当前位置:文档之家› 冷热源工程(第1章冷源及冷源设备)

冷热源工程(第1章冷源及冷源设备)

第一篇冷源及冷源设备

§1 制冷的基本知识

§1.1 概述

一、制冷的概念:

制冷—使某物体或空间达到并维持低于周围环境温度的过程。

根据热力学第二定律(克劳修

斯说法):“不可能把热量从低温

物体传到高温物体而不引起其他

变化。”

制冷过程必然要消耗能量。

二、制冷的方法及分类:

另外,还有很多利用物理现象的制冷方法,这里就不讲了。

工程中,按制冷达到的温度把制冷的技术分为四类:

(1)普通制冷:环境温度~-100℃;

(2)深冷:-100℃~-200℃;

(3)低温:-200℃~-268.95℃;

(4)极低温:<-268.95℃(4.2K)。

制冷技术的应用十分广泛。本专业主要用于空调工程、冷库的冷源,最常用的是蒸气压缩式制冷循环。

三、蒸气压缩式制冷装置的基本形式

液体气化制冷产生的蒸

气,经压缩、冷凝后,再次

成为液体,经节流降压,回

到蒸发器中再次气化制冷,

形成一种制冷的循环,这就

是工程中最常用的蒸气压缩

式制冷循环。

右图是完成上述循环所

用的蒸气压缩式制冷装置的

基本形式。

从图中可以看出,蒸气压缩式装置能够制冷的基本条件:1、必须由四个基本部件组成,依次完成四个热力过程;

即:蒸发器—蒸发过程—作用:让低压液体气化吸热制冷;

压缩机—压缩过程—作用:给蒸气加压升温,并使其流动;

冷凝器—冷凝过程—作用:让高温高压的蒸气放热冷凝液化;

膨胀阀—节流过程—作用:使高压液体节流降压。

2、在装置中必须有能发生相变的制冷剂;

3、必须给制冷装置的压缩机输入能量。

所以,满足上述条件,不断向制冷装置输入能量,推动其中的制冷剂依次进行蒸发、压缩、冷凝、节流制冷循环过程,就能够把某物体或空间的热量源源不断地送到高温环境中去,使某物体或空间的温度低于周围环境。

为了进一步研究蒸气压缩式制冷循环的规律和性能,我们首先应该了解一下理想制冷循环—逆卡诺循环。

§1.2 理想制冷循环—逆卡诺循环

一、逆卡诺循环的前提条件及定义

卡诺循环分为正卡诺循环和逆卡诺循环,均由两个可逆定温过程和两个可逆绝热过程组成。它们都是理想的循环,组成循环的各热力过程,与外界既无传热温差,其内部又无摩擦阻力。

我们定义:由绝热压缩、等温放热、绝热膨胀、等温吸热四过程依次进行而组成的循环,称为逆卡诺循环。

由上述可以得出,逆卡诺循环运行所需的条件:

(1)传热过程无温差,制冷剂与热源温度相等;

(2)绝热过程无漏热;

(3)循环系统无任何摩擦阻力和能量损失;

(4)制冷剂能在等温条件下发生相变。

现在,我们来看一看制冷剂的T-S图(温熵图),是否有适合逆卡诺循环运行条件的地方?首先,我们来复习一下在《工程热力学》中学习过的T-S图。

二、制冷剂T-S图的构成

制冷剂T-S图中有 “一个点、三个区、七条线” (见下图),它们分别是:

x=0线—饱和液相线;

x=1线—饱和气相线;

上述两线相交于K点,把T-S图

分为三个区域:过冷液区、湿蒸

气区(两相区)、过热蒸气区;

dx=0线—等干线,在饱和液、气

相线之间;

dT=0线—等温线,垂直于T轴的

线;

ds=0线—等熵线,垂直于S轴的线;

dp=0线—等压线,折线,在湿蒸气区与等温线重合;

dh=0线—等焓线,下斜曲线;

由于在湿蒸气区,制冷剂气体与液体能在等温条件下相互转

变,其它两区不具备此条件,逆卡诺循环只能在该湿蒸气区进行。

三、逆卡诺循环

现在,我们把逆卡诺循环表示在T-S 图上,如下图所示。我们来分析一下逆卡诺循环1-2-3-4。

设:高温热源温度为T K ,低温热源温度为T 0,

冷凝器中制冷剂温度为T K ’,蒸发器中制冷剂温度为T 0’,∵传热过程为等温传热过程,⊿T=0;

∴T K =T K ’;T 0=T 0’;

从《工程热力学》可知:在T-S 图上,过程线下的面积表示了过程的能量大小。对于在湿蒸气区进行的逆卡诺循环1-2-3-4,

每循环1kg制冷剂,有:

(1)制冷量q

=面积1-4-S4-S1=T0(S1-S4) kJ/kg

(2)放热量q

=面积2-3-S4-S1=T K(S1-S4) kJ/kg

k

(3)循环的耗功量w

=面积1-2-3-4=q k-q0=(T K-T0)(S1-S4)

=S1 (T K-T0)-S4 (T K-T0)= w c-w e kJ/kg

其中:w

= S1 (T K-T0)--压缩机压缩制冷剂所消耗的压缩功,kJ/kg;

c

w e= S4 (T K-T0)--制冷剂绝热膨胀得到的膨胀功, kJ/kg;(4)制冷系数εc=q0 / w0=T0 / (T K-T0);

(5)供热系数μ=q k / w0=T k / (T K-T0)=1+ εc;

从上述分析,我们可以看出:

a) 由q0 / w0=T0 / (T K-T0),得 w0= q0(T K-T0)/ T0

∴循环的耗功量w0与q0(T K-T0) 成正比;与T0成反比。

b) ∵等温传热 T K=T’K,T0=T’0,∴εc= T0 / (T K-T0)= T0’ / (T K’-T0’)∴逆卡诺循环的制冷系数εc与制冷剂无关,只与T K、T0有关;

一般,T0对εc的影响比T K对εc的影响大。

四、有温差的逆卡诺循环

根据传热公式:Q=K·A·⊿T,若传热过程无温差,即⊿T→0。若Q、K为定值,则⊿T→0, A→∞,即传热所需的换热面积无限大。这是不可能的。那么,我们来分析一下温差对逆卡诺循环有什么影响?

对于逆卡诺循环1-2-3-4,我们假设传热温差为⊿T。则

制冷剂蒸发温度T

’=T0-⊿T;

制冷剂冷凝温度T

’=T K+⊿T;

K

为了便于比较,令逆卡诺

循环1-2-3-4与有温差的逆卡诺

循环1’-2’-3’-4’制冷量相等,即

面积1-4-S

-S1=面积1’-4’-S4-S1’,

4

从T-S图中可以看出,有温

差的逆卡诺循环1’-2’-3’-4’增加

了耗功量⊿w,其制冷系数εc’为:

εc’= (T0﹣⊿T) / [(T K+ ⊿T) ﹣(T0﹣⊿T)] <T0 / (T K﹣T0) = εc 由于传热温差而使制冷系数降低的程度,称为温差损失。

由于实际的制冷循环存在各种损失,所以其制冷系数都小于逆卡诺循环。

因此,逆卡诺循环的制冷系数εc是相同T0、T K条件下的各种制冷循环中最大的。

为了衡量各种实际制冷循环的不可逆损失程度,我们定义热力完善度η来衡量其大小:

η=ε / εc

其中:ε--实际制冷循环的制冷系数;

εc--逆卡诺循环的制冷系数,εc=T0 / (T K-T0)。

η→0,说明制冷循环的不可逆损失很大,应改善循环;

η→1,说明制冷循环的不可逆损失很小,经济性好。

§1.3 蒸气压缩式制冷理论循环

虽然逆卡诺循环的制冷系数最大,经济性好,但在技术上存在三个无法解决的问题,使得这种循环不能在工程上实现:(1)无温差的传热过程无法实现;

(2)膨胀功很小,无法使用膨胀机;

膨胀机是一种保持工质物态,依

靠工质体积膨胀,压力降低,对外作

功的机械。从T-S图可看出,膨胀功

由液体膨胀功和气体膨胀功两部分组

成。液体几乎不可压缩或膨胀,因而

液体膨胀功为零;而气体膨胀功很

小,不能推动膨胀机;另外,体积很

小的膨胀机制造技术又十分困难,因

此,无法使用膨胀机。

(3)压缩机不能吸入湿蒸气;

压缩机吸入了湿蒸气后,会产生:①液滴从压缩机气缸壁吸热,迅速膨胀,使压缩机吸气量、制冷量下降;②液滴不能吸热气化时,会发生压缩液体的“液击”现象,损坏压缩机。

总之,理论上逆卡诺循环可行,但现有技术却无法实现它。因此,必须根据技术现实对其进行必要的改进,这样就产生了蒸气压缩式制冷理论循环。

一、蒸气压缩式制冷理论循环的定义及特点

由定压吸热、绝热干压缩、定压放热、绝热节流四过程依次组成的制冷循环,称为蒸气压缩式制冷理论循环。

蒸气压缩式制冷理论循环与逆卡诺循环相比,有三个特点:(1)用定压换热过程代替定温换热过程;(有温差的传热)(2)用节流阀代替膨胀机;

(3)用绝热干压缩代替湿压缩。

上述“三代替”使蒸气压缩式制冷理论循环能在现有技术条件下得到工程应用,成为目前冷源工程的主流。但是与逆卡诺循环相比,每一“代替”,都必然伴随相应的不可逆损失。现在我们就来分析一下,这样的“代替”有些什么样的损失。

(一)定压换热过程代替定温换热过程

定温换热过程是无温差的换热过程,定压换热过程是有温差的换热过程,由于存在传热温差,就会产生不可逆的温差损失,这在前节已作分析,就不再重述。

(二)采用节流阀代替膨胀机

节流阀内进行的绝热节流过

程是十分复杂的。由于这一过程

是绝热的,故节流阀进、出口的

焓值相等;又因为存在摩擦损失、

涡流损失等,绝热节流过程必然

产生不可逆损失。

在这一过程中,膨胀功因克

服摩阻转变为热量,被制冷剂吸

收,引发部分液体制冷剂气化,

过3点的等焓线与等T

线相交于4’点,3-4’连线就是绝热节流过程线。与逆卡诺循环的绝热膨胀过程3-4相比,采用节流阀后:(1)过程由绝热膨胀(等熵)变成绝热节流过程;

(2)制冷量q

0减少⊿q

(3)循环的耗功量w

=w c,增加了w e;

(∵w0= w c-w e,w e= 0;∴ w0=w c)

(4)制冷系数ε = (q0-⊿q0) / w c< q0 /(w c-w e) = εc。

采用节流阀代替膨胀机,其制冷系数降低程度,称为节流损失。

(三)干压缩代替湿压缩

干压缩—进入压缩机的制冷

剂为饱和蒸气或过热蒸气的压缩

过程。

在T-S图上,进入压缩机的制

冷剂状态点应在 x =1线上或过热

蒸气区。现以吸气状态点在x =1

线上为例,1点为吸气点;过1点

的等熵线与等P K线相交于2点,2

点就是压缩机的排气状态点,该

点位于过热蒸气区,温度高于T k,压力为P k;然后制冷剂沿等P K

线冷凝放热到饱和液体状态点3。现对比一下湿压缩循环1’-2’-3-4和干压缩1-2-3-4,可以得出:

(1)制冷量增加⊿q0=面积1-1’-S1’-S1;

(2)循环的耗功量也增加⊿w c=面积1-2-2’-1’;

(3)制冷系数ε =q0 /w c降低。(∵⊿q0<⊿w c)

采用干压缩代替湿压缩,其制冷系数的降低程度,称为过热损失。总之,虽然蒸气压缩式制冷理论循环与逆卡诺循环相比,存在温差、节流、过热等不可逆损失,但设备简化,因此可行。

二、蒸气压缩式制冷理论循环的热力计算

(一)lgP-h(压焓)图的构成

热力计算是制冷工程计算的基础,工程中常用压焓图来进行制冷系统的热力计算。通过与T-S图的对比,能更好地了解lgP-h图。

压焓图中有“一点、三区、八线”(见上图),它们分别是:

x=0线—饱和液相线; x=1线—饱和气相线;两线相交于K点;把压焓图分为三个区:过冷液体区、湿蒸气区、过热蒸气区。

dP=0线—等压线,垂直于lgP轴的线;

dh=0线—等焓线,垂直于h轴的线;

dx=0线—等干线,在x=0线、x=1线之间,从K点发出的曲线;dT=0线—等温线,折线,在湿蒸气区与等压线重合;

ds=0线—等熵线,斜率较大的上斜曲线;

dv=0线—等容线,斜率较小的上斜曲线;

我们来看一看R22的压焓图(P398 附录4)。

(二)制冷循环在T-S 图和lgP-h 图上的表示

我们以一个制冷循环为例来讲解在压焓图上的表示方法。例:已知某蒸气压缩式制冷循环的工况温度为:t k (冷凝温度)、 t 0(蒸发温度)、 t g (液体过冷温度)、 t n (吸气温度)。解:⒈由t 0查饱和压力P 0;

由t k 查饱和压力P k ;

⒉作等P 0线、等P k 线;

⒊在过热蒸气区,等t n 线与

等P 0线的交点为1点;

⒋过1点等熵线与等P k 线的

交点为2点;

⒌在过冷液体区,等t g 线与

等P k 线的交点为3点;

⒍过3点等焓线与等P 0线的

交点为4点;

⒎连接各点就得到该制冷

循环的压焓图。

⊿t g = t k -t g ---称为液体过冷度;

⊿t n = t n -t 0---称为吸气过热度。

作出了制冷循环的压焓图,就能根据经过某点的等什么线,查到该点的状态参数值。例如:

1点:①过1点的等焓线的值就是1点的比焓值;

②过1点的等熵线的值就是1点的比熵值;

③过1点的等容线的值就是1点的比容值;

④过1点的等温线的值就是1点的温度值;

⑤过1点的等压线的值就是1点的压力值。

另外,在湿蒸气区的点还可以查到干度值。例如:

4点:过4点的等干线的值就是4点的干度值。

从压焓图中查取到制冷循环各点的状态参数值,就能进行制冷循环的热力计算了。

关于制冷循环在压焓图与温熵图上的转换

压焓图与温熵图几乎是一一对应的,可以相互转换,压焓图上表示出的制冷循环也可以在温熵图上表示出来。

压焓图与温熵图转换的关键,是要掌握两图的各种对应线在对应区的走向;转换时要严格按照各点图中的所在区和所在线,转换到另一图中的对应区和对应线上。

现在我们以前面的例题来讲解压焓图与温熵图的转换方法。

①作等

P K 线,它与x=0线相交于

3’点,与x=1线相交于2’点;

②作等P 0线,它与x=1线相交于1’

点;

③作等Tg 线,与等P K 线相交于3

点,过3点的等焓线与等P 0线的

交点为4点;⑤作等Tn 线,与等P 0线相交于1点,过1点的等熵线与等P K 线相的交点为2点;⑥T-S 图的循环122’3’341’即与压焓图上的循环对应。注:因过冷液体区等压线与饱和液相线挨近,故3点可作在饱和液相线上。

(三)蒸气压缩式制冷理论循环的热力计算 用前面作的压焓图讲解热力计

算方法:

①确定制冷工况(t k ,t 0 ,t g ,t n ) 及制

冷量Q 0;

②作压焓图,查各点的状态参数

值(即 h 1 ,h 2 ,h 3 ,h 4 ,v 1 等);

③求单位质量制冷量q 0:

q 0= h 1-h 4 kJ/kg

(或 q 0= h 1’-h 4 kJ/kg )

④求单位容积制冷量q v : q v = ( h 1-h 4)/v 1 kJ/m 3v 1-1点(吸气点)比容(m 3/kg);⑤求质量流量M R 和体积流量V R : M R =Q 0/q 0=Q 0/( h 1-h 4) kg/s V R =M R · v 1=Q 0/q v m 3/s ⑥求单位理论功w c 和压缩机理论耗功N 0: w c = h 2-h 1 kJ/kg N 0=M R · w c kW ⑦冷凝器单位热负荷q k 和总热负荷Q K : q k = h 2-h 3 kJ/kg Q K =M R · q k kW ⑧制冷系数ε0: ε0=Q 0/N 0(= q 0/ w c )

冷热源监控系统

冷源设备群控系统控制方案 一、制冷系统 制冷系统的机房群控系统包括以下主要内容:一是实现制冷系统的能量控制管理,主要包括根据冷量负荷计算对制冷机组进行台数控制、根据系统压差实现一次泵变流量控制、根据冷却水供水温度实现对冷却水泵的控制管理;二是根据大厦的日程安排开关制冷机组、冷冻水泵、冷却水泵等,并实现各设备之间开关机顺序及连锁保护功能;三是累计每台制冷机组、冷冻水泵、冷却水泵运行时间,自动选择运行时间最短的设备启动,使每台设备运行时间基本相等,延长机组的寿命;四是动态显示机组、水泵及相关设备的运行状态和报警信息,自动记录系统数据,如遇故障则自动停泵,备用泵自动投入使用。 将系统管理主机安装在地下三层制冷机房值班室内,方便值班人员随时查看监控参数及设备运行情况。 1、制冷系统控制方案 1)监控设备 制冷系统监控原理图 DI点:制冷机组、冷冻/冷却水泵、冷却塔、热泵机组的运行状态、故障报警、自动/手动状态,稳压泵、水流开关状态、水箱水位状态。

DO点:制冷机组、冷冻/冷却水泵、冷却塔、蝶阀。 AO点:供回水总管旁通阀。 AI点:冷冻水总管供回水温度、水流量和压力,冷却水供回水温度。 另外,通过网关,可以采集到制冷机组的电流、电压、功率、功率因数、供水温度等。 2)监控内容及控制方法 监控点位 制冷机组:运行状态、故障状态; 冷却塔风机:运行状态、故障状态、手/自动状态、启停控制; 冷却泵:运行状态、故障状态、手/自动状态、启停控制、变频控制、变频反馈; 冷却水供回水温度、冷却水蝶阀开启、状态反馈、水流状态; 冷冻泵:运行状态、故障状态、手/自动状态、启停控制、变频控制、变频反馈; 冷冻水供回水温度、压力、旁通调节阀控制,回水流量、冷冻水蝶阀开启、状态反馈、水流状态; 稳压泵:运行状态、故障状态、手/自动状态、启停控制; 补水箱:高液位报警、低液位报警; 3)机组联锁控制 启动:冷却塔风机开启,冷却水蝶阀开启,开冷却水泵,冷冻水蝶阀开启,开冷冻水泵,开制冷机组。 停止:停制冷机组,关冷冻水泵,关冷冻水蝶阀,关冷却水泵,关冷却水蝶阀,关冷却塔风机。 4)冷冻水压力监测 监测冷冻水供回水压力,维持供回水压差恒定。 5)水泵保护控制 水泵启动后,水流开关检测水流状态,如发生故障则报警,同时备用泵自动投入运行。当无法启动备用泵时,制冷机组自动停机。 6)补水箱监控 监视补水箱水位高度,当补水箱内水位过高或过低时,均报警。 7)机组运行时间累计 自动统计机组、各水泵、风机的累计工作时间,提示定时维修。 8)机组运行参数

冷热源工程

复习思考题一: 1. 热源有哪几种提供方式?一种是利用燃料的化学能,通过燃烧转化即采用锅炉设备;第二种是用电能加热水或生产蒸汽;第三种是通过热泵从低温热源中提取热量,加热热媒(水、空气等)。 2. 锅炉的定义, 锅炉的分类:定义:利用燃料燃烧释放的热能或其他热能,将工质加热到一定参数的设备。分类:动 力锅炉和工业锅炉两种。 3. 锅炉的基本结构及其工作过程:基本结构:汽锅和炉子。汽锅——高温燃烧产物烟气通过受热面将热量传递给汽锅内温度较低的水,水被加热,沸腾汽化,生成蒸汽。包括锅筒(汽包)、对流管束、水冷壁、集箱(联箱)、蒸汽过热器、省煤器和管道组成的一个封闭的汽水系统。 炉子——燃烧设备,燃烧将燃料的化学能转化为热能。是由煤斗、炉排、炉膛、除渣板、送风装置等组成的燃烧设备。 4. 锅炉蒸发量, 额定蒸发量, 锅炉热效率:蒸发量(产热量):锅炉每小时所产生的蒸汽(热水)流量。额定蒸发量(产热量):锅炉在额定参数(压力、温度)和保证一定热效率下,每小时最大连续蒸发量(产热量),符号D (Q),单位t/h (kJ/h ,MW)。 锅炉热效率:每小时送进锅炉的燃料(全部完全燃烧时)所能发出的热量中有百分之几被用来产生蒸汽或加热水。5. 锅炉型号表示方法: 双锅筒横置式链条炉排锅炉T SHL10-1.25/350-WII 锅炉额定蒸发量10t/h,额定工作压力1.25MPa, 岀口过热蒸汽温度350°C T燃用||类无烟煤的蒸汽锅炉; 强制循环往复推饲炉排锅炉T QXW2.8-1.25/90/70-AII 锅炉T额定供热量 2.8MW,允许共组压力 1.25MPa,吹水温度90 C,回水温度70 C T燃用II类无烟煤的热水锅炉; 卧式内燃室燃炉t WNS1.3-1Yc 锅炉t 额定蒸发量1.3t/h ,额定工作压力1.0MPa t 燃料为柴油的饱和蒸汽锅炉; 卧式内燃室燃炉T WNS2.8-1.0/115/70-Qt 锅炉T额定供热量2.8MW 允许工作压力 1.0MPa,供水温度 115C,回水温度70C T燃料为天然气的热水锅炉。 6. 锅炉房设备,锅炉本体,锅炉附加受热面,锅炉尾部受热面, 锅炉房辅助设备:锅炉房设备:包括锅炉本体及其辅助设 备;锅炉本体设备包括:汽锅、炉子、蒸汽过热器、省煤器和空气预热器;锅炉附加受热面:蒸汽过热器、省煤器和空气预热器; 锅炉尾部受热面:省煤器和空气预热器;锅炉房辅助设备:运煤、除灰系统,送引风系统,水、汽系统,仪表控制系统。 复习思考题二: 1. 燃料的主要组成元素有哪几种?几种可燃成分?有害成分? 燃料的元素分析成分:C、H、ON、S、A (灰分)、M (水分); 可燃成分:碳(。、硫(S)、H; 有害成分:氮(N)、硫(S)o 2. 燃料成分分析基准有哪几种?四种分析基:收到基、空气干燥基、干燥基、干燥无灰基 3. 煤的燃烧特性有哪些? 煤的燃烧特性主要指:煤的发热量、挥发分、焦结性和灰熔点。 4. 燃料的燃烧计算包括哪些内容? 确定燃料燃烧所需的空气量及生成的烟气量。 5. 固体燃料燃烧所需的理论空气量如何计算?过量空气系数。 燃料燃烧所需的理论空气量等于燃料中各个可燃元素(C、H、S)完全燃烧所需空气量的总和减去燃料 自身所含氧气的折算量。 过量空气系数:在锅炉实际运行时,由于锅炉燃烧技术条件的限制,不可能做到空气与燃料理想的混合。 为使燃料尽可能的燃尽,实际供给的空气量要比计算岀的理论空气量多。

地源热泵工作原理图讲解

地源热泵工作原理图讲解-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

地源热泵工作原理图讲解 地源热泵工作原理图讲解 今天为大家介绍一下关于地源热泵以及地源热泵工作原理的详细讲解。地源热泵是一种绿色技术,地源热泵工作原理是利用地热资源将低位能量转化成高位能量从而达到节能的目的,地源热泵能效比一般可以达到5以上,比普通的中央空调要节能40%以上,目前我国也在大力倡导地源热泵中央空调系统,很多专家认为,地源热泵将是中央空调的未来和趋势。 地源热泵为什么如此节能呢,这要从地源热泵工作原理说起,地源热泵主要是利用了地能和水能,和太阳能一样,他们都是免费可再生能源。下面安徽绿能通过地源热泵原理图为大家详细介绍一下地源热泵工作原理,看看地源热泵是如何节能的。 地源热泵原理简述 作为自然现象,正如水由高处流向低处那样,热量也总是从高温流向低温,用著名的热力学第二定律准确表述:“热量不可能自发由低温传递到高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以地源热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这就是地源热泵节能的原理。 地源热泵原理图 地源热泵工作原理

地源热泵系统是从常温土壤或地表水(地下水),冬季从地下提取热量,夏季把建筑的热量又存入地下,从而解决冬夏两季采暖和空调的冷热源。 夏季通过机组将房间内的热量转移到地下,对房间进行降温,同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,大地土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。 地源热泵原理图 冬季地源热泵工作原理 冬天热泵中制冷剂正向流动,压缩机排出的高温高压R22气体进入冷凝器向集水器中的水放出热量,相变为高温高压的液体,再经热力膨胀阀节流降压

建筑冷热源试卷题-13

建筑冷热源试卷题及答案 一、填空题 1、影响活塞式制冷压缩机性能的主要因素是蒸发和冷凝温度。若冷凝器冷却不良,会引起冷凝温度升高,则压缩机的性能系数降低;若蒸发器负荷下降,会引起蒸发温度降低,压缩机的性能系数降低。(2) 2、制冷机运行工况的工作参数包括蒸发温度、冷凝温度、过冷温度、吸气温度。 (2) 3、燃料的元素分析成分和工业分析成分,通常采用的分析基准为应用基、分析基、干燥基、可燃基。(7) 4、蒸气压缩式制冷循环由压缩机、冷凝器、节流阀、蒸发器组成。(2) 5、影响制冷机工作的制冷剂热力学性质主要有:压力、单位容积制冷量、制冷循环效率、排气温度。(4) 二、选择题 1、进行锅炉热力计算时,燃料的成分应采用:( B )(7) A、分析基 B、应用基 C、可燃基 D、干燥基 2、我国供热的主要热源来自于:( B )(1) A、电能 B、矿物燃料 C、太阳能 D、低位热源 3、下列关于制冷剂与润滑油是否溶解说法正确的是(C)(4) A、制冷剂与润滑油不能溶解时好些 B、制冷剂与润滑油溶不溶解没影响 C、制冷剂与润滑油溶解时好些 D、以上说法均不对

4、冷热源初设方案优化的最大难点是:( C )(14) A、备选方案的初投资 B、可靠性与安全性 C、年度能耗及环境评价 D、年度能源费 5、制冷剂对大气臭氧层的破坏作用用(B)作为指标。(4) A、COP B、ODP C、CUP D、GWP 6、地源热泵按低位热源分类不包括( C ) A、空气源热泵 B、地源热泵 C、高热源热泵 D、水源热泵错误!未找到引用源。 7、蒸汽锅炉的锅炉房内有蒸汽、给水和(A )系统。(12) A、排污 B、排水 C、泄水 D、放气 8、根据炉胆后部的( A )结构,可分为干背式和湿背式。(8) A、烟气折返空间 B、封头 C、管钣 D、烟管 9、逆卡诺循环由两个过程和两个过程组成。(C)(2) A、等温、等压 B、等体、等温 C、等温、等熵 D、等体、等熵 10、反映制冷机组性能的参数是(B ).(2) A、制冷量 B、制冷性能系数 C、制冷循环效率 D、制冷温度 三、名词解释 1、热泵系数—— 热泵输出功率与输入功率之比称为热泵性能系数。 2、制冷剂—— 制冷剂又称为制冷工质,是制冷装置中能够循环变化和发挥其 冷却作用的工作媒介。

建筑环境与设备工程专业本科毕业论文 冷热源工程

目录 第一章设计题目和原始资料 (4) 1.1 设计题目 (4) 唐山新华园综合楼供冷热源工程 (4) 1.2 原始资料 (4) 第二章夏季空调室内冷负荷计算 (6) 2.1外墙冷负荷 (6) 2.2 屋面冷负荷 (7) 2.3 内墙冷负荷 (7) 2.4 地板冷负荷 (7) 2.5 玻璃窗及玻璃外门瞬变传热引起的冷负荷 (7) 2.6 透过窗玻璃及玻璃外门进入的日射得热引起的冷负荷 (8) 2.7 人员散热引起的冷负荷 (8) 2.8 照明散热引起的冷负荷 (9) 2.9 设备散热引起的冷负荷 (9) 第三章机房设备的选择 (10) 3.1制冷机组的选择 (10) 3.2 水泵的选型和计算 (10) 3.3 冷却塔选型 (12) 3.4 补水定压系统的选型与计算 (13) 3.5 分水器和集水器的选择 (14) 3.6 板式换热器的选择 (15) 3.7 供暖循环泵的选择 (15) 第四章太阳能集中热水系统计算 (16) 4.1 最高日用水量的确定 (16) 4.2 集热器的选型 (16) 4.3 集热器面积计算 (16) 4.4 储热水箱容积的确定 (18) 4.5 太阳能集热系统的管网设计 (18) 4.6太阳能集热系统循环流量的确定 (19) 4.7 集热器前后排之间日照间距D的确定 (20) 第五章建筑内部热水给水系统水力计算 (20) 5.1 热水配水管网计算 (20) 5.2 高区热水循环泵的选择 (22) 第六章室内排水系统水力计算 (24) 6.1 横支管计算 (24) 参考文献 (24) 设计总结 (25) 致谢 (26)

摘要 通过这次的设计,运用学过的基础理论和专业知识结合工程实际,按国家有关的规范、标准、工程设计图集及其它参考资料,独立地完成所要求的设计任务,掌握了设计计算步骤、方法,培养我们分析、解决问题的能力,为以后的工作奠定了基础。 该设计建筑是集宾馆与娱乐为一体的综合性公共建筑,本设计主要为其设计冷热源机房及太阳能供生活用热水系统。经计算,夏季建筑的总冷负荷为2395KW,冬季热负荷为763KW,故夏季采用单冷机组供冷,冬季采用市政外网热水经板式换热器换热进行低温地板辐射采暖。太阳能供生活用热水系统是利用太阳能集热器吸收太阳能来加热水,从而供建筑内生活用热水。此系统是为开发利用新能源而设计,是未来能源利用的趋势。该设计的主要用热水点为客房淋浴器。 通过这次的课程设计,使得大学四年学到的知识得到巩固,同时也学到了一些新知识,这将为以后的工作提供很大的帮助。 【关键词】:冷热源机房太阳能供热水新能源开发与利用

建筑冷热源素材(1)

建筑冷热源素材(1)

未经出版者预先书面许可,不得转载或用于其他任何以营利为目的的活动 建筑冷热源 素材电子版 1

前言 建筑冷热源素材电子版(以下简称电子版)摘录了教材《建筑冷热源》(以下简称教材)中主要内容的梗概,以方便教师在制作讲课的课件时摘取教材中的素材。电子版涵盖了教材第1章~第13章的主要内容,不包括第14章内容。第14章供学生做课程设计或毕业设计时参考,教师在指导学生设计时可结合设计题择要讲授。 为便于查找内容,电子版保留了教材的章、节名称,但取消了节下小节编排。电子版每节的内容均分若干段,在每段的标题前用“·”标志,标题名称及分段的方法并不完全与教材的小节一致,但每节内容的次序仍保持与教材一致。电子版中的公式、插图、表均无编号。教材制作课件时,可根据所选内容及增补内容,重新编章、节、小节的序号和公式、插图、表的序号。 2

为便于识别图中各组成部件,电子版中插图原标注的1、2、3……均用文字取代,但图中的英文标注仍保留。图中的英文字母均为该部件英文名称的第一个或前两个字母。例如图2-1中C为Condenser的第一个字母;CO为Compressor 的前两个字母。教师在讲课时解释一个即可,学过英语的学生很易记住。因此,电子版中未给予注释。 限于作者的水平,电子版可能存在不尽人意的地方,敬请使用者提出宝贵意见,以便今后进一步完善。 未经出版者预先书面许可,不得转载或用于其他任何以营利为目的的活动 陆亚俊 3

第1章绪论 1.1 建筑与冷热源 ●保持建筑室内一定温、湿度的方法 在一定温湿度条件下维持室内热量、湿量平衡,即可维持室内一定温度和湿度。 当室内有多余热量和湿量时,需把它移到室外;当室内有热量损失时,需补充热量。 建筑物热量和湿量传递过程 建筑物夏季与冬季热量和湿量传递过程 建筑有多余的热量和湿量,如何移到室外呢? 利用低温介质通过换热器对空气冷却和去湿,从而通过低温介质将热量湿量移到室外。 4

冷热源工程热源总结

锅炉的工作过程 1燃料的燃烧过程:定义:燃料在炉内(燃烧室内)燃烧生成高温烟气,并排出灰渣的过程 烟气向水(汽等工质)的传热过程: 辐射辐射+对流对流高温烟气水冷壁过热器(凝渣管)2对流管束对流尾部受热面(省、空) 除尘引风机烟囱 3工质(水)的加热和汽化过程:蒸汽的生产过程 蒸发量(产热量):锅炉每小时所产生的蒸汽(热水)流量 额定蒸发量(产热量):锅炉在额定参数(压力、温度)和保证一定热效率下,每小时最大连续蒸发量(产热量),符号D(Q),单位t/h(kJ/h,MW)。 受热面蒸发率:受热面:汽锅和附加受热面等与烟气接触的金属表面积。 每m2蒸发受热面每小时所产生的蒸汽量,符号D/H;单位kg/m2·h 受热面发热率:每m2受热面每小时所产生的(热水)热量,符号Q/H;单位kJ/m2·h SHL10-1.25/350-A :表示为双锅筒横置式锅炉,采用链条炉 排,蒸发量为10t/h,额定工作压力为1.25MPa,出口过热蒸汽温度为350度,燃用二类烟煤。 DZW1.4-0.7/95/70-A :表示为单锅筒纵置式,往复推动炉排炉,额定热功率为1.4MW,允许工作压力为0.7MPa,出水温度为95度,进水温度为70度,燃用二类烟煤的热水锅炉。锅炉附加受热面:蒸汽过热器、省煤器和空气预热器 锅炉尾部受热面:省煤器和空气预热器 锅炉房辅助设备:运煤、除灰系统;送引风系统;水、汽系统(包括排污系统;仪表控制系统 热平衡:为了确定锅炉的热效率,就需要在锅炉正常运行情况下建立热量的收支平衡关系,通常称为热平衡;热平衡测试分正平衡法与反平衡法两种;热平衡的根本目的就是为提高锅炉的热效率寻找最佳的途径。 Qr= Q1+Q2+Q3+Q4+Q5+Q6 Qr—每公斤燃料带入的热量, Q1—锅炉有效利用热量, Q2—排烟热损失, Q3—气体不完全燃烧热损失, Q4—固体不完全燃烧热损失, Q5—锅炉散热损失, Q6—灰渣物理热损失及其它热损失 固体不完全热损失原因:是因为进入炉膛的燃料有一部分没有参与燃烧或没有燃烬而被排出炉外造成的,是燃用固体燃料的锅炉热损失中的一个主要项目,与燃料种类、燃烧方式、炉膛结构、运行情况等有关。分为三部分:、灰渣损失落煤损失飞灰损失 影响固体不完全燃烧热损失的因素:燃料特性的影响;燃烧方式的影响;锅炉结构的影响;运行工况的影响 气体不完全燃烧热损失原因:是由于一部分可燃性气体(氢、甲烷、一氧化碳等)尚未燃烧就随烟气排出所造成的损失。 影响气体不完全燃烧热损失的因素:炉膛结构的影响燃料特性的影响:燃烧过程组织的影响操作水平的影响: 排烟热损失原因:由于技术经济条件限制,烟气在排入大气的温度要远远高于进入锅炉的空

酒店空调冷热源系统选择

酒店空调冷热源系统选择 贵州盛黔中远龙偶精品酒店在双龙经济开发区自购楼房,并按精品酒店的要求建造硬件设施,力图打造四星级品牌的连锁酒店。酒店由一层入口大堂和6~17层塔楼结构的客房、餐饮和辅助用房所组成,其中客房为168间、客人满员入住率的人数约为300人,建筑面积为8000m2。按照四星级标准酒店要求,酒店公共空间和客房均应做中央空调和卫生热水系统及智能门禁系统等。酒店的运行能耗一直是困扰酒店管理和发展的难题,随着科学技术进步和制造业的发展,空调系统已经从冷水机组加锅炉的供冷供热消耗资源型模式,发展到利用可再生能源的运行模式。 风冷热泵技术也属于可再生能源的范畴,但是风冷系统有一些致命缺馅,在最冷和最热的时候正是需要空调发挥作用的时间、它的工作效率最低的时段,相反它效率较高的温度期间,是不用开启空调系统的时间。风冷系统和水冷系统的另一差别就是制冷和制热效率的差别,风冷制冷效率在标准工况下只有2.8~3.0,水冷制冷效率在标准工况下有4.5~6.5,制热工况下:风冷制热效率为1.5~2.5,水冷制热效率为4.0~6.0,在气温低于5℃时制热效率会大幅度下降、要维持系统运行就要用电加热的维持运行,且供热质量时好时坏、极不稳定。(风冷系统还有N多缺点不在此一一列举)风冷热泵只是节约了资源、但并不节能。 近年来发展得比较好的地源热泵系统开始在市场崭露头角,地源热泵系统利用可再生能源效率最高的一种形式,通过合理的技术组合可以最大化的减少化石燃料的消耗,在取热大于排热的地区可以通过太阳能热水系统做好热平衡,达到最大限度利用可再生能源的需求;在排热大于取热的地区,可以通过卫生热水系统来平衡地下温度场、同时达到减少化石燃料消耗的目的。这些组合都体现了节能、环保、低碳和节约资源的发展要求。 酒店的卫生热水是比较重要的指标之一,就用卫生热水能耗做一个经济比较来体现地源热泵的节能率高低问题。按照四星及酒店要求热水配置量≥150(升/人),供热水总量G L为: G L=300×150=45000(升)=45(m3) Q G=45×(55-15)×1×1.163=2093.4(Kw)

冷热源工程(第1章冷源及冷源设备)

第一篇冷源及冷源设备 §1 制冷的基本知识 §1.1 概述 一、制冷的概念: 制冷—使某物体或空间达到并维持低于周围环境温度的过程。 根据热力学第二定律(克劳修 斯说法):“不可能把热量从低温 物体传到高温物体而不引起其他 变化。” 制冷过程必然要消耗能量。 二、制冷的方法及分类:

另外,还有很多利用物理现象的制冷方法,这里就不讲了。 工程中,按制冷达到的温度把制冷的技术分为四类: (1)普通制冷:环境温度~-100℃; (2)深冷:-100℃~-200℃; (3)低温:-200℃~-268.95℃; (4)极低温:<-268.95℃(4.2K)。 制冷技术的应用十分广泛。本专业主要用于空调工程、冷库的冷源,最常用的是蒸气压缩式制冷循环。 三、蒸气压缩式制冷装置的基本形式 液体气化制冷产生的蒸 气,经压缩、冷凝后,再次 成为液体,经节流降压,回 到蒸发器中再次气化制冷, 形成一种制冷的循环,这就 是工程中最常用的蒸气压缩 式制冷循环。 右图是完成上述循环所 用的蒸气压缩式制冷装置的 基本形式。

从图中可以看出,蒸气压缩式装置能够制冷的基本条件:1、必须由四个基本部件组成,依次完成四个热力过程; 即:蒸发器—蒸发过程—作用:让低压液体气化吸热制冷; 压缩机—压缩过程—作用:给蒸气加压升温,并使其流动; 冷凝器—冷凝过程—作用:让高温高压的蒸气放热冷凝液化; 膨胀阀—节流过程—作用:使高压液体节流降压。 2、在装置中必须有能发生相变的制冷剂; 3、必须给制冷装置的压缩机输入能量。 所以,满足上述条件,不断向制冷装置输入能量,推动其中的制冷剂依次进行蒸发、压缩、冷凝、节流制冷循环过程,就能够把某物体或空间的热量源源不断地送到高温环境中去,使某物体或空间的温度低于周围环境。 为了进一步研究蒸气压缩式制冷循环的规律和性能,我们首先应该了解一下理想制冷循环—逆卡诺循环。

冷热源系统监控目的

1、冷热源系统监控目的 对冷热源系统实施自动监控能够及时了解各机组、水泵、冷却塔等设备的运行状态,并对设备进行集中控制,自动控制它们的启停,并记录各自运行时间,便于维护。如果,这些工作还是由人工来进行操作,那么工作起来会很不方便,而且当工作人员在工作上产生疏忽而忘记关闭设备时,将会造成能量的极大浪费和不安全因素。 通过对冷热源系统实施自动监控,可以从整体上整合空调系统,使之运行在最佳的状态。多台冷水机组、冷却水泵、冷冻水泵和冷却塔、热水机组、热水循环水泵或者其他不同的冷热源设备可以按先后有序地运行,通过执行最新的优化程序和预定时间程序,达到最大限度的节能,同时可以减少人手操作可能带来的误差,并将冷热源系统的运行操作简单化。集中监视和报警能够及时发现设备的问题,进行预防性维修,以减少停机时间和设备的损耗,通过降低维修开支而使用户的设备增值。 2、功能详细介绍 冷热源系统的监测与自动控制,其主要功能有如下三个方面: 1. 基本参数的测量。包括:各机组的运行、故障、手自动参数;冷冻水、热水循环系统总管的温度、流量,有的会同时考虑压力;冷冻水泵、热水循环水泵的运行、故障、手自动参数;冷却水循环系统总管的温度、冷却水泵和冷却塔风机的运行、故障、手自动参数;分集水器之间旁通阀的压差反馈;以及冷冻、冷却水路的电动阀门的开关状态。参数的测量是使冷热源系统能够安全正常运行的基本保证。 2. 基本的能量调节。主要是机组本身的能量调节,机组根据水温自动调节导叶的开度或滑阀位置,电机电流会随之改变。 3. 冷热源系统的全面调节与控制。即根据测量参数和设定值,合理安排设备的开停顺序和适当地确定设备的运行台数,最终实现“无人机房”。这是计算机系统发挥其可计算性的优势,通过合理的调节控制,节省运行能耗,产生经济效益的途径,也是计算机控制系统与常规仪表调节或手动调节的主要区别所在。 冷热源系统的能耗主要由机组电耗及水泵电耗构成。由于各冷冻水、热水末端用户都有良好的自动控制,那么机组的产冷(热)量必须满足用户的需要,节能就要靠恰当地调节机组运行状态,降低循环泵电耗来获得。 为了实现上述目标,我们可以通过系统编程,完成特定的操作顺序,如:设备自动启停、设备保护、数据转发和报警,来实现机组的高效运行,为机组提供适当的自动监测控制,其中包括: 1)自适应启/停 最大限度地减少设备的能耗,冷冻水、热水温度和过去的冷热负荷惯性/反应时间,来自动调节机组-水泵的启/停时间表。按照最优启/停时间来控制水泵和机组。

冷热源工程

冷热源工程复习提纲 第一章 "冷热源工程"课程介绍的是以高效合理用能为核心的冷热源系统与设备。 第二章制冷的基本原理 制冷的方法:1、相变制冷 2、气体绝热膨胀制冷: 3、温差电制冷"帕尔帖效应。 制冷分类:普通制冷:稍低于环境温度至-100度 深度制冷:-100度至-200度 低温制冷:-200度至-268.95度 逆卡诺循环P7 看书 制冷系数:单位制冷量与单位功之比称为制冷系数。 热力完善度:理论循环的不可逆程度。 第三章制冷剂和载冷剂 制冷剂:又称制冷工质,是制冷装置中能够循环变化和发挥其冷却作用的工作媒介。 单位质量制冷量q0较大可减少制冷工质的循环量; 单位容积制冷量qv较大可减少压缩机的输气量,缩小压缩机的尺寸。 导热系数、放热系数要高,可以提高热交换效率,减少蒸发器、冷凝器等换热设备的传热面积。 制冷剂的安全性分类包括毒性和可燃性。 无机化合物的简写规定为R7() 载冷剂:在间接冷却的制冷装置中,被冷却物体或空间中的热量是通过一种中间介质传给制冷工质。 第四章冷源设备 压缩机:容积型、速度型 活塞式压缩机:利用气缸中活塞的往复运动来压缩气体。 活塞的上、下止点:最上端的位置为上止点,最下端的位置称为下止点。 活塞行程S:上止点与下止点之间的距离称为活塞行程。 气缸工作容积Vg:上止点与下止点之间气缸工作室的容积称为气缸工作容积。 理论容积:也称理论输气量,仅与压缩机的结构参数和转速有关。 压缩机的输气系数:实际输气量与理论输气量之比。表示了压缩机气缸工作容积和有效程度,综合了余隙容积、吸排气阻力、吸气过热和泄漏对压缩机输气量的影响。P33 1)余隙容积的影响:由于余隙容积的存在,少量高压气体首先膨胀占据一部分气缸的工作容积。 2)吸排气的影响。吸排气过程中,蒸气流经各处都会有流动阻力,导致气体产生压力降,

(完整word版)建筑冷热源素材(1)

未经出版者预先书面许可,不得转载或用于其他任何以营利为目的的活动 建筑冷热源 素材电子版 1

前言 建筑冷热源素材电子版(以下简称电子版)摘录了教材《建筑冷热源》(以下简称教材)中主要内容的梗概,以方便教师在制作讲课的课件时摘取教材中的素材。电子版涵盖了教材第1章~第13章的主要内容,不包括第14章内容。第14章供学生做课程设计或毕业设计时参考,教师在指导学生设计时可结合设计题择要讲授。 为便于查找内容,电子版保留了教材的章、节名称,但取消了节下小节编排。电子版每节的内容均分若干段,在每段的标题前用“·”标志,标题名称及分段的方法并不完全与教材的小节一致,但每节内容的次序仍保持与教材一致。电子版中的公式、插图、表均无编号。教材制作课件时,可根据所选内容及增补内容,重新编章、节、小节的序号和公式、插图、表的序号。 为便于识别图中各组成部件,电子版中插图原标注的1、2、3……均用文字取代,但图中的英文标注仍保留。图中的英文字母均为该部件英文名称的第一个或前两个字母。例如图2-1中C为Condenser的第一个字母;CO为Compressor的前两个字母。教师在讲课时解释一个即可,学过英语的学生很易记住。因此,电子版中未给予注释。 限于作者的水平,电子版可能存在不尽人意的地方,敬请使用者提出宝贵意见,以便今后进一步完善。 未经出版者预先书面许可,不得转载或用于其他任何以营利为目的的活动 陆亚俊2

3 第1章 绪 论 1.1 建筑与冷热源 ● 保持建筑室内一定温、湿度的方法 在一定温湿度条件下维持室内热量、湿量平衡,即可维持室内一定温度和湿度。 当室内有多余热量和湿量时,需把它移到室外;当室内有热量损失时,需补充热量。 建筑物热量和湿量传递过程 建筑物夏季与冬季热量和湿量传递过程 建筑有多余的热量和湿量,如何移到室外呢? 利用低温介质通过换热器对空气冷却和去湿,从而通过低温介质将热量湿量移到室外。 低温介质—??? 地下水 天然冰 天然冷源人工制取低温介质 人工冷源 建筑物夏季与冬季热量和湿量传递过程 建筑有热量损失,如何向建筑补充热量呢? —— —— 、

冷热源试卷

冷热源工程试卷(一) 一、填空题:(15×2=30分) 的编号是。 1.R123的化学式为,CHClF 2 2.制冷循环的节流损失是指。过热损失是指。3.逆卡诺循环由四个过程组成,分别是(按过程顺序填写)。 4、节流机构的功能主要是,常用的节能机构包括(写出三种)。 5、复叠式制冷是指。 6、共沸混合制冷剂是指。 7、制冷剂的ODP是指,GWP是指。8.按制冷剂的供液方式,蒸发器可分为四种形式。9.制冷系统的热力完善度是指。10.1美国冷吨= kW。制冷机的COP是指。 11、回热循环是指,制冷剂不采用回热循环。 12、供暖就是;所有供暖系统都由等三个部分组成。 13、采暖室内计算温度是指。 14、室内采暖负荷计算过程中,围护结构的附加耗热量包括。 15、我国《暖通规范》中供暖室外计算温度是按确定的。 二、问答题:(, 40分) 1.(1)简要叙述离心式压缩机的能量调节方式。(2)何谓离心式压缩机的“喘振现象”?如何避免这种现象的发生?(10分)

2.绘制溴化锂吸收式制冷系统流程图,并说明LiBr吸收式制冷系统的工作原理(10分) 3.试绘图说明内平衡式热力膨胀阀的工作原理(10分) 4、散热器面积的计算公式是什么?其中的三个修正系数分别修正什么内容?(10分) 三、计算题:(30分) (1)R134a饱和状态下的热力性质 (2)R134a过热蒸气热力性质 1、有一台8缸压缩机,汽缸直径125mm,活塞行程70mm,转速为1460rpm。若 制冷剂为R134a,工况为t e =0℃,t c =40℃,按饱和循环工作,求这台压缩机的制 冷量和耗功。(输气系数为1)(10分) 2、R134a制冷系统,采用回热循环,已知t e =0℃,t c =40℃,吸汽温度为15℃, 冷凝器、蒸发器出口的制冷剂状态均为饱和。求单位质量制冷量、压缩机消耗功率及制冷系数。(10分)

冷热源工程课程设计

《冷热源工程》 课程设计计算书 题目:嘉兴市光明大酒店制冷机房设计姓名:杨超 学院:建筑工程学院 专业:建筑环境与能源应用工程班级:建环142 学号: 5236 指导教师:杨超 2017年6月23 日

目录 (1)设计原始资料 (1) (2)冷水机组选型 确定冷源方案 (2) 方案一采用R22满液式螺杆冷水机组 (2) 方案二采用16DNH_开利溴化锂吸收式冷水机组 (3) 方案三采用美的离心式冷水机组 (4) 技术性分析 (5) 方案选择 (7) (3)分水器和集水器的选择 分水器和集水器的构造和用途 (7) 分水器和集水器的尺寸 (8) 分水器的选型计算 (8) 集水器的选型计算 (8) (4)膨胀水箱配置和计算 膨胀水箱的容积计算 (8) 膨胀水箱的选型 (9) (5)冷冻水系统的设备选型和计算 冷冻水系统的选型和计算 (9) 冷冻水泵流量和扬程的确定 (17) 冷冻水水泵型号的确定 (12)

冷却水系统的选型和计算 (13) 冷却塔的选型 (13) 冷却水泵的选型计算 (13) (6)个人小结 (17) (7)参考文献 (17)

1.设计原始资料 1、空调冷负荷: (空调总面积6500m2) 2、当地可用的能源情况: 电:价格:元/度 天然气:价格:元/m3;热值:m3; 蒸汽:价格:180元/吨;蒸汽压力为: 燃油:价格:元/升;低位发热量均为:42840kJ/kg 3、冷冻机房外冷冻水管网总阻力 分别为 Mpa;;; MPa 4、土建资料 制冷机房建筑平面图(见附图),其中水冷式冷水机组冷却塔高度分别为:25 m;20 m;15 m;10 m

冷热源工程

冷热源工程 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

复习思考题一: 1.热源有哪几种提供方式 一种是利用燃料的化学能,通过燃烧转化即采用锅炉设备;第二种是用电能加热水或生产蒸汽;第三种是通过热泵从低温热源中提取热量,加热热媒(水、空气等)。 2.锅炉的定义,锅炉的分类: 定义:利用燃料燃烧释放的热能或其他热能,将工质加热到一定参数的设备。 分类:动力锅炉和工业锅炉两种。 3.锅炉的基本结构及其工作过程: 基本结构:汽锅和炉子。 汽锅——高温燃烧产物烟气通过受热面将热量传递给汽锅内温度较低的水,水被加热,沸腾汽化,生成蒸汽。包括锅筒(汽包)、对流管束、水冷壁、集箱(联箱)、蒸汽过热器、省煤器和管道组成的一个封闭的汽水系统。 炉子——燃烧设备,燃烧将燃料的化学能转化为热能。是由煤斗、炉排、炉膛、除渣板、送风装置等组成的燃烧设备。 4.锅炉蒸发量,额定蒸发量,锅炉热效率: 蒸发量(产热量):锅炉每小时所产生的蒸汽(热水)流量。 额定蒸发量(产热量):锅炉在额定参数(压力、温度)和保证一定热效率下,每小时最大连续蒸发量(产热量),符号D(Q),单位t/h(kJ/h,MW)。 锅炉热效率:每小时送进锅炉的燃料(全部完全燃烧时)所能发出的热量中有百分之几被用来产生蒸汽或加热水。 5.锅炉型号表示方法: 双锅筒横置式链条炉排锅炉→ 350-WII锅炉→额定蒸发量10t/h,额定工作压力,出口过热蒸汽温度350℃→燃用II类无烟煤的蒸汽锅炉; 强制循环往复推饲炉排锅炉→锅炉→额定供热量,允许共组压力,吹水温度90℃,回水温度70℃→燃用II类无烟煤的热水锅炉; 卧式内燃室燃炉→锅炉→额定蒸发量h,额定工作压力→燃料为柴油的饱和蒸汽锅炉; 卧式内燃室燃炉→锅炉→额定供热量,允许工作压力,供水温度115℃,回水温度70℃→燃料为天然气的热水锅炉。 6.锅炉房设备,锅炉本体,锅炉附加受热面,锅炉尾部受热面,锅炉房辅助设备: 锅炉房设备:包括锅炉本体及其辅助设备; 锅炉本体设备包括:汽锅、炉子、蒸汽过热器、省煤器和空气预热器;

冷热源系统

冷热源控制系统的设计与调试 一、冷热源控制系统方案设计 (一)、技术上的可行性分析 1.对于honeywell care 软件、力控、CAD软件的掌握,便于绘制文档所需要的各类图纸文件。 2.从课本中学习到关于智能建筑中冷热源控制系统的相关知识,将所学的知识应用于文档的设计中。 3.利用互联网,在网络上搜索关于智能建筑中冷热源控制系统的知识,以便于文档的相关设计。 4.掌握了对于文档设计的技巧,以及掌握了冷热源控制系统的原理,以便灵活的应用于设计中。 (二)、经济上的可行性分析 在现代智能建筑中,暖通空调系统的能耗占据了建筑物总能耗的65%左右,而冷热源设备及水系统的能耗又是暖通空调系统能耗最主要的部分,占其80%~90%。如果提高了冷热源设备及水系统的效率就解决了楼宇设备自动化系统节能最主要的问题,冷热源设备与水系统的节能控制是衡量楼宇设备自动化系统成功与否的关键因素之一。同时,冷热源设备又是建筑设备中最核心、最经济价值的设备之一,保证其安全、高效地运行十分重要。 用DDC(直接数字控制系统)可降低能源和人力方面的费用。所有区域都经中心调度和控制,而且系统可根据自动起动或停止楼宇智能设备,使其在不必要时不运转,以避免浪费。它还可通过操作终端自动诊断和处理许多问题,而无需人员亲临现场,从而省去许多费用,降低维修成本。处于不同位置的多个建筑,可由一个中心控制室统一管理监控,而不必单独控制,从而省了人力。(三)、管理体制上的可行性分析

第二周将绘制的截图截图插入文档对 应的位置,并对文档进行修改。对于文档所涉及的图文进行绘制,包括力控模拟、CARE软件、CAD平面图 第三周对于资料进行汇总,整理成完 整的文档,并进一步修改。对于文档进行深入的熟悉,准备答辩。 二、冷热源控制系统的初步设计 1、冷热源控制系统的功能和系统组成 (1)、系统的功能 冷冻机组、冷却水系统以及冷冻水系统的监测与控制,以确保冷冻机有足够的冷却水通过,冷却塔风机、水泵安全正常工作,并根据实际冷负荷调整冷却水运行工作,保证足够的冷冻水流量。 图 1 制冷系统监控原理图 采用直接数字(DDC)控制器进行控制。冷水机组使用台数应根据系统需要的制冷量和承压要求合理确定,冷冻水泵和冷却水泵为两用一备,冷却塔的台数与冷却水泵相适应。

冷热源系统

冷热源系统 冷源系统由冷水机组、冷却水系统、冷冻水系统组成。 xx系统的监控 冷却水系统的作用是为冷水机组的冷凝器提供冷却水,吸收制冷剂的冷凝热量,并将冷凝热量转移到大气中去。 冷却水系统由冷却水循环泵、管道及冷却塔组成。 冷冻水系统的监控 冷冻水系统的作用是为冷水机组的蒸发器提供的冷量通过冷冻水输送到各类冷水用户(如空调和风机盘管) 冷冻水系统由冷冻水循环泵、集水器、分水器、管道系统等组成。 压缩式制冷系统的监控 1、启停控制和运行状态显示 2、冷冻水进出口温度、压力测量 3、xx进出口温度、压力测量 4、过载报警 5、水流量测量及冷量记录 6、运行时间和启动次数记录 7、冷冻水xx阀压差控制 8、冷冻水温度再设定 9、台数控制 在冷水机组开启时,必须首先开启冷却水和冷冻水系统的阀门和水泵、风机。

保证冷凝器和蒸发器中有一定的水量流过,冷水机组才能启动。 冷水机组都随机携带有水流开关,水流开关的电气接线要串联在制冷剂的启动回路上。 当水流达到一定流速值,水流开关吸合,制冷机组才能被启动。 制冷机停机后,应延时一段时间(约3-5分钟),再停止冷却水和冷冻水系统的运行。 冷负荷计算 Q=cM(T供-T回) c为比热容水4.1868KJ/kg,M为总管流量 制冷机组台数控制规则 若Q<=qmax(N-1),则关闭一台冷冻机及相应循环水泵。 若Q>=0.95qmaxN,且冷冻机出水温度在△t时间内高于设定值,则开启一台主机及相应循环水泵。若qmax(N-1)

空调冷热源系统的选择

空调冷热源系统的选择 根据《全国空调冷热源技术交流会》上所交流的内容和有关资料、现将几个主要问题综合整理如下,供读者参考。 一、制冷剂 1.联合国环保组织1992年11月哥本哈根会议宣布对CFC和HCFC的限制:①CFC1996年1月1日停用,②HCFC至2030年1月1日停用。美国环境保护局(EPA)1993年11月规定:1996年停止生产和使用CFC,2020年停止生产使用R22、R142b等,2030年停止生产使用HCFC R123b和所有其它HCFC。 2.美国使用HCFC-22的空调和热泵有4200万台,房间空调器4500万台,美国是世界上生产与消耗HCFC-22最多的国家,占世界总量的50%(日本13%,欧洲21%,其余各国16%)。美国现在使用CFC的空调、制冷设备有数百万台,冷水机组有8万台,估计到1996年,美国使用CFC的冷水机组被更换或改造的还不到20%,这就需要2000~4000T。CFC来维持运行和维修,美国汽车空调已有95%由R12换成了R134a,96年1月开始电冰箱全部生产以R134a的,但仍用R12约15~20万磅。 美国ARI认为短期制冷剂替代物为R22及其混合剂、R123、R124,长期制冷剂替代物为R134a、R125、R32、R23、R152a、R245ca及它们的混合剂。美国认为R134a替代R12,R245ca替代R11是较理想的制冷剂。 实际上研制用新制冷剂的设备和可靠的新制冷剂是困难而复杂的。美国公司需花10年时间来开发使用新制冷剂的制冷设备。而研制新型制冷剂要全面考虑对臭氧层的破坏程度(ODP)、温室效应(GP)、制冷性能、毒性、可燃性、能适应的材料和润滑油等因素。美国DuPont(杜邦)公司、英国ICI公司,还有联仪公司(Allied-Signal)、艾尔弗公司(Elf-Atochem)、日本大金公司等都耗巨资来研制开发和生产新型制冷剂,目前已生产R134a。美国开利公司在95年芝加哥国际展览会展出的一系列新产品,都是采用R134a,如38TN型房间空调器,19XT型离心式冷水机组,39NC型屋顶空调器。 3.95年举行的蒙特利尔会议,德国要求提前时间表,而美国表示反对,坚持1992年哥本哈根会议确定的时间表,反对过早禁止使用HCFC。原因是R22性能优越、性质稳定、使用方便、效率高、臭氧破坏指数较小。能替代它的工质大多是混合工质,很难在短期内对其性能作出正确估计。 德国对CFC和HCFC的替代比较坚决。德国规定:1992年1月全面禁用R11、R12、R13、R113、R114,2000年禁用R22、R123、R502、R115。德国目前用R134a 替代R12,例如汽车空调器、冰箱、冰柜等已大量使用R134a。德国还主张发展氨制冷机,因为氨有不少优点,对臭氧层无破坏作用,制冷系数大,价格便宜,泄漏时容易发现。目前对于化学工业等工艺过程制冷、冷藏都广泛使用,同时在小型风冷机组、空调用冷水机组和氨水吸收式制冷机组都有新的发展。但是氨的毒性较大、排气温度高、对铜类金属的腐蚀等缺点,同时对泄漏报警、风冷换热器、冷冻油再生等问题尚需进一步研究,因而用在空调系统上也有不少反对意见。 4.近几年,德国绿色和平组织大力宣传采用碳氢化合物,提出用丙烷(R290)和异丁烷(R6000A)的混合物或异丁烷来替代R11和R12,反对采用R134a。94年上海第五届中国制冷展览会上,德国绿色和平组织作了推广碳氢化合物的报告,引起很大的轰动。他们的观点是:①1kgR134a温室效应相当于3200kg的CO2;②

《冷热源工程》复习题

复习题 一.填空题 1.冷热源在集中式空调系统中被成为主机,是空调系统的心脏。 2. 液体汽化制冷方法主要有蒸汽压缩式制冷、蒸气吸收式制冷、吸附式制冷、蒸气喷射式制冷 3.用价值分析法,即计算不同方案的价值指数以选择最佳方案。 4.空调冷热源选择方法有经济评价法、综合评价法。 5.制冷机运行工况的工作参数包括蒸发温度、吸气温度、冷凝温度、过冷温度。 6.制冷压缩机按照它的制冷原理可分为容积型和速度型两大类。 7.压缩式制冷主要的设备有压缩机、冷凝器、蒸发器、节流机构。 8.按照冷凝器使用冷却介质和冷却方式的不同,有水冷式冷凝器、空冷式冷凝器、蒸发式冷凝器。 9.节流阀的作用是降温、降压。 10.锅炉的基本组成部分是锅和炉。 11.液体和固体燃料的成分中主要组成元素有 C、H、O、N、S 五种。 12.锅炉房的辅助系统包括锅炉附属设备、锅炉水处理设备、热工计量仪表、各种监测装置。 13.燃料的元素分析成分和工业分析成分,通常采用的分析基准为收到基、空气干燥基、干燥基、干燥无灰基。 14.在两种燃气互换时,用华白数控制燃具热负荷稳定状况。 15.说明下列锅炉型号的含义: CWNS1.4-95/70-Y:常压卧式内燃室燃炉,额定功率为1.4MW出水温度为95,进水温度为70,燃油热水锅炉 SHL20-1.25/250-WII:表示为双锅筒横置式链条炉排锅炉,额定流量为20t/h,额定工作压力为1.25Mpa,出口过热蒸汽温度为250℃,燃用Ⅱ类无烟煤的蒸汽锅炉。 QXW2.8-1.25/95/70-A:强制循环往复推饲炉排锅炉,额定功率为2.8MW,允许工作压力为1.25Mpa,出水温度95℃,进水温度70℃,燃用Ⅰ类烟煤的热水锅炉。 16.影响排烟热损失大小的关键取决于排烟温度、排烟容积。 17. 锅炉的工作过程包括燃料的燃烧过程、烟气向水的传热过程和水的汽化过程。 18. 锅炉的辅助受热面主要是指过热器、省煤器和空气预热器。 19. 压缩机吸气压力下降会导致单位压缩功增大,单位容积制冷量减小,制冷系数减小。 20. 影响活塞式制冷压缩机性能的主要因素是冷凝/蒸发温度。若冷凝器冷却不良,会引起冷凝温度升高,则压缩机的性能系数减小;若蒸发器负荷下降,会引起蒸发温度降低,压缩机的

相关主题
文本预览
相关文档 最新文档