后立即合上盒盖,防止灰尘进入;

3)打开台阶仪保护盖,将标准样品贴紧样品台滑到台中央; 4)调节样品台位置,使标样在探针正下方; 5)点击操作软件上的“Setup”按键,设置扫描参数,将Speed设置为0.07mm/sec,Length设置为0.6mm,Range设置为10microns,Stylus Force设置为1mg,Filter Level设置为4,点击OK进行确认; 6)点击Engage,观察标准样品与探针所处的位置,如果样品台阶中央不在探针下方,点击Z+将探针升高,通过调节样品台使标准样品处于探针的正下方,合上保护盖,点击Engage,继续观察标准样品与探针的位置,如此反复操作,直到标准样品的台阶在探针的正下方;7)点击Scan,并点击确认扫描对话框,台阶仪自动进行扫描,扫描结束后,探针自动复位,测出的数据会自动弹出来; 8)用鼠标引动R,M光标,(R为参照光标,M为测量光标)到台阶的两侧,点击Level Date将台阶的曲线调平; 9)在曲线图窗口中点击鼠标右键,选择Size Cursors,将R,M光标线进行展开到适合宽度,然后点击鼠标右键将M光标移动到台阶上,窗口的右上角就会显示出台阶的平均高度; 10)重复7-9的步骤,反复测量几次,带测量数据稳定后,在曲线图窗口点击右键,选择Calibrate Height,在弹出的对话框中填写1063?,点击确定; 11)重复7-9的步骤,将测量出的台阶数据和标准样品给出的数据对比,一般来说只有几个?的差别; 12)台阶仪标定完成;

相关主题
文本预览
相关文档 最新文档