当前位置:文档之家› 高中物理 电知识 总结8 法拉第电磁感应定律

高中物理 电知识 总结8 法拉第电磁感应定律

高中物理 电知识  总结8  法拉第电磁感应定律
高中物理 电知识  总结8  法拉第电磁感应定律

高中物理 电知识总结8

法拉第电磁感应定律、自感

知识要点:

一、基础知识

1、电磁感应、感应电动势ε、感应电流I 电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流。要注意理解: 1)产生感应电动势的那部分导体相当于电源。2)产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。3)产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线运动与穿过闭合电路中的磁通量发生变化等效。

2、电磁感应规律 感应电动势的大小: 由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN

以v 匀速向右运动,所施外力F F BIL '==,当行进位

移为S 时,外力功W BI L S BILv t ==···。t 为所

用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转

化关系,W W '=,则I t BILv t ···ε=。 ∴ε=BIv ,M 点电势高,N 点电势低。

此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。 εφ=n t

·??,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。

如上图中分析所用电路图,在?t 回路中面积变化??S Lv t =·,而回路跌磁通变化量???φ==B S BLv t ··,又知ε=BLv 。

∴εφ=??t

如果回路是n 匝串联,则εφ=n t

??。

公式一: εφ=n t ??/。注意: 1)该式普遍适用于求平均感应电动势。2)ε只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。公式二: εθ=Blv sin 。要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。公式三: ε=L I t ??/。注意: 1)该公式

由法拉第电磁感应定律推出。适用于自感现象。2)ε与电流的变化率??I t /成正比。

公式εφ=n t

??中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时ε=n B t

S ??, 此式中的??B t 叫磁感应强度的变化率, 若??B t

是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。

严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率??φt

, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φt 表示磁通量变化的快慢, εφ=??t , φ大, ???φφ及t

不一定大; ??φt 大, φφ及?也不一定大, 它们的区别类似于力学中的v , ???v a v t 及=的区别, 另外I 、???I I t

及也有类似的区别。

公式ε=Blv 一般用于导体各部分切割磁感线的速度相同, 对有

些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势?

如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转

动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成正比, 所以AC 切割的速度可用其平均切割速度, 即

v v v v l A C C =+==222

ω, 故εω=122B l 。 εω=12

2BL ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为ε。

如图所示,AO 导线长L ,以O 端为轴,以ω角速度匀速转动一周,所用时间?t =

2πω,描过面积?S L =π2,(认为面积变化由0增到πL 2)则磁通变化?φπ=B L ·2。

在AO 间产生的感应电动势εφππωω===??t B L BL 22212/且用右手定则制定A 端电势高,O 端电势低。

εωm n B S =···——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势εm 。

如图所示,设线框长为L ,宽为d ,以ω转到图示位置时,ab 边垂直磁场方向向纸外运动,切割磁感线,速度为v d =ω·2

(圆运动半径为宽边d 的一半)产生感应电动势

εωω===BL v BL d BS (212)

,a 端电势高于b 端电势。

cd 边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势εω=12BS 。c 端电势高于e 端电势。

bc 边,ae 边不切割,不产生感应电动势,b .c 两端等电势,则输出端M .N 电动势为εωm BS =。

如果线圈n 匝,则εωm n B S =···,M 端电势高,N 端电势低。 参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值εm ,如从图示位置转过一个角度θ,则圆运动线速度v ,在垂直磁场方向的分量应为v cos θ,则此时线圈的产生感应电动势的瞬时值即作最大值εεθ=m .cos .即作最大值方向的投影,εωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。

当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。

总结:计算感应电动势公式: εεε=BLv

v v 如是即时速度,则为即时感应电动势。如是平均速度,则为平均感应电动势。 εφε=→n

t t t o ????是一段时间,为这段时间内的平均感应电动势。,为即时感应电动势。

εω=122BL

()()εωεωθθm n BS n B S ==?????··线圈平面与磁场平行时有感应电动势最大值····瞬时值公式,是线圈平面与磁场方向夹角cos

注意:公式中字母的含义,公式的适用条件及使用图景。

区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在?t 内迁移的电量(感应电量)为

q I t R t R t t R

====??????εφφ, 仅由回路电阻和磁通量的变化量决定, 与发生磁通变化的时间无关。因此, 当用一磁棒先后两次从同一处用不同速度插至线圈中同一位置时, 线圈里聚积的感应电量相等, 但快插与慢插时产生的感应电动势、感应电流不同, 外力做功也不同。

2、自感现象、自感电动势、自感系数L

自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。所产生的感应电动势叫做自感电动势。自感系数简称自感或电感, 它是反映线圈特性的物理量。线圈越长, 单

位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。

自感现象分通电自感和断电自感两种, 其中断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题, 如图2所示, 原来电路闭合处于稳定状态, L 与L A 并

联, 其电流分别为I I L A 和, 方向都是从左到右。在断开S 的瞬间,

灯A 中原来的从左向右的电流I A 立即消失, 但是灯A 与线圈L 构

成一闭合回路, 由于L 的自感作用, 其中的电流I L

不会立即消失, 而是在回路中逐断减弱维持暂短的时间, 在这个

时间内灯A 中有从右向左的电流通过, 此时通过灯A 的电流是从I L 开始减弱的, 如果原来I I L A >, 则在灯A 熄灭之前要闪亮一下; 如果原来I I L A ≤, 则灯A 是逐断熄灭不再闪亮一下。原来I I L A 和哪一个大, 要由L 的直流电阻R L 和A 的电阻R A 的大小来决定, 如果R R I I L A L A ≥≤,则, 如果R R I I L A L A <>,。

分析实例:

如图所示,此时线圈中通有右示箭头方向的电流,它建立的电流磁场B 用右手安培定则判定,由下向上,穿过线圈。

当把滑动变阻器的滑片P 向右滑动时,电路中电阻增大,电源电动势不变,则线圈中的电流变小,穿过线圈的电流磁场变小,磁

通量变小。根据楞次定律,产生感应电流的磁场阻碍原磁通量变小,

所以感应电流磁场方向与原电流磁场同向,也向上。根据右手安培

定则,感应电流与原电流同向,阻碍原电流减弱。

同理,如将滑片P 向左滑动,线圈中原电流增强,电流磁场增强,穿过线圈的磁通量增加,产生感应电流,其磁场阻碍原磁通量增强与原磁场反向而自上向下穿过线圈,据右手安培定则判定感应电流方向与原电流反向,阻碍原电流增强。

2、由于线圈(导体)本身电流的变化而产生的电磁感应现象叫自感现象。在自感现象中产生感应电动势叫自感电动势。

由上例分析可知:自感电动势总量阻碍线圈(导体)中原电流的变化。

3、自感电动势的大小跟电流变化率成正比。 ε自=L I t ??

L 是线圈的自感系数,是线圈自身性质,线圈越长,单位长度上的匝数越多,截面积越大,有铁芯则线圈的自感系数L 越大。单位是亨利(H )。

如是线圈的电流每秒钟变化1A ,在线圈可以产生1V 的自感电动势,则线圈的自感系数为1H 。还有毫亨(mH ),微亨(μH )。

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

高级中学物理电磁感应定律学习知识点加例题

私塾国际学府学科教师辅导教案 组长审核:

6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差. (1)磁感应强度B 不变,有效面积S 变化时,则ΔΦ=Φ2-Φ1=B ·ΔS. (2)磁感应强度B 变化,磁感线穿过的有效面积S 不变时,则ΔΦ=Φ2-Φ1=ΔB ·S. (3)磁感应强度B 和有效面积S 同时变化时,则ΔΦ=Φ2-Φ1=B 2S 2-B 1S 1. 注意几个概念: (1)磁通量Φ:某时刻穿过磁场中某个面的磁感应线条数,若穿过某个面有方向相反的磁场,则不能直接用Φ=B ·S ,应考虑相反方向的磁感应或抵消以后所剩余的磁通量。 (2)磁通量变化量ΔΦ:穿过某个面的磁通量随时间的变化量。注意开始和转过180o时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S ,而不是零。 (3)磁通量的变化率ΔΦ/Δt :表述磁场中穿过某一面的磁通量变化快慢的物理量。它既不表示磁通量的大小也不表示磁通量变化的多少,在Φ-t 图像中,可用图形的斜率表示。 剖析: ① 磁通量?的实质就是穿过某面积的磁感线的条数。 ② 磁感线除了有大小以外,还有方向,但它是个标量。磁通量的方向仅仅表示磁感线沿什么方向穿过 某面积,其运算不满足矢量合成的平行四边形定则,只满足代数运算,在求其变化量时,事先要设正方向,并将“+”、“-”号代入。 ③ 由磁通量的定义θ?sin BS =可得:θ ? sin S B = ,此式表示“磁感应强度B 大小等于穿过垂直于磁 场方向的单位面积的磁感线条数”,所以磁感应强度又被叫做“磁感密度”。 [例题1] .如图10-1-4所示,面积大小不等的两个圆形线圈A 和B 共轴套在一条形磁铁上,则穿过A 、B 磁通量的大小关系是A ?____B ?。 解析:磁铁内部向上的磁感线的总条数是相同的,但由于线圈A 的面积大于B 的,外部穿过线圈向下的磁感线的条数A 的大于B 的,所以A ?<B ?。 10-1-4

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

《4.4法拉第电磁感应定律教案》

4.4法拉第电磁感应定律 【教学目标】 (1)知道感应电动势,及决定感应电动势大小的因素。 (2)知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、 t ??Φ。 (3)理解法拉第电磁感应定律内容、数学表达式。 (4)知道E =BLv sin θ如何推得。 【教学重点】法拉第电磁感应定律。 【教学难点】感应电流与感应电动势的产生条件的区别。 【教学方法】自主学习 合作探究 巩固延伸 【教学过程】 一、复习提问:1、在电磁感应现象中,产生感应电流的条件是什么? 2、恒定电流中学过,电路中存在持续电流的条件是什么? 3、在发生电磁感应的情况下,用什么方法可以判定感应电流的方向? 二、引入新课 1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢? 2、问题2:如图所示,在螺线管中插入一个条形磁铁,问 ①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么? ②、有感应电流,是谁充当电源? ③、上图中若电路是断开的,有无感应电流电流?有无感应电动势? 3、产生感应电动势的条件是什么?4、比较产生感应电动势的条件和产生感应电流的条件你有什么发现? 三、进行新课 (一)、探究影响感应电动势大小的因素 (1)猜测:感应电动势大小跟什么因素有关?(2)探究问题: 问题1、在实验中,电流表指针偏转原因是什么? 问题2:电流表指针偏转程度跟感应电动势的大小有什么关系? 问题3:在实验中,快速和慢速效果有什么相同和不同? 实验结论电动势的大小与磁通量的变化快慢有关,磁通量的变化越快电动势越大,磁通量的变化越慢电动势越小。 (二)、法拉第电磁感应定律 a b G E r

高中物理十大难点之法拉第电磁感应定律

难点之七 法拉第电磁感应定律 一、难点形成原因 1、关于表达式t n E ??=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ?是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ?、t ??φ的关系容易混淆不清。 2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E = 、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。 3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。 二、难点突破 1、φ、φ?、t ??φ同v 、△v 、t v ??一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。 磁通量φ 磁通量变化量φ? 磁通量变化率t ??φ 物理 意 义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多 某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小 计 算 ⊥=BS φ,⊥S 为与B 垂直的面积 12φφφ-=?,S B ?=?φ或B S ?=?φ t S B t ??=??φ 或t B S t ??=??φ 注 意 若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方 向的磁通量相互抵消以 后所剩余的磁通量 开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一 正一负,△φ=2 BS , 而不是零 既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示 2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题 ⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。此公式也可

高中物理电磁感应定律知识点加例题资料

中国最负责任的教育机构 私塾国际学府学科教师辅导教案 组长审核: 学员编号:年级:年级课时数:3课时 学员姓名:辅导科目:物理学科教师:杨振 授课主题 教学目的 教学重点 授课日期及时段 教学内容 新课讲-练-总结 一、磁通量 1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量. 2.定义式:Φ=BS. 说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向的夹角. 3.磁通量Φ是标量,但有正负.Φ的正负意义是:从正、反两面哪个面穿入,若从一面穿入为正,则从另一面穿入为负. 4.单位:韦伯,符号:Wb. 5.磁通量的直观含义:表示磁场中穿过某一面积磁感线的条数. 6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差. (1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS. (2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S. (3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1. 注意几个概念: (1)磁通量Φ:某时刻穿过磁场中某个面的磁感应线条数,若穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁感应或抵消以后所剩余的磁通量。 (2)磁通量变化量ΔΦ:穿过某个面的磁通量随时间的变化量。注意开始和转过180o时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B·S,而不是零。 (3)磁通量的变化率ΔΦ/Δt:表述磁场中穿过某一面的磁通量变化快慢的物理量。它既不表示磁通量的大

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

(完整版)法拉第电磁感应定律练习题40道

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级 姓名:_______________班级:_______________考号:_______________ 题号 一、选 择 题二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() 评卷人得分

A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大 D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

高中物理专题练习电磁感应中的能量问题

电磁感应中的能量问题(2) 例1.如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B.竖直放置的正方形金属线框边长为l,电阻为R,质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平.开始时,线框与物块静止在图中虚线位置且细线水平伸直.将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角θ=30°,线框刚好有一半处于右侧磁场中.(已知重力加速度g,不计一切摩擦)求: (1)此过程中通过线框截面的电荷量q (2)此时安培力的功率 (3)此过程在线框中产生的焦耳热Q. 例2.(多选)如图甲所示,在竖直平面内有一单匝正方形线圈和一垂直于竖直平面向里的有界匀强磁场,磁场的磁感应强度为B,磁场上、下边界AB和CD均水平,线圈的ab边水平且与AB间有一定的距离.现在让线圈无初速自由释放,图乙为线圈从自由释放到cd边恰好离开CD边界过程中的速度一 时间关系图象.已知线圈的电阻为r, 且线圈平面在线圈运动过程中始终处在 竖直平面内,不计空气阻力,重力加速 度为g,则根据图中的数据和题中所给 物理量可得() A.在0~t3时间内,线圈中产生的热量为 B.在t2~t3时间内,线圈中cd两点之间的电势差为零 C.在t3~t4时间内,线圈中ab边电流的方向为从b流向a D.在0~t3时间内,通过线圈回路的电荷量为 例3.利用超导体可以实现磁悬浮,如图是超导磁悬浮的示意图。在水平桌面 上有一个周长为L的超导圆环,将一块质量为m的永磁铁从圆环的正上方缓 慢下移,由于超导圆环跟磁铁之间有排斥力,结果永磁铁悬浮在超导圆环的 正上方h1高处平衡。 (1)若测得圆环a点磁场如图所示,磁感应强度为B1,方向与水平方向成 θ1角,问此时超导圆环中电流的大小和方向? (2)在接下的几周时间内,人们发现永磁铁在缓慢下移。经过较长时间T 后,永磁铁的平衡位置在离桌面h2高处。有一种观点认为超导体也有很微小 的电阻,只是现在一般仪器无法直接测得,超导圆环内电流的变化造成了永 磁铁下移,并设想超导电流随时间缓慢变化的I2-t图,你认为哪张图相对合 理,为什么? (3)若测得此时a点的磁感应强度变为B2,夹角变为θ2,利用上面你认为 相对正确的电流变化图,求出该超导圆环的电阻? 同步练习: 1.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨 等宽的粗糙金属细杆ab,cd和导轨垂直且接触良好.已知ab,cd杆的质 量,电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场 中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下 运动,以下说法正确的是() A.cd杆一定向下做匀速直线运动 B.cd杆一定向下做匀加速直线运动 C.F做的功等于回路中产生的焦耳热与ab杆克服 摩擦做功之和 D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和 2.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部 进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于 线圈宽度,那么()

高中物理法拉第电磁感应定律

高二物理学案9(必修班) 二、法拉第电磁感应定律 一、知识梳理 一、感应电动势 闭合电路中由于磁通量的变化产生感应电流产生,产生感应电流的那部分电路相当于电源。我们把电磁感应现象中产生的电动势叫做感应电动势。 画图举例: 二、法拉第电磁感应定律 1、磁通量、磁通量的变化、磁通量的变化率 磁通量:φ = BScos θ 磁通量的变化:Δφ=φ2—φ1 磁通量的变化率:Δφ/Δt 磁通量的变化率与磁通量、磁通量的变化无直接关系,三者间的关系类似于加速度与速度、速度变化的关系。 2、法拉第电磁感应定律 A 、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、数学表达式: t E ??=φ (单匝线圈) 对于多匝线圈有 t n E ??=φ 二、例题分析 例1、把一条形磁铁插入同一闭合线圈中,一次是迅速插入,一次是缓慢插入,两次初、末位置均相同,则在两次插入过程中 ( ) A.磁通量变化量相同 B.磁通量变化率相同 C.产生的感应电流相同 D.产生的感应电动势相同 例2、有一个1000匝的线圈,在0.4s 内穿过它的磁通量从0.02wb 增加到0.09wb ,求线圈中的感应电动势。如果线圈的电阻是10Ω,把它从一个电阻为990Ω的电热器串联组成闭合电路时,通过电热器的电流是多大?

三、课后练习 1、关于电磁感应,下列说法中正确的是( )。 A 、穿过线圈的磁通量越大,感应电动势越大; B 、穿过线圈的磁通量为零,感应电动势一定为零; C 、穿过线圈的磁通量的变化越大,感应电动势越大; D 、空过线圈的磁通量变化越快,感应电动势越大。 2、如图所示,将条形磁铁从相同的高度分别以速度v 和2v 插入线圈,电流表指针偏转角度较大的是: A .以速度v 插入 B .以速度2v 插入 C .一样大 D .不能确定 3、桌面上放一个单匝线圈,线圈中心上方一定高度上有一竖立的条形磁铁,此时线圈内的磁通量为0.04Wb ,把条形磁铁竖放在线圈内的桌面上时,线圈内磁通量为0.12Wb 。分别计算以下两个过程中线圈中感应电动势。 (1)把条形磁铁从图中位置在0.5s 内放到线圈内的桌面上。 (2)换用10匝的矩形线圈,线圈面积和原单匝线圈相同,把条形磁铁从图中位置在0.1s 内放到线圈内的桌面上。 【选做题】平行闭合线圈的匝数为n,所围面积为S ,总电阻为R ,在t ?时间内穿过每匝线圈的磁通量变化为?Φ,则通过导线某一截面的电荷量为( ) A 、 R ?Φ B 、R nS ?Φ C 、 tR ??Φn D 、R ?Φn

电磁感应知识点总结

第16章:电磁感应 一、知识网络 二、重、难点知识归纳 1、 法拉第电磁感应定律 (1)、产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述就是充分必要条件。不论什么情况,只要满足电路闭合与磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定就是闭合的,穿过该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述就是充分条件,不就是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2)、感应电动势产生的条件:穿过电路的磁通量发生变化。 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ =BS sin α。磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法 自感 电磁感应 自感电动势 灯管 镇流器 启动器 闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小 E=BL νsin θ t n E ??=φ 实验:通电、断电自感实验 大小:t I L E ??= 方向:总就是阻碍原电流的变化方向 应用 日光灯构造 日光灯工作原理:自感现象 感应现象:

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路就是否闭合,电动势总就是存在的。但只有当外电路闭合时,电路中才会有电流。 (3)、引起某一回路磁通量变化的原因 a磁感强度的变化 b线圈面积的变化 c线圈平面的法线方向与磁场方向夹角的变化 (4)、电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能就是从其它形式的能转化而来的。 在转化与转移中能的总量就是保持不变的。 (5)、法拉第电磁感应定律: a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量,—磁通量的变化量, c定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。 (6)在匀强磁场中,磁通量的变化ΔΦ=Φt-Φo有多种形式,主要有: ①S、α不变,B改变,这时ΔΦ=ΔB?S sinα ②B、α不变,S改变,这时ΔΦ=ΔS?B sinα ③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1) 在非匀强磁场中,磁通量变化比较复杂。有几 种情况需要特别注意: ①如图16-1所示,矩形线圈沿a→b→c在条形 磁铁附近移动,穿过上边线圈的磁通量由方向向上 减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到 零,再变为方向向上增大。 ②如图16-2所示,环形导线a中有顺时针方向的电流,a环外有两个同心导线圈b、c,与环形导线a在同一平面内。当a中的电流增大时,b、 a b c 图16-1 图16-2

电磁感应中的双棒运动问题高中物理专题

第9课时 电磁感应中的双棒运动问题 一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R v L B BIL F 22,F 与速度有关; 2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点) ; 3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。 二、例题分析: 1、两棒一静一动: 【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计, 两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为 B=0.2T ,棒ab 在平行于导轨向上的力 F 作用下,沿导轨向上匀速运动,而棒cd 恰 好能保持静止。取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大? (3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少? 2、两棒不受力都运动:满足动量守恒,分析最终状态: 【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为 L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43 v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值? 3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 【例3】如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀 强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离 L=0.20m 。两根质量均为m=0.10kg 的金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的为电阻R=0.50Ω,在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为 0.20N 的力F 作用于金属杆甲上,使金属杆在导轨上滑动。(1)分析说明金属杆最终的运动 状态?(2)已知当经过 t=5.0s 时,金属杆甲的加速度a=1.37m/s ,求此时两金属杆的速度各为多少?

高中物理知识点总结电磁感应

高中物理知识点总结:电磁感应 知识构建: 新知归纳: ●电流的磁效应: 把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

●电流磁效应现象: 磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。 ●电磁感应发现的意义: ①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。 ②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。 ③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。 ●对电磁感应的理解: 电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。 引起电流的原因概括为五类: ①变化的电流。 ②变化的磁场。 ③运动的恒定电流。 ④运动的磁场。 ⑤在磁场中运动的导体。 ●磁通量: 闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。 对磁通量Φ的说明: 虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

●产生感应电流的条件: 一是电路闭合。 二是磁通量变化。 ●楞次定律: 内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 ●楞次定律的理解: ①感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。 ②“阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。 ③定律本身并没有直接给定感应电流的方向,只是给定感应电流的磁场与原磁场间存在“阻碍”关系,要注意区分这两个磁场及其间的相互关系。 ●应用楞次定律判断感应电流方向的步骤: ①明确所研究的闭合回路。 ②判断原磁场方向。 ③判断闭合回路内原磁场的磁通量变化。 ④依据楞次定律判断感应电流的磁场方向。 利用安培定则(右手螺旋定则)根据感应电流的磁场方向,判断出感应电流方向。 ●右手定则: 内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在一个平面内让磁感线从手心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。 ●楞次定律与右手定则的关系: 导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判断感应电流方向的右手定则也是楞次定律的特例能用右手定则判断的,一定也能用楞次定律判断,只是不少情况下不如右手定则来得方便简单。反过来,用楞次定律能判断的,并不是用右手定则都能判断出来。 注意适用范围: ①楞次定律可应用于由磁通量变化引起感应电流的各种情况,右手定则只适用于一段导体在磁场中切割磁感线运动的情况,导体不动时不能用。

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及详细答案

高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及 详细答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt - 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

电磁感应知识点专题总结及对应练习

电磁感应的知识点梳理 ?Φ对比表一、磁通量Φ、磁通量变化?Φ、磁通量变化率 t? 二、电磁感应现象与电流磁效应的比较 电流磁效应:

电磁感应现象: 三、产生感应电动势和感应电流的条件比较 1.产生感应电动势的条件 2.产生感应电流的条件 只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生,即产生感应电流的条件有两个:①② 四、感应电流方向的判定方法 方法一、楞次定律 ⑴内容: ⑵运用楞次定律判定感应电流方向的步骤: ①② ②④ (3)应用范围: 方法二、右手定则 (1)内容:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是

感应电流的方向. (2)应用范围: 五、感应电动势 在电磁感应现象中产生的电动势叫 ,产生感应电流必存 在 ,产生感应电动势的那部分导体相当于 ,如果电路断开时 没有电流,但 仍然存在。 (1)电路不论闭合与否,只要 切割磁感线,则这部分导体就会 产生 ,它相当于一个 。 (2)不论电路闭合与否,只要电路中的 发生变化,电路中就产生 感应电动势,磁通量发生变化的那部分相当于 。 六、公式t n E ??Φ=与E=BLvsin θ 的区别与联系

七、楞次定律中“阻碍”的含义

3、对楞次定律中“阻碍”的含义还可以推广为: ①阻碍原磁通量的变化或原磁场的变化;可理解为。 ②②阻碍相对运动,可理解为。 ③使线圈面积有扩大或缩小趋势;可理解为。 ④④阻碍原电流的变化,可以理解为。 八.电磁感应中的图像问题 1、图像问题 (1)图像类型 B-t图像、Φ-t图像、E-t图像和I-t图像;切割磁感线产生感应电动势E和感应电流I随线圈位移x变化的图像,即E-x图像和I-x图像 (2)问题类型由给定的电磁感应过程选出或画出正确的图像; 由给定的有关图像分析电磁感应过程,求解相应的物理量 2、解决这类问题的基本方法 ⑴明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像⑵分析电磁感应的具体过程 ⑶结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。

相关主题
文本预览
相关文档 最新文档