当前位置:文档之家› 积分方程数值解

积分方程数值解

积分方程数值解
积分方程数值解

例题:

y t =g t +γ

t ?s r

t 0

y s ds

取r =1,γ=1 则原例题可变为:

y t =g t + t ?s t 0y s ds 设y t =t 则

g t =t ? t ?s sds =t ?t 3

6

t

y t ? t ?s t

0y s ds =t ?t 3

6

使用方法:配置法

详细算法:

第一步剖分:[0,T] 0=t 0

I n := V ∈L 2 I :V

∈2n P m ?1 n

=1,?,N

t ni =t n ?1+c i h n 0≤c 1

第三步配置方程:U h t ni =f t ni + K t ni ,s t

ni 0u h s ds n =1,?,N i =1,?,m K t ni ,s t ni 0u h s ds = K t ni ,s t n ?10u h s ds + K t ni ,s t

n ?1

+c i h n

t n ?1

u h s ds

= K t ni ,s t l

t

l ?1

u h s ds +n ?1l=1 K t ni ,s t

n ?1+c i h n

t n ?1

u h s ds

= h l K t ni ,t e +vh e u h t l ?1+vh l 1

n ?1l=1dv +h n K t ni ,t l +vh e u h t l ?1+vh e dv c

i 0

U nj L nj t ni =f t ni +F n t ni m j=1+h n K t ni ,t l +vh e u h t l ?1+vh e dv c

i 0

=f t ni + h l v lj K t ni ,t l ?1+vh l L j v 1

m j=1n ?1l=1dv +h n V nj m j=1 K t ni ,t n ?1+vh n L j v c

i 0

dv B n

l ? K t ni ,t l ?1+vh l L j v 1

0dv i,j =1,?,m 0≤l

B n ? K t ni ,t n +vh n L j v c

i 0dv

i,j =1,?,m

I m ?h n B n U n =g n +G n n =0,1,?,N ?1

G n ? F n t n,1 ,?,F n t n,m T

= h l B n l

n ?1

l=0U l

U n,i =f t n,i + K t n,i ,s U n s T

0ds =f t n,i + K t n,i ,s N l=1U n s ds

= f t n,i + U lj K t ni ,s L lj s ds l

l ?1

m j=1N l=1 =f t n,i + h l U lj K t ni ,t l ?1+vh l L lj v dv 10

m j=1N l=1 U ?U n ∞=max 1≤n ≤N U t

=max 1≤n ≤N max t ∈I n U t ?U n t =max 1≤n ≤N max t ∈N U t ni ?U n t ni

分片一次误差图

分片两次误差图

积分方程数值解

例题: y t =g t +γ t ?s r t 0 y s ds 取r =1,γ=1 则原例题可变为: y t =g t + t ?s t 0y s ds 设y t =t 则 g t =t ? t ?s sds =t ?t 3 6 t y t ? t ?s t 0y s ds =t ?t 3 6 使用方法:配置法 详细算法: 第一步剖分:[0,T] 0=t 0

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤?? =?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-

微分方程数值解--大纲

偏微分方程数值解 (Numerical Methods for Partial Differential Equations) 课程代码:10210801 学位课程/非学位课程:非学位课程 学时/学分:46/3 课程简介: 《偏微分方程数值解》是数学类专业必修的一门专业课。主要内容包括:变分形式和Galerkin有限元法、椭圆型方程的差分方法、抛物型方程的差分方法、双曲型方程的差分方法、离散方程的解法。通过本课程的学习,使学生掌握求解偏微分方程数值解的基本方法,能够根据具体的微分方程使用合适的计算方法。 一、教学目标 1、知识水平教学目标 偏微分方程数值解课程的教学,要使学生掌握椭圆型微分方程、抛物型微分方程、双曲型微分方程等典型方程的差分方法,了解与之相关的理论问题,理解变分原理、有限元方法以及离散方程的解法,理解各种计算方法的收敛条件和收敛速度。 2、能力培养目标 通过偏微分方程数值解课程教学,应注意培养学生以下能力: (1)连续问题离散化能力——掌握科学的思维方法,能够使用差分方法和有限元方法的各种格式对三类典型方程进行离散化处理。 (2)算法分析与设计能力——结合各类偏微分方程的特点,设计各种计算方法,对计算方法的收敛条件和收敛速度等进行分析,具体设计易于上机实现的算法。(3)离散方程组的快速求解能力——理解离散方程组的特点,使用数学软件编程,具体上机实现,进行数值模拟的动手能力。 3、素质培养目标 通过数学物理方程课程教学,应注重培养学生以下素质: (1)具体问题有限化——善于对现实世界中得到的偏微分方程进行有限差分、有限元分析的有限化思想素养。 (2)数值解法定性化——通过学习,引导学生树立偏微分方程数值求解的基本原则,培养学生对数值方法中的稳定性、收敛性和误差等进行定性分析的素质。(3)算法实现程序化——培养学生的创造性和具体实现程序化的思维,使学生学会用数学中算法的观点思考实际问题,用程序和计算机解决数学问题。 二、教学重点与难点 1、教学重点:椭圆型、抛物型、双曲型等微分方程的差分方法,有限元方法。 2、教学难点:各种计算方法的稳定性、收敛性和误差分析,变分形式。 三、教学方法与手段 以教师讲授为主,安排上机实验,辅以习题课、课堂讨论、小论文,注重理论联系实际。 四、教学内容与目标 教学内容教学目标课时分配 (46学时) 1. 边值问题的变分形式 6 二次函数的极值掌握 两点边值问题掌握

【教案】 利用一元一次方程解积分问题

利用一元一次方程解积分问题 【知识与技能】 通过对实际问题的分析,掌握用方程计算球赛积分一类问题的方法. 【过程与方法】 培养学生分析问题、解决问题的能力. 【情感态度】 学生在从事探索性活动的学习过程中,形成良好的学习方式和学习态度,借助学生身边熟悉的例子认识数学的应用价值. 【教学重点】 1.让学生知道球赛积分的算法. 2.把生活中的实际问题抽象成数学问题. 【教学难点】 弄清题意,分析实际问题中的数量关系,找出解决问题的等量关系. 一、情境导入,初步认识 上一课时我们探究了有关销售中的盈亏问题,通过学习学生应初步掌握了有关一元一次方程实际问题的解决办法.本课时我们继续探讨有关球赛积分表的问题,先来看一个问题: 暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢? 二、思考探究,获取新知 探究球赛积分表问题 设问1:通过观察积分榜,你能选择出其中哪一行最能说明负一场积几分吗?进而你能得到胜一场积几分吗? 【教学说明】教师让学生观察教材或课件中的积分表进行思考. 观察积分榜,从最下面一行数据可以看出:负一场积1分;设胜一场积x 分,从表中其他任何一行可以列方程,求出x的值,如可以从第一行列方程10x +4=24. 由此得x=2. 即:负一场积1分,胜一场积2分. 设问2:你能用式子表示总积分与胜、负场数之间的数量关系吗?

教师引导学生分析:如果一个队胜m场,则负(14-m)场,胜场积分2m 分,负场积分(14-m)分,总积分为2m+(14-m)=m+14. 设问3:某队的胜场总积分能等于它的负场总积分吗? 教师引导学生分析:设一个队胜了x场,则负了(14-x)场.如果这个队的胜场总积分等于负场总积分,则得方程2x-(14-x)=0. 由此得x=14/3. 由于x的值必须是整数,所以x=143不符合实际,因此没有哪个队的胜场总积分等于负场总积分. 【教学说明】以上探究中,教师通过逐层提出问题,根据具体情况放手让学生充分发表自己的见解,探索解题思路,最终达到解决问题的思路,这样能培养学生的独立思考问题的习惯.另外,探究解决问题的方法,体验解决问题的思维方式,渗透特殊值法、分类讨论思想,有利于提高学生的数学建模能力. 三、运用新知,深化理解 一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么? 【教学说明】本题要注意其结果是否符合实际,这题可让学生板演后再讲解. 【答案】一个学生得90分,他选对23题;若有500名学生参加考试,不可能有得83分的同学. 四、师生互动,课堂小结 教师通过以下问题引导学生小结: (1)由学生谈谈本节课学到了哪些知识?学后有何感受? (2)由学生说说在积分问题中有哪些基本等量关系? 1.布置作业::从教材习题中选取. 2.完成练习册中本课时的练习. 积分问题的解题思路告诉我们:表格数据能够给我们提供重要的解题信息,而利用方程解决这类问题不仅可求得具体数值,而且还可以进行推理判断.另外,用方程解决实际问题时要注意让学生进行检验.由于本课时的学习有了上一课时作为基础,所以教学时教师应注意让学生进行独立思考并合作交流,而教师仅起引导作用.

常微分方程数值解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。[教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步 推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截

微分方程数值解

浅谈微分方程数值解法(双语)课堂教学模式 姓名:肖录明 学号:11301010232 摘要:微分方程数值解是高等院校信息与计算科学专业的一门重要专业基础课。这是一门本具有较强实际背景,专门研究科学计算的课程。这门课程理论性较强,公式多而且难记。我们还需要通过一门语言(比如MATLAB语言)来实现我们数值计算算法。由于解微分方程在科学计算中极为常见,故学好这门课程就非常有用且能为以后的学习打下基础。在我国双语教学正在慢慢的被倡导,且益处明显。本文主要探讨该课程的双语教学模式,并对在学习过程中出现的一些问题进行了思考。 关键词:微分方程数值解法双语教学科学计算 1引言 微分方程数值解法在数值分析中占有重要的地位,它以逼近论,数值代数等学科为基础,反过来又推动这些学科的发展。微分方程数值解法就主要研究如何通过离散算法将连续形式的微分方程转化为有限维问题,如代数方程组,进而来求解其近似解[1]。主要包括求解区域网格划分、离散方程的建立、方程性能分析、近似解收敛性分析等环节。微分方程数值解法在科学计算、工程技术等领域有极其广泛的应用,比如在计算物理、化学、流体力学航空航天等很多工程领域都有用到。目前已发展成为一门计算技术学科,其核心理论内容也成为高校计算数学和应用数学等专业的核心基础专业课程之一[2]。

2双语教学的必要性 双语教学主要指中英双语教学,是一种重要的教学模式,具有特殊效果和意义。 1.双语教学可丰富教学模式,转变教学理念,促进教育改革和开放。双语教学提倡用原版教材和国外的教学方式。其语言文字原汁原味,叙述合情合理,注重启发性,内容安排适合学生。这不仅使学生学到专业知识,且有助于提高英语水平,特别是专业英语阅读和写作能力。国外的教学模式以人为本,有助于转变以教师为中心、以学习知识体系为主的教育理念,促进教育改革。 2.双语教学有助于提高学生的人文素质。多学习和运用英语可以让我们发现和扬弃汉语中那些带有落后的人文价值观念和行为方式的词汇和句子,批判地接受一些思想观念和做法,使人的思维灵活有深度,个性得以发展,创新能力不断提高。大范围开展双语教学,有助于培养出具有世界主流人文素质且能很好地参与国际交流和合作的人才。 3.双语教学有助于学生以后在国内外学习、工作、考研和国际合作等带来很多方便。 微分方程数值解法既有数学上严密的逻辑性、独特的理论结构体系,又在各种工程计算中有着重要的应用,因此是联系纯数学理论和工程应用的桥梁和纽带。很多工业应用软件是利用数值方法开发成的,并且大都用英语写成。因此,有必要用双语的形式讲授这门课,让学生在学习专业知识的同时,还掌握专业英语词汇,有助于学生以后的学习和发展。从课程的体系和内容衔接上看,这门课一般安排在大学三年级。这时侯,学生对于数学分析、常微分方程、数学物理方程和计算方法等课程有了很好的基础,其中的很多概念如:导数、定积分、

1. 积分方程一般概念与弗雷德霍姆方程

第十五章 积分方程 积分方程论是泛函分析的一个重要分支,它是研究数学其他学科(例如偏微分方程边值问题)和各种物理问题的一个重要数学工具。本章叙述线性积分方程,重点介绍弗雷德霍姆积分方程的性质和解法;并简略地介绍了沃尔泰拉积分方程以及一些奇异积分方程;此外,还扼要地叙述积分方程的逐次逼近法和预解核,并举例说明近似解法;最后考察了一个非线性积分方程。 §1 积分方程一般概念与弗雷德霍姆方程 一. 积分方程一般概念 1. 积分方程的定义与分类 [线形积分方程] 在积分号下包含未知函数y (x )的方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? (1) 称为积分方程。式中α(x ),F (x )和K (x,ξ)是已知函数,λ,a,b 是常数,变量x 和ξ可取区间(a,b ) 内的一切值;K (x,ξ)称为积分方程的核,F (x )称为自由项,λ称为方程的参数。如果K (x,ξ)关于x,ξ是对称函数,就称方程(1)是具有对称核的积分方程;如果方程中的未知函数是一次的,就称为线性积分方程,方程(1)就是线性积分方程的一般形式;如果F (x )≡0 ,就称方程(1)为齐次积分方程,否则称为非齐次积分方程。 [一维弗雷德霍姆积分方程(Fr 方程)] 第一类Fr 方程 ()()(),d b a K x y F x ξξξ=? 第二类Fr 方程 ()()()(),d b a y x F x K x y λξξξ=+? 第三类Fr 方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? [n 维弗雷德霍姆积分方程] 111()()()()(),d D P y P F P K P P y P P α=+? 称为n 维弗雷德霍姆积分方程,式中D 是n 维空间中的区域,P ,P 1∈D ,它们的坐标分别是 (x 1,x 2, ,x n )和),,,(21 n x x x ''' ,α(P )=α(x 1,x 2, ,x n ),F (P )=F (x 1,x 2, x n )和K (P ,P 1)=K (x 1,x 2, ,x n , ),,,21 n x x x ''' 是已知函数,f (P )是未知函数。 关于Fr 方程的解法,一维和n (>1)维的情况完全类似,因此在以后的讨论中仅着重考虑一维Fr 方程。 [沃尔泰拉积分方程] 如果积分上限b 改成变动上限,上面三类Fr 方程分别称为第一、第二、第三类沃尔泰拉积分方程。 由于第三类Fr 方程当α(x )在(a ,b )内是正函数时,可以化成

常微分方程数值解法

第七章 常微分方程数值解法 常微分方程中只有一些典型方程能求出初等解(用初等函数表示的解),大部分的方程是求不出初等解的。另外,有些初值问题虽然有初等解,但由于形式太复杂不便于应用。因此,有必要探讨常微分方程初值问题的数值解法。本章主要介绍一阶常微分方程初值问题的欧拉法、龙格-库塔法、阿达姆斯方法,在此基础上推出一阶微分方程组与高阶方程初值问题的 数值解法;此外,还将简要介绍求解二阶常微分方程值问题的差分方法、试射法。 第一节 欧拉法 求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy (1) 的数值解,就是寻求准确解)(x y 在一系列离散节点 <<<<

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=/m=/(1400-18t) dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[*x(2)^2)/(1400-18*t)]; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[*(v.^2))./(1400-18*t)]; [t,h,v,a]; 数据如下: t h v a 000

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

第一章积分方程的来源及基本概念

第一篇积分方程 第一章方程的导出和基本概念 §1.1 方程的导出 许多力学、工程技术和数学物理问题都能用积分方程形式描述,而求解常微分方程和偏微分方程的定解问题常常可转化为求解积分方程的问题。下面举几个典型的问题作为例子,扼要地阐明导出积分方程的方法以及微分方程与积分方程之间的联系。 例1:弹性弦负荷问题 一根轻且软的弹性弦,长为l,两端固定,如图所示,静止时与x轴重合,弦内张力为 T.今在其上加以强度为

()x ?的负荷.设在任一点M (横坐标 为x ) ()x ?, 且设 解:在任一点x ξ=处取微小的一段弦d ξ,则作用于其上的重力为 ()d ?ξξ,记之为0P ,则这一重力0P 必 引起弦的形变,记ξ处位移为S ,则: 01020sin sin T T P θθ+=, 因为0()T x ?>>,所以12,1θθ<< 112sin tan ,sin .S S l θθθξξ ?≈=≈- 所以000S S T T P l ξξ ?+? =-, 得

00()P l S T l ξξ-=?. 记0P 引起的x 处位移为* ()y x , 则0x ξ≤≤时, 由y S x ξ *=得 * 00() ()P l S y x x x T l ξξ-=?=??; 当x l ξ≤≤时,y S l x l ξ*= -- , ? 00()()P l x y x T l ξ* -= ??; 记:0 0,0(,),.l x x T l G x l x x l T l ξ ξξξξ-??≤≤??=?-??≤≤?? 则 0()(,)y x G x P ξ* =, ()(,)()y x G x d ξ?ξξ* =, 对ξ从0l 到求积分,

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

积分方程

积分方程理论的发展,始终与数学物理问题的研究紧密相联,它在工程、力学等方面有着极其广泛的应用。通常认为,最早自觉应用积分方程并求出解的是阿贝尔(Abel),他在1823年研究质点力学问题时引出阿贝尔方程。此前,拉普拉斯(Laplace)於1782年在数学物理中研究拉普拉斯变换的逆变换以及傅里叶(Fourier)於1811年研究傅里叶变换的反演问题实际上都是解第一类积分方程。随着计算技术的发展,作为工程计算的重要基础之一,积分方程进一步得到了广泛而有效地应用。如今,“物理问题变得越来越复杂,积分方程变得越来越有用”。 积分方程与数学的其他分支,例如,微分方程、泛函分析、复分析、计算数学、位势理论和随机分析等都有着紧密而重要地联系。甚至它的形成和发展是很多重要数学思想和概念的最初来源和模型。例如,对泛函分析中平方可积函数、平均收敛、算子等的形成,对一般线性算子理论的创立,以至於对整个泛函分析的形成都起着重要的推动作用。积分方程论中许多思想和方法,例如,关於第二种弗雷德霍姆(Fredholm)积分方程的弗雷德霍姆理论和奇异积分方程的诺特(Noether)理论以及逐次逼近方法,本身就是数学中经典而优美的理论和方法之一。 编辑本段起源 积分号下含有未知函数的方程。其中未知函数以线性形式出现的,称为线性积分方程;否则称为非线性积分方程。积分方程起源于物理问题。牛顿第二运动定律的出现,促进了微分方程理论的迅速发展,然而对积分方程理论发展的影响却非如此。1823年,N.H.阿贝尔在研究地球引力场中的一个质点下落轨迹问题时提出的一个方程,后人称之为阿贝尔方程,是历史上出现最早的积分方程,但是在较长的时期未引起人们的注意。“积分方程”一词是 P.du B.雷蒙德于1888年首先提出的。19世纪的最后两年,瑞典数学家(E.)I.弗雷德霍姆和意大利数学家V.沃尔泰拉开创了研究线性积分方程理论的先河。从此,积分方程理论逐渐发展成为数学的一个分支。 1899年,弗雷德霍姆在给他的老师(M.)G.米塔-列夫勒的信中,提出如下的方程 公式 , (1) 式中φ(x)是未知函数;λ是参数,K(x,y)是在区域0 ≤x,y≤1上连续的已知函数;ψ(x)是在区间0≤x≤1上连续的已知函数。并认为方程(1)的解可表为关于λ的两个整函数之商。1900年,弗雷德霍姆在

微分方程数值解法答案

包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。解答问题关键在过程,能够显示出你已经掌握了书上的内容,知道了解题方法。这次考试题目的类型:20分的选择题,主要是基本概念的理解,后面有五个大题,包括差分格式的构造、截断误差和稳定性。 习题一 1. 略 2. y y x f -=),(,梯形公式:n n n n n n y h h y y y h y y )121(),(2111+-+=+- =+++,所以0122)1(01])121[()121()121(y h h y h h y h h y h h n h h n n n +--+--+-+=+-+==+-+= ,当0→h 时, x n e y -→。 同理可以证明预报-校正法收敛到微分方程的解. 3. 局部截断误差的推导同欧拉公式; 整体截断误差: ? ++++++-++≤1 ),())(,(11111n n x x n n n n n n n dx y x f x y x f R εε 11)(++-++≤n n n y x y Lh R ε,这里R R n ≤ 而111)(+++-=n n n y x y ε,所以 R Lh n n += -+εε1)1(,不妨设1

微分方程数值解――

微分方程数值解―― 第二章 习题 1. 设)('x f 为)(x f 的一阶广义导数,试用类似办法定义)(x f 的k 阶广义导数) () (x f k ( ,2,1=k )。 解:对一维情形,函数的广义导数是通过分部积分来定义的。 我们知,)(x f 的一阶广义导数位)(x g ,如果满足 dx x x f dx x x g b a b a )()()()('?? -=?? 类似的,)(x f 的k 阶广义导数为)()() (x f x g k =,如果有 dx x x f dx x x g b a k k b a )()()1()()()(?? -=?? 2. 试建立与边值问题 ?????====<<=+=) 2.1(0)()(,0)()() 1.1(,''44b u b u a u a u b x a f u dx u d Lu 等价的变分问题。 证明: 设}0)()(,0)()(),(|{' '2====∈=b v a v b v a v I H v v V 对方程)1.1(两边同乘以v ,再关于x 在),(b a 上积分)(V v ∈,得 ??=+b a b a fvdx vdx u dx u d )(44 其中 dx dx dv dx u d dx dx dv dx u d dx u d v dx u d d v vdx dx u d b a b a b a b a b a ???? -=-==33 33333344|)( dx dx v d dx u d dx dv dx u d dx u d d dx dv b a b a b a ??+-=-=22222222|)( dx dx v d dx u d b a ? = 2 222 (*) 记dx uv dx v d dx u d v u a b a ?+=)(),(2 222,?=b a fvdx v f ),(。于是我们得到以下等价变分问题的提法:

常微分方程数值解法

第八章 常微分方程数值解法 考核知识点: 欧拉法,改进欧拉法,龙格-库塔法,单步法的收敛性与稳定性。 考核要求: 1. 解欧拉法,改进欧拉法的基本思想;熟练掌握用欧拉法,改进欧拉法、求微 分方程近似解的方法。 2. 了解龙格-库塔法的基本思想;掌握用龙格-库塔法求微分方程近似解的方 法。 3. 了解单步法的收敛性、稳定性与绝对稳定性。 例1 用欧拉法,预估——校正法求一阶微分方程初值问题 ? ??=-='1)0(y y x y ,在0=x (0,1)0.2近似解 解 (1)用1.0=h 欧拉法计算公式 n n n n n n x y y x y y 1.09.0)(1.01+=-+=+,1.0=n 计算得 9.01=y 82.01.01.09.09.02=?+?=y (2)用预估——校正法计算公式 1,0)(05.01.09.0)0(111)0(1=???-+-+=+=++++n y x y x y y x y y n n n n n n n n n 计算得 91.01=y ,83805.02=y 例2 已知一阶初值问题 ???=-='1 )0(5y y y 求使欧拉法绝对稳定的步长n 值。 解 由欧拉法公式 n n n n y h y h y y )51(51-=-=+ n n y h y ~)51(~1-=+

相减得01)51()51(e h e h e n n n -==-=-Λ 当 151≤-h 时,4.00≤

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中得很多现象,可以归结为微分方程定解问题。其中,常微分方程求解就是微分方程得重要基础内容。但就是,对于许多得微分方程,往往很难得到甚至不存在精确得解析表达式,这时候,数值解提供了一个很好得解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用得数值解法,如欧拉法、改进得欧拉法、Runge—Kutta方法、Adams预估校正法以及勒让德谱方法等,通过具体得算例,结合MA TLAB求解画图,初步给出了一般常微分方程数值解法得求解过程。同时,通过对各种方法得误差分析,让大家对各种方法得特点与适用范围有一个直观得感受。 【关键词】常微分方程数值解法MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛得一门课程,不仅在数学专业,其她得理工科专业得本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还就是在方法上都获得了很大得发展.同时,由于微分方程就是描述物理、化学与生物现象得数学模型基础,且它得一些最新应用已经扩展到经济、金融预测、图像处理及其她领域在实际应用中,通过相应得微分方程模型解决具体问题,采用数值方法求得方程得近似解,使具体问题迎刃而解。 2 欧拉法与改进得欧拉法 2、1 欧拉法 2、1、1 欧拉法介绍 首先,我们考虑如下得一阶常微分方程初值问题 (21) 事实上,对于更复杂得常微分方程组或者高阶常微分方程,只需要将瞧做向量,(21)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法就是解常微分方程初值问题最简单最古老得一种数值方法,其基本思路就就是把(21)中得导数项用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在中取等距节点,因为在节点点上,由(21)可得: , (22) 又由差商得定义可得: (23) 所以有 (24) 用得近似值代入(24),则有计算得欧拉公式 (25) 2、1、2欧拉法误差分析

(整理)常微分方程数值解法

i.常微分方程初值问题数值解法 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法--差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<<<<=L (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1,,1n n n n u u hf t u n N +=+=-L 方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t L 上的差分解1,,N u u L 。

常微分方程数值解法

常微分方程数值解法 【作用】微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步: 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。 2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。 3. 运用这些规律列出方程和定解条件。基本模型 1. 发射卫星为什么用三级火箭 2. 人口模型 3. 战争模型 4. 放射性废料的处理通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来” 的于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 1. 改进Euler 法: 2. 龙格—库塔( Runge—Kutta )方法: 【源程序】 1. 改进Euler 法: function [x,y]=eulerpro(fun,x0,x1,y0,n);%fun 为函数,(xO, x1)为x 区间,yO 为初始值,n 为子 区间个数 if nargin<5,n=5O;end h=(x1-xO)/n; x(1)=xO;y(1)=yO; for i=1:n x(i+1)=x(i)+h; y1=y(i)+h*feval(fun,x(i),y(i)); y2=y(i)+h*feval(fun,x(i+1),y1); y(i+1)=(y1+y2)/2; end 调用command 窗口 f=i nlin e('-2*y+2*x A2+2*x') [x,y]=eulerpro(f,O,,1,1O) 2 x +2x , (0 < x < , y(0) = 1 求解函数y'=-2y+2 2. 龙格—库塔( Runge—Kutta )方法: [t,y]=solver('F',tspan ,y0) 这里solver为ode45, ode23, ode113,输入参数F是用M文件定义的微分方程y'= f (x, y)右端的函数。tspan=[t0,tfinal]是求解区间,y0是初值。 注:ode45和ode23变步长的,采用Runge-Kutta算法。 ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(△ 口人5解 决的是Nonstiff(非刚性)常微分方程。

微分方程数值解教学大纲

《微分方程数值解》教学大纲 一、课程的基本信息 课程名称:《微分方程数值解》 英文名称:Numerical solution for differential equaiton 课程性质:专业方向选修课 课程编号:1623313002 周学时:3学时 总学时:48学时(理论40+实验8) 学分:3学分 适用专业: 适用于信息与计算科学专业 预备知识:数值计算、常微分方程、数值逼近、数理方程 课程教材: 李立康主编,《微分方程数值解法》,复旦大学出版社出版、1999年 参考书目: [1] 戴嘉尊主编,《微分方程数值解法》,东南大学出版社、2008年. [2] 李荣华主编,《微分方程数值解法》(第四版),高等教育出版社、2009年. 考核方式:考查 制定时间:2013年10月制定 二、课程的目的与任务 《微分方程数值解》是高等院校信息与计算科学专业的专业选修课之一。本课程主要内容为常微分方程和偏微分方程的数值求解问题,包括各种差分方法,有限元方法等的基本理论。通过微分方程数值解的教学,使学生了解和掌握微分方程数值解这一学科的基本概念、理论,培养学生的理论思维能力,为从事信息与计算科学学科的教学和研究打下一定的理论基础。

通过本课程的学习,学生应熟练掌握常微分方程和偏微分方程的常用数值求解方法和分析手段,从能力方面,应使学生初步认识如何从实际问题出发,建立微分方程数学模型,将连续问题离散化,由微分方程转化为差分方程,利用计算机实现数值方法求解一个微分方程的定解问题,并对结果给以几何解释。从教学方法上,着重体现思维方式,注重解决实际问题的方法以及利用计算机进行科学计算的能力培养。 第一章微分方程数值解法(10学时) 一、本章基本要求 1.掌握线性多步方法,Runge-Kutta方法,Gear方法等计算常微分方程的计算格式;2.掌握相容性,稳定性,绝对稳定性概念和相互关系; 3.了解刚性问题和辛计算格式。 二、教学内容 1.微分方程模型和定性理论 2.计算格式:线性多步方法和高阶单步方法 3.稳定性和收敛性分析 4.刚性问题和其他 第二章椭圆方程差分方法(8学时) 一、本章基本要求

相关主题
文本预览
相关文档 最新文档