当前位置:文档之家› 浅谈铸件砂眼气孔缺陷及预防措施_杨建林

浅谈铸件砂眼气孔缺陷及预防措施_杨建林

浅谈铸件砂眼气孔缺陷及预防措施_杨建林
浅谈铸件砂眼气孔缺陷及预防措施_杨建林

浅谈铸件砂眼气孔缺陷及预防措施

杨建林

上汽依维柯红岩商用有限公司铸造厂

摘要:本文介绍了用湿型砂生产铸钢件对预防砂眼、气孔的措施提供了宝贵的经验供同行参考。关键词:铸钢件砂眼气孔

铸件在生产过程中经常会发生各种不同的铸造缺陷,如何预防这些缺陷,一直是铸件生产厂家关注的问题。本文主要介绍了笔者在这方面的一些认识和实践经验。我车间主要采用传统湿型砂铸造工艺生产铸钢件,在长期的生产中,发现铸钢件主要出现以下铸造缺陷,砂眼,粘砂,气孔,缩孔,夹砂结疤,胀砂等等。现主要谈谈砂眼和气孔。

1 砂眼

2.1 特征

铸件上表面附近出现的形状不规则的,而且往往呈现紧实状态的型砂夹杂物。往往在铸件的毛坯面上就能看出砂眼来,但有的可能要在切削加工后才露出来。一般来说,铸件的其他部位上有大块的金属凸起物。此外,如上述的缺陷,还带有2~6毫米深的凹孔,这类凹孔又或多或少地露出铸件表面。且近邻处伴有夹砂。那么,这一缺陷总是与夹砂结疤同时发生。砂眼是一种常见的铸造缺陷,往往导致铸件报废。

2.2 缺陷原因

1) 砂型或砂芯上有砂块脱落;

2) 造型时不谨慎,散落砂落入型腔;

3) 冲砂或合型压坏;

4) 由于型砂膨胀,造成型壁表层脱落。2.3 砂眼的预防措施:

(1) 严格控制型砂性能,提高砂型芯的表面强度和紧实度,减少毛刺和锐角,减少冲砂。

(2) 合箱前把型腔和砂芯表面的浮砂处理干净,平稳合箱,如果是明冒口或贯通出气眼,应避免散砂从中掉人型腔,合箱后要尽快浇注。

(3) 设置正确合理的浇冒系统,避免金属液对型壁和砂芯的冲刷力过大。

(4) 浇口杯表面要光滑,不能有浮砂。2 气孔

2.1 特征

在铸件内部,表面或近于表面处,有大小不等的光滑孔眼,形状有圆的,长的及不规则的,有单个的,也有聚集成片的。颜色有白色的或带一层暗色,有时覆有一层氧化皮。

2.2 缺陷原因:

气孔和针孔是由于在凝固过程中滞留在金属中的气体形成的。然而,除气孔之外,这些气体还可能引起其他缺陷。

1) 熔炼方面的原因

(1) 熔池中的液态金属含有大量气体,溶解的气体在凝固时析出;

(2) 钢和铸铁件:碳和氧发生反应生成一氧化碳,并以气态或氧化物形式存在,一氧化碳形成的气孔可能因氢或氮的扩散而体积增加;

2) 造型或制芯材料产生气体

(1) 铸型或砂芯中水分过高

(2) 砂芯粘结剂的发气量大

(3) 含碳氢化物的附加量过多

(4) 涂料的发气量过大

3) 卷入的气体

(1) 型腔内的气体和空气未能及时排除

(2) 砂型和砂芯的透气性差

(3) 液态金属在浇注系统中产生紊流,卷入气体

2.3 气孔的预防措施:

(1) 采用洁净干燥的炉料,限制含气量较多的炉料的使用,降低熔炼时金属的吸气量;浇包要烘干烫包;可以适当提高浇注温度以利于气体扩散。

(2) 浇注时控制好压头和速度,保证钢水平稳充填砂型型腔,避免产生紊流,防止卷入气体。

(3) 减少发气量,控制型(芯)砂水分及发气原料的含量,减少砂型在浇注过程中的发气量,不

使用受潮,生锈或有油污的冷铁和芯撑等。

(4)改善砂型的透气性,选择合适的砂型紧实度,提高砂型和型芯的透气性;合理安排出气眼,使型(芯)内气体能顺利排出。

(5)提高气体进入金属液的阻力.合理设计浇注系统,避免浇注时卷入气体,在型(芯)表面涂刷涂料以减少少金属一铸型的界面作用。

对废品分析的几点参考

1) 很大的孔洞(大气孔)通常是外源气体引起的

2) 外源性气孔往往大小不一,可能是单个的,也可能是不规则地成群分布

3) 内源性气孔一般都比较小,大小一样且均匀分布于整个铸件或铸件的某一部分

4) 钢铁铸件中,氢气孔的内壁发亮,一氧化碳气孔呈浅兰色,卷入空气形成的气孔。其内壁并没有轻度氧化呈灰色。

对缺陷进行简单的检查,往往不能作出正确的判断,通常还需要进行调查研究,然后再对熔炼和造型等因素进行调整。

常见铸件缺陷分析

常见铸件缺陷分析缺陷种类,缺陷名称生产原因 多肉类飞翅(飞边) 1.砂型表面不光洁,分型面不增整 2.合理操作xx准确 3.砂箱未固紧 4.未放压铁,或过早除去压铁 5.芯头与芯座间有空隙 6.压射前机器调整、操作不正确 7.模具镶块、活块已磨损或损坏,锁紧元件失效8.模具强度不够,发生变形 9.铸件投影面积过大,锁模力不够 10.型壳内层有裂隙,涂料层太薄 毛刺 1.合型操作不准确 2.砂箱未固紧 3.芯头与芯座间有空隙 4.分型面加工精度不够 5.参考飞翅内容 抬箱 1.砂箱未固紧

2.压铁质量不够,或过早除去压铁 胀砂 1.砂型紧实度低: 壳型强度低 2.砂型表面硬度低 3.金属液压头过高 冲砂 1.砂型紧实度不够,型壳强度不够 2.浇注系统设计不合理 3.金属流速过快,充型不稳定 4.压射压力过高,压射速度过快 5.金属液头过高 掉砂 1.合型操作不正确 2.型砂紧实度不够 3.型壳强度不够,发生破裂 铸件缺陷分析 缺陷种类缺陷名称产生原因 多肉类外渗物(外渗豆)内渗物(内渗豆) 1.铸型、型号、型芯发气最大,透气性低,排气不畅2.合金液有偏析倾向

3.凝固温度范围宽或凝固速度过慢 xx类气孔、针孔 1.铸件结构设计不正确,热节过多、过大 2.铸型、型壳、型芯、涂料等发气量大,透气性低,排气不畅 3.凝固温度范围宽,凝固速度数低 4.合金液含气量高,氧化夹杂物多 5.凝固时外压低 6.冷铁表面未清理干净,未挂涂料或涂料烘透 7.铜合金脱氧不彻底 8.浇注温度过高,浇注速度过快 缩孔 1.铸件结构设计不合理,壁厚悬殊,过渡外圆角太小: 热节过多、过大 2.浇注系统、冷铁、冒口安放不合理,不利于定向凝固 3.冒口补缩效率低 4.浇注温度过高 5.压射建压时间长,增压不起作用撮终补压压力不足,或压室的充满度不合理 6.比压太小,余料饼术薄,补压不起作用 7.内浇道厚度过小,溢流槽容量不够 8.熔模的模组分布不合理,造成局部散热困难

五大元素对铸件的影响讲课稿

五大元素对铸件的影 响

浅谈五大元素对铸件的影响 摘要:本文主要阐述了碳、硅、锰、硫、磷五大元素在铸件及铸造过程中的影响及作用。 关键词:碳、硅、锰、硫、磷;影响;作用 铸铁的出现,方便了人类,从此我们就离不开了铸铁件,人们就把铸铁件用于制作各种制品,例如:小到螺丝钉、炊具、容器、农业机具等生活用品,大到汽车、飞机、轮船、大炮、坦克等建筑军事器械。铸铁的生产推动了人类社会文明的进步,随着科学技术和我国国民经济的发展,各行各业对铸铁件的质量提出了更高的要求,而铸铁件的铸造技术涉及了物理、化学、冶金、机械等多种学科,影响铸铁件质量的因素很多,因此正确地使用合理的铸造技术是提高铸铁件质量的保证,而影响铸铁件质量铸造过程的主要因素有:冷却速度、化学成分、温度、气体、炉料等,这就要求人们认真考虑这些因素对铸铁件的影响。本人结合几年来的工作经验,现以化学成分为例,浅谈五大元素对铸件的影响。 影响铸件品质的常规元素主要有五种,分别是碳、硅、锰、硫、磷,以上元素我们叫做基本元素或俗称五大元素。它们是直接影响铸件物理性能的一个重要因素。其主要作用如下: 一、碳元素是铸铁中最基本的成分。它不但是区分钢或铁的主要依据,含碳量大于1.7%是铁,低于1.7%的称为钢,而且,在铸造过程中,碳影响着铸件的力学性能。在铸造中适当的碳促进石墨化,减小白口倾向,即减少渗碳体、珠光体、三元磷共晶,增加铁素体,因而降低硬度改善加工性能;碳促进镁吸收率的提高;改善球化,以达到预期效果;碳能改善流动性,增加凝固时的体

积膨胀;碳提高吸振性,减摩性,导热性。但碳含量过高引起石墨漂浮,恶化力学性能,过低又易产生缩孔松缩等缺陷。所以,对不同质量要求的铸件,合理选配碳含量一般是提高铸件质量的一种途径,例如:灰铁含碳量大多在 2.6%- 3.6%,球墨铸铁在3.5%-3.9%。碳对中锰球墨铸铁的力学性能影响不明显,一般碳量高于3.9%时易出现石墨漂浮,影响铸铁质量,碳低于3.0%时,不利于石墨化故一般控制碳量在3.0%-3.8%为宜。 二、硅元素是铸件中的有益元素,它和碳元素一样,能促进石墨化,以孕育剂的方式添加的硅作用更明显。对于铸态球磨铸件,增加含硅量有双重作用,一方面它使渗碳体、珠光体、三元磷共晶减少,铁素体增加,因而降低强度和硬度,改善铸件塑性;另一方面硅固溶强化铁素体,使屈服点和硬度提高;硅改善铸造流动性,增大凝固时体积膨胀;硅能改善耐热、耐蚀性。增加硅量,特别是孕育硅量,能够显著的控制碳化物的数量,因此,硅是抑制中锰球墨铸铁白口倾向的强力元素。硅在一定范围内,有利于强度和韧性的提高,但使抗磨性能有所降低。故要取合适的量。一般情况下,灰铸件硅含量在 1.2%-3.0%,球墨铸件中硅在 2.0%- 3.0%。 三、锰是铸件重要元素之一,适量的锰,有助于生成纹理结构,增加坚固性和强度及耐磨性。锰和硫一样都是稳定的化合物,是阻碍石墨化的元素,当与硫共存时,锰与硫的亲和力较大,会结合成MnS等化合物,在适当温度时,不仅无阻碍石墨化作用,还能中和硫,起着除硫作用。锰达到一定量时,能使铸件强度高、硬度高、密度高、耐磨等优点,此时硅量也相应提高。锰易在共晶团边界产生偏析,铸态下易生成碳化物,增加锰量,会恶化力学性能。因此锰的含量一般应低。但是锰能稳定奥氏体,促使形成奥氏体基体时,

侵入气孔、析出气孔、针状气孔产生的原因有哪些

侵入气孔、析出气孔、针状气孔产生的原因有哪些? 侵入气孔产生的原因是:型砂中的水分与粘结剂中的挥发物,都会因受热变成气体。如果型砂(或芯砂)透气性差,或浇注系统设计不合理,或砂型紧实度过高.或砂型排气不良以及气道堵塞,都会使铸型中所产生的气休(浇注时)不能及时排出,就可能冲破金属表面凝固膜,而钻进铁水里去,若不能上浮排出,便留在铸件中形成气孔。因此应尽量减少铸型中的气体来源和增加铸型的排气能力。其具体措施有: (1)严格控制型砂的水分,同时起膜与修型时,不宜刷水过多。煤粉等加入量不宜过多,从而减少发气量。一般型砂中水<6%,煤<7%。 (2)干型要保证烘干的质量,烘干后停放时间不宜过长,以免返潮。 (3)适当地提高浇注温度,浇注时缓慢平稳,保征型腔内原有气体来得及排出。 (4)铸型紧实度要适当,保持良好的透气性。同时还要开气冒口,扎气眼;泥芯要有通气道等。 (5)浇注系统的设置要合理,要考虑型腔内排气畅通及金属液平稳地流入铸型。 (6)合箱时要注意封死芯头间隙,以免铁水钻入而堵塞通气道。 (7)对于大平面铸件,最好采用倾斜浇注,出气孔处高势,以利排气。 (8)泥芯撑和冷铁必须干净无锈 (9)适当减少粘结剂,可附加一些透气性材料,如木屑等。 (10)可选用圆性砂粒,增加型砂的透气性。 析出气孔产生的原因是:气体在金属中的溶解度随温度下降而急剧减少。在熔炼过程中,金属吸收了较多的气体,而在冷却凝固过程中,析出的气体若不能排出型外,则留在铸件中成为气孔。因此,要尽量减少铁水在熔炼和浇注时的吸气和减少铁水的粘度,以便气泡上浮排除。其具体措施有: (1)使用干燥炉料,并限制含气量较多的回炉料的用量。对锈蚀严重成表面有油的炉料要经过热处理后再使用,对本身含气量高的炉料,应重熔再生后再使用。 (2)尽量减少炉料与炉气接触:在金属液表面复盖溶剂,采用快速熔炼工艺,严格控制风量和风压等。 (3)浇包要完全烘干。 (4)进行脱气处理:方法是加入合金不溶性气体,把溶于金属液中的气体带出。如炼钢中加铁矿石沸腾而除去氢气、氮气等。 (5)采用真空熔炼,以清除金属液中气体或使用金属液在压力下结品,使已溶于金属的气体未来得及析出就已凝固。 (6)增加型砂的透气性:紧实度要合适,扎气眼,水分适宜。 (7)适当提高浇注温度,以降低金属液枯度。让气体易于排除。 (8)炉缸、前炉和铁水包需烘干后再使用。 (9)浇注时要避免断流,从而做到连续浇注。 (10)浇注时,必须点火引气。 针状气孔小,细而长,如针状,主要由氢和氧生成。其中氢可能以分子状态存在,也可能以原子状态存在。以分子状态存在时,如钢中有足够的氧化亚铁,则氢与氧化亚铁中的氧化合而成水蒸气,这种水蒸气可以直接生成针孔,也可以作为针孔的核心,周围的氢向其扩散,聚集而长大,终于生成针孔。以原子状态存在时,则熔解于钢水(或铁水)中,随着温度下降,氢被析出,并迅速扩散,或扩散到已有核心处,聚集长大,或扩散到已有析出氧的地方,与氧化合而成水蒸汽,从而生成针孔。在所有情况下,氢的扩散都要受到相邻金属品粒的阻碍,被迫向细长方向发展而成为针状。氧多以分子状态存在,并

铸造缺陷分析

发动机铸件汽缸体(汽缸盖)缺陷分析 概述 改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。 以中小型乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)

然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。 提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。 1气孔 气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。 汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下: 1.1原因 1.1.1 型腔排气不充分,排气系统总载面积偏小。 1.1.2浇注温度较低。 1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。 1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差。 1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通

压铸铝合金中各元素的作用和影响

?压铸铝合金中各元素的作用和影响 ?发布时间:2009-11-9 16:57:02 来源:互联网文字【大中小】 ?(一)日本ADC12 牌号合金 (二)压铸铝合金中各元素的作用和影响 1. 硅(Si) 硅是大多数压铸铝合金的主要元素。它能改善合金的铸造性能。硅与铝能组成固溶体。在577℃时,硅在铝中的溶解度为1.65%,室温时为0.2%、含硅量至11.7%时,硅与铝形成共晶体。提高合金的高温造型性,减少收缩率,无热裂倾向。二元铝基合金有高的耐蚀性。当合金中含硅量超过共晶成分,而铜、铁等杂质又多时,即出现游离硅的硬质点,使切削加工困难,高硅铝合金对铸件坩埚的熔蚀作用严重。 2. 铜(Cu) 铜和铝组成固溶体,当温度在548℃时,铜在铝中的溶解度应为5.65%,室温时降至0.1%左右,增加含铜量,能提高合金的流动性,抗拉强度和硬度,但降低了耐蚀性和塑性,热裂倾向增大。 3. 镁(Mg) 在高硅铝合金中加入少量(约0.2~0.3%)的镁,可提高强度和屈服极限,提高了合金的切削加工性。含镁8%的铝合金具有优良的耐蚀性,但其铸造性能差,在高温下的强度和塑性都低,冷却时收缩大,故易产生热裂和形成疏松。 4. 锌(Zn) 锌在铝合金中能提高流动性,增加热脆性,降低耐蚀性,故应控制锌的含量在规定范围中。至于含锌量很高的ZL401 铝合金却具有较好的铸造性能和机械性能,切削加工也比较好。 5. 铁(Fe) 在所有铝合金中都含有害杂质。因铝合金中含铁量太高时,铁以FeAl3、Fe2Al7和Al-Si-Fe 的片状或针状组织存在于合金中,降低机械性能,这种组织还会使合金的流动性减低,热裂性增大,

压铸件的缺陷分析及检验要点

压铸件的缺陷分析及检验 一、流痕 ( 条纹 )( 抛光法去除 )A. 、模温低于 180( 铝合金 )b 、填充速度太高 c 、涂料过量 D 。金属流不同步。对 a 采取措施:调整内浇口面积 二、冷接: A 料温低或模温低, B ,合金成份不符,流动性差。 C ,浇口不合理,流程太长 D 。填充速度低 E 。排气不良。 F 、比压偏低。 三、。擦伤(扣模、粘模、拉痕、拉伤): A 型芯铸造斜度太小。 B ,型芯型壁有压伤痕。 C ,合金粘附模具。 D ,铸件顶出偏斜,或型芯轴线偏斜。 E ,型壁表面粗糙。 F ,脱模水不够。 G ,铝合金含铁量低于 0 。 6 %。措施:修模,增加含铁量。 四、凹陷(缩凹,缩陷,憋气,塌边) A .铸件设计不合理,有局部厚实现象,产生节热。 B ,合金收缩量大。 C ,内浇口面积太小。 D ,比压低。 E ,模温高 五、,气泡(皮下): A ,模温高。 B ,填充速度高。 C ,脱模水发气量大。 D ,排气不畅。 E ,开模过早。 F ,料温高。 六、气孔: A ,浇口位置和导流形状不当。 B ,浇道形状设计不良。 C ,压室充满度不够。 D ,内浇口速度太高,产生湍流。 E ,排气不畅。 F ,模具型腔位置太深。 G ,脱模水过多。 H ,料不纯。 七、缩孔: A ,料温高。 B ,铸件结构不均匀。 C ,比压太低。 D ,溢口太薄。 E ,局部模温偏高 八、花纹: A ,填充速度快。 B ,脱模水量太多。 C ,模具温度低。 九、裂纹: A ,铸件结构不合理,铸造圆角小等。 B ,抽芯及顶出装置在工作中受力不均匀,偏斜。 C ,模温低。 D ,开模时间长。 E ,合金成份不符。(铅锡镉铁偏高:锌合金,铝合金:锌铜铁高,镁合金:铝硅铁高 十、欠铸 A ,合金流动不良引起。 B ,浇注系统不良 C ,排气条件不良 十一、印痕(镶块或活动块及顶针痕等) 十二、网状毛刺: A ,模具龟裂。 B ,料温高。 C ,模温低。 D ,模腔表面不光滑。 E ,模具材料不当或热处理工艺不当。 F ,注射速度太高。

铝压铸件产生气孔的可能原因

铝压铸件产生气孔的可能原因(供参考) 一. 人的因素: 1. 脱模剂是否噴得太多? 因脱模济发气量大,用量过多时,浇注前未燃尽,使挥发气体被包在铸件表层。所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。 选用发气量小的脱模济,用量薄而均匀,燃净后合模。 2 未经常清理溢流槽和排气道? 3 开模是否过早? 是否对模具进行了预热?各部位是否慢慢均匀升温,使型腔、型芯表面温度为150℃~200℃。 4 刚开始模温低时生产的产品有无隔离? 5 如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法 加热? 6 是否取干净的铝液,有无将氧化层注入压室? 7 倒料时,是否将勺子靠近压室注入口,避免飞溅、氧化或卷入空气降 温等。 8 金属液一倒入压室,是否即进行压射,温度有无降低了?。 9 冷却与开模,是否根据不同的产品选择开模时间? 10 有无因怕铝液飞出(飞水),不敢采用正常压铸压力?更不敢偿试 适当增加比压。? 11 操作员有无严格遵守压铸工艺? 12 有无采用定量浇注?如何确定浇注量? 二. 机(设备、模具、工装)的因素: 主要是指模具质量、设备性能。 1 压铸模具设计是否合理,会否导致有气孔? 压铸模具方面的原因: 1.浇口位置的选择和导流形状是否不当,导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度,避免涡流包气) 2.浇道形状有无设计不良? 3.内浇口速度有无太高,产生湍流? 4.排气是否不畅? 5.模具型腔位置是否太深? 6.机械加工余量是否太大?穿透了表面致密层,露出皮下气孔? 压铸件的机械切削加工余量应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 2 排气孔是否被堵死,气排不出来? 3 冲头润滑剂是否太多,或被烧焦?这也是产生气体的来源之一。 4 浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 5 内浇口位置是否不合理,通过内浇口后的金属立即撞击型壁、产生涡 流,气体被卷入金属流中? 6 排气道位置不对,造成排气条件不良?

▲铸钢件缺陷原因分析

铸钢件缺陷产生的原因分析 铸钢阀门由于其成本的经济性和设计的灵活性,因而得到广泛的运用。由于阀门铸件的基本结构属于中空结构,形状比较复杂,铸造工艺受到铸件尺寸、壁厚、气候、原材料和施工操作的种种制约,因此,铸钢件常常会出现砂眼、气孔、裂纹、缩松、缩孔和夹杂物等各种铸造缺陷, 生产控制有一定难度,尤以砂型铸造的合金钢铸件为多。因为钢中合金元素越多钢液的流动性越差,铸造缺陷就更容易产生。 一、铸钢的铸造工艺特点 铸钢的熔点较高,钢液易氧化、钢水的流动性差、收缩性大,其体收缩率为10~14%,线收缩为1.8~2.5%。为防止铸钢件产生浇不足、冷隔、缩孔和缩松、裂纹及粘砂等缺陷,必须采取较为复杂的工艺措施: 1、由于钢液的流动性差,为防止铸钢件产生冷隔和浇不足,铸钢件的壁厚不能小于8mm;浇注系统的结构力求简单;采用干铸型或热铸型;适当提高浇注温度,一般为1520°~1600℃,因为浇注温度高,钢水的过热度大、保持液态的时间长,流动性可得到改善。但是浇温过高,会引起晶粒粗大、热裂、气孔和粘砂等缺陷。因此一般小型、薄壁及形状复杂的铸件,其浇注温度约为钢的熔点温度+150℃;大型、厚壁铸件的浇注温度比其熔点高出100℃左右。 2、由于铸钢的收缩量较大,为防止铸件出现缩孔、缩松缺陷,在铸造工艺上大都采用冒口、冷铁和补贴等措施,以实现顺序凝固。

3、为防止铸钢件产生缩孔、缩松、气孔和裂纹缺陷,应使其壁厚均匀、避免尖角和直角结构、在铸型用型砂中加锯末、在型芯中加焦炭、以及采用空心型芯和油砂芯等来改善砂型或型芯的退让性和透气性。 4、铸钢的熔点高,相应的其浇注温度也高。高温下钢水与铸型材料相互作用,极易产生粘砂缺陷。因此,应采用耐火度较高的人造石英砂做铸型,并在铸型表面刷由石英粉或锆砂粉制得的涂料。为减少气体来源、提高钢水流动性及铸型强度,大多铸钢件用干型或快干型来铸造,如采用CO2硬化的水玻璃石英砂型。 二、铸钢件常见的铸造缺陷 铸钢件在生产过程中经常会发生各种不同的铸造缺陷,常见的缺陷形式有:砂眼、粘砂、气孔、缩孔、缩松、夹砂、结疤、裂纹等。 A )砂眼缺陷 砂眼是由于金属液从砂型型腔表面冲下来的砂粒(块),或者在造型、合箱操作中落入型腔中的砂粒(块)来不及浮入浇冒系统,留在铸件内部或表面而造成的。砂眼缺陷处内部或表面有充塞着型(芯)砂的小孔,是一种常见的铸造缺陷。 B)粘砂缺陷 在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙,难于清理。粘砂多发生在型、芯表面受热作用强烈的部位,分机械粘砂和化学粘砂两种。机械粘砂是由金属液渗入铸型表面的微孔中形成的,当渗入深度小于砂粒半径时,铸件不形成粘砂,只是表面粗糙,当渗入深度

基体为铁素体的球墨铸铁五大元素的影响

基体为铁素体的球墨铸铁(简称球铁),具有一定强度、良好的冲击韧性和塑性,可由铸态或经退火获得。 金相组织石墨的形态和金属基体组织对其韧性有很大的影响。(1)石墨形态的影响。在金属基体组织合格条件下,石墨形状对伸长率和冲击值影响极大:片状石墨严重割裂了金属基体,其尖角处应力集中,因此片状石墨铸铁呈脆性,冲击值很低,强度被大大削弱;而球铁则不同,只要基体组织合格,球化率愈高韧性愈好。(2)基体组织的影响。铁素体球铁的基体组织以铁素体为主,余为珠光体。渗碳体和磷共晶是有害组织,一般分别控制在3%和1%以下。铁素体含量愈高则韧性愈好。珠光体数量增加,则冲击值和伸长率下降。珠光体一般应在10%以下,且为分散存在,这样对韧性影响不大。 化学成分在适当的孕育工艺条件下,提高碳当量将增加铁素体的含量,因而冲击值、伸长率随之上升,但碳当量过高,易引起石墨漂浮。石墨漂浮还和铸件厚度与冷却速度有关,砂型浇注中等厚度(10~40mm)的铸件,铸态铁素体球铁碳当量取4.4%~4.9%为宜,退火铁素体球铁的碳当量可取4.2%~4.8%,厚大件降低碳当量,薄小件提高碳当量。采用强化孕育工艺也宜降低碳当量。 各元素影响为: (1)碳。有利于石墨化和球化,提高碳量有利于发挥材料的韧性。 (2)硅。是强烈促进石墨化的元素,有利于提高韧性,硅的孕育作用能细化共晶团和使磷共晶分散。韧性铁素体球铁的终硅含量一般控制在2.7%以下,如果生铁含锰量≤0.5%、磷≤0.7%,则终硅量可放宽至3.O%左右。 (3)锰。阻碍渗碳体和珠光体的分解。球铁的激冷倾向本已相当高,故对铁素体球铁应控制锰含量,一般应低于0.4%。对用退火生产的韧性铁素体球铁,其含锰量允许在0.6%。 (4)磷。在铸铁中会形成脆相,特别是三元磷共晶或复合磷共晶对韧性危害极大,常采用如下措施以削弱磷的有害作用:提高碳量,采取高碳低硅的成分方案,以阻碍三元磷共晶的析出;强化孕育以细化共晶团,使磷共晶分散;920~980C退火,使三元磷共晶或复合磷共晶转变成二元磷共晶,减少磷共晶的数量,改善球墨形状。采用金属型浇注成麻口,即球墨和莱氏体及渗碳体组织,再经高温退火则可避免产生磷共晶。 (5)硫。其含量过高会使球化不稳定,而且会产生过多的硫化物夹杂,严重影响韧性,故要求原铁水硫量尽可能低,最好铁水采取脱硫措施(见铸铁碳当量和铸铁石墨漂浮)。 热处理欲保证球铁高韧性,需采用硅、锰、磷和杂质甚少的原生铁,许多国家采用高纯生铁效果很好。中国生铁来源很广,杂质含量较高,铸态韧性不稳定,铁lie所以对性能要求较高的铸件可采用退火的方法生产韧性球铁。

铸铁件氮气孔产生的原因分析及特征

铸铁件氮气孔产生的原因分析及特征 特征:枝晶间裂隙状氮气孔 这种缺陷呈裂隙状多角形或断续裂纹状,跟其它的气孔类缺陷大不相同,从外观上看没有明显的气体痕迹,但能明显看到粗大的树枝晶,跟缩孔、缩松缺陷有点类似,所以在有些较厚大件上,经常被误认为是缩孔、缩松。值得一提的是,这种气孔在铸件断面上呈大面积分布,有的也分布在较大的平面处,在铸件最后凝固如冒口附近,热节中心最为密集,这类气孔常发生在同一炉或同一浇包浇注的全部或大部分铸件中。由于是在凝固过程晚期形成的,因而气孔孔洞形状不是圆球形的,而改变为多角形或枝晶间裂隙状的,这说明气泡生成及长大时,其周边被固体的枝晶壁所包围,而不能形成圆球形的气孔。 来源:液态金属所吸收的氮来自多种途径,主要有两大类,一是浇注前金属液本身所含的氮;二是树脂砂中所含的氮。 对于冲天炉熔炼的灰铸铁,炉料中的废钢是氮的重要来源,碱性电弧炉废钢,其含氮量可达 60ppm~140ppm,废钢多于35%,就有可能产生氮气孔,树脂砂中所含的氮来源于树脂及固化剂、再生砂中积累的氮、型砂中的含氮附加物及涂料中的氮沥青焦炭含氮量高,作为增碳剂使用时容易产生氮气孑L,必须引起高度重视。而电极电墨作为增碳剂,则由于其含氮量低而不容易发生氮气孑L。此外,在熔炼过程中即使加入含氮量高的增碳剂,如沥青焦炭,也只有在刚加入铁液时含氮量急剧增加,当铁液保温十多分钟后,含氮量逐渐恢复到加增碳剂前的水平。 机理: 用树脂砂生产铸铁件更容易产生氮气孔,这是因为当铁液浇人铸型后,含N的树脂受热分解出NH3,NH3又在金属液表面离解,NH3一[N]+3/2H2,[N]原子相当一部分进入铸型金属界面尚处于熔融

五大元素对铸件的影响

浅谈五大元素对铸件的影响 摘要:本文主要阐述了碳、硅、锰、硫、磷五大元素在铸件及铸造过程中的影响及作用。 关键词:碳、硅、锰、硫、磷;影响;作用 铸铁的出现,方便了人类,从此我们就离不开了铸铁件,人们就把铸铁件用于制作各种制品,例如:小到螺丝钉、炊具、容器、农业机具等生活用品,大到汽车、飞机、轮船、大炮、坦克等建筑军事器械。铸铁的生产推动了人类社会文明的进步,随着科学技术和我国国民经济的发展,各行各业对铸铁件的质量提出了更高的要求,而铸铁件的铸造技术涉及了物理、化学、冶金、机械等多种学科,影响铸铁件质量的因素很多,因此正确地使用合理的铸造技术是提高铸铁件质量的保证,而影响铸铁件质量铸造过程的主要因素有:冷却速度、化学成分、温度、气体、炉料等,这就要求人们认真考虑这些因素对铸铁件的影响。本人结合几年来的工作经验,现以化学成分为例,浅谈五大元素对铸件的影响。 影响铸件品质的常规元素主要有五种,分别是碳、硅、锰、硫、磷,以上元素我们叫做基本元素或俗称五大元素。它们是直接影响铸件物理性能的一个重要因素。其主要作用如下: 一、碳元素是铸铁中最基本的成分。它不但是区分钢或铁的主要依据,含碳量大于1.7%是铁,低于1.7%的称为钢,而且,在铸造过程中,碳影响着铸件的力学性能。在铸造中适当的碳促进石墨化,减小白口倾向,即减少渗碳体、珠光体、三元磷共晶,增加铁素体,因而降低硬度改善加工性能;碳促进镁吸收率的提高;改善球化,以达到预期效果;碳能改善流动性,增加凝固时的体积膨胀;碳提高吸振性,减摩性,导热性。但碳含量过高引起石墨漂浮,恶化力学性能,过低又易产生缩孔松缩等缺陷。所以,对不同质量要求的铸件,合理选配碳含量一般是提高铸件质量的一种途径,例如:灰铁含碳量大多在2.6%-3.6%,球墨铸铁在3.5%-3.9%。碳对中锰球墨铸铁的力学性能影响不明显,一般碳量高于3.9%时易出现石墨漂浮,影响铸铁质量,碳低于 3.0%时,不利于石墨化故一般控制碳量在3.0%-3.8%为宜。 二、硅元素是铸件中的有益元素,它和碳元素一样,能促进石墨化,以孕育剂的方式添加的硅作用更明显。对于铸态球磨铸件,增加含硅量有双重作用,一

消失模铸造详情

消失模铸造详情 消失模铸造(又称实型铸造)是将与铸件尺寸形状相似的石蜡或泡沫模型粘结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。 1958年,美国的H.F.shroyer发明了用可发性泡沫塑料模样制造金属铸件的专利技术并取得了专利(专利号USP2830343)。最初所用的模样是采用聚苯乙烯(EPS)板材加工制成的.采用粘土砂造型,用来生产艺术品铸件。采用这种方法,造型后泡沫塑料模样不必起出,而是在浇入液态金属后聚苯乙烯在高温下分子裂解而让出空间充满金属液,凝固后形成铸件。1961年德国的Grunzweig和Harrtmann公司购买了这一专利技术加以开发,并在1962年在工业上得到应用。采用无粘结剂干砂生产铸件的技术由德国的H.Nellen和美国的T.R.Smith于1964年申请了专利。由于无粘结剂的干砂在浇注过程中经常发生坍塌的现象,所以1967年德国的A.Wittemoser采用了可以被磁化的铁丸来代替硅砂作为造型材料,用磁力场作为"粘结剂"。这就是所谓"磁型铸造"。1971年,日本的Nagano发明了V法(真空铸造法),受此启发,今天的消失模铸造在很多地方也采用抽真空的办法来固定型砂。在1980年以前使用无粘结剂的干砂工艺必须得到美国"实型铸造工艺公司"(Full Mold Process,Inc)"的批准。在此以后,该专

利就无效了。因此,近20年来消失模铸造技术在全世界范围内得到了迅速的发展。 消失模铸造工艺的特点 消失模工艺的砂... 1.铸件精度高:消失模铸造是一种近无余量、精确成型的新工艺,该工艺无需取模、无分型面、无砂芯,因而铸件没有飞边、毛刺和拔模斜度,并减少了由于型芯组合而造成的尺寸误差。铸件表面粗糙度可达Ra3.2至1 2.5μm;铸件尺寸精度可达CT7至9;加工余量最多为1.5至2mm,可大大减少机械加工的费用,和传统砂型铸造方法相比,可以减少40%至50%的机械加工间。 2.设计灵活:为铸件结构设计提供了充分的自由度。可以通过泡沫塑料模片组合铸造出高度复杂的铸件。 3.无传统铸造中的砂芯因此不会出现传统砂型铸造中因砂芯尺寸不准或下芯位置不准确造成铸件壁厚不均。 4.清洁生产型砂中无化学粘结剂,低温下泡沫塑料对环境无害,旧砂回收率95%以上。 5.降低投资和生产成本减轻铸件毛坯的重量,机械加工余量小。 消失模铸造工艺与其他铸造工艺一样,有它的缺点和局限性,并非所有的铸件都适合采用消失模工艺来生产,要进行具体分析。主要根据以下一些因素来考虑是否采用这种工艺。1.铸件的批量

铸造铸件常见缺陷分析报告文案

铸造铸件常见缺陷分析 铸造工艺过程复杂,影响铸件质量的因素很多,常见的铸件缺陷名称、特征和产生的原因,见表。 常见铸件缺陷及产生原因 .学习帮手.

缺陷名称特征产生的主要原因 气孔 在铸件部或表 面有大小不等 的光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等 缩孔与缩松缩孔多分布在 铸件厚断面 处,形状不规 则,孔粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对; ③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少 砂眼在铸件部或表 面有型砂充塞 的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,浇口方向不对,金属液冲坏了砂 .学习帮手.

型;④合箱时型腔或浇口散砂未清理干净 粘砂铸件表面粗 糙,粘有一层 砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄 夹砂铸件表面产生 的金属片状突 起物,在金属 片状突起物与 铸件之间夹有 一层型砂①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢 错型铸件沿分型面 有相对位置错①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压 .学习帮手.

气孔类别

本文从铝合金铸件气孔类别分析入手,指出铝合金铸件气孔可分为点状针孔、网状针孔、综合性针孔三类;氢是造成铝合金铸件针孔的主要原因,而氢的主要来源则是由于水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。由于铝合金铸件气孔对铸件的品质尤其是对其力学性能产生不良的影响,作者在文中论述了铝合金铸件气孔形成的主要因素,并针对铝合金铸件气孔形成的主要因素提出了相应的预防措施,文章最后扼要总结了预防铝合金铸件针孔必须遵守的“防”、“排”、“溶”工艺原则。 引言: 在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着国民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。 加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。 1.气孔类别 由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即: (1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。这种针孔容易与缩孔、缩松等予以区别开来。 (2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。 (3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。 铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。 2.针孔的形成 铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资料介绍②,铝合金中溶解的较多的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。(氢在纯铝中的溶解度与温度的关系见图1③)。因此铝合金液在冷却的凝固过程中,氢的某一时刻,氢的含量超过了其溶解度即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,来不及上浮排出的,就在凝固过程中形成细小、分散

消失模铸件易出现的缺陷及消除措施

消失模铸件易出现的缺陷及消除措施 ―攀枝花钢铁研究院试验中心陈建钢1、粘砂 金属液渗入型砂中,形成金属与型砂的机械混合物,其中有两种情况:一种是金属液通过涂层开裂处渗入型砂中,形成铁包砂(即机械粘砂),此种缺陷一般可以清除掉;另一种情况是金属透过涂层渗入型砂中,形成难以清除的化学粘砂。 (一)产生的原因 (1)在涂层开裂的情况下,由于型砂紧实度不够,型砂颗粒过大及真空度过高产生第一种粘砂情况; (2)在涂层过薄或局部未刷到的情况下,由于金属液温度较高,真空度较大时产生第二种粘砂。 (二)防止措施 (1)提高涂层的厚度和耐火度。 (2)造型时紧实力不宜过大以免破坏涂层。 (3)选择合适的负压。 (4)选用较细的原砂。 (5)浇注温度不宜过高。 (6)选择合适的压力头。 2、气孔 (一)气孔的分类 (1)浇注时卷入空气形成的气孔。

(2)泡沫塑料模样分解产生的气孔。 (3)模样涂层不干引起的气孔。 (4)金属液脱氧不好引起的气孔。 (二)浇注时卷入空气形成的气孔 消失模铸造浇注过程中如果直浇道不能充满就会卷入空气,这些气体若不能及时排出,就有产生气孔缺陷的可能。 防止卷入气体的措施: (1)采用封闭式的浇注系统。 (2)浇注时维持浇口盆内有一定的液体金属以保持直浇道处于充满状态。 (3)正确掌握浇注方法,采用慢—快—慢的浇注方法。 (三)泡沫塑料模样分解产生的气孔 EPS和STMMA热解后产生大量的气体,如果充型平稳,金属与模样逐层置换,这些气体就会顺利通过液体前沿与模样间的气隙经铸型排出,特别在铸型处于负压状态下更有利气体排放,铸件不易产生气孔缺陷。但是如果充型过程产生紊流或者顶注,侧注情况下、部分模样被金属液包围后进行分解产生的气体不能从金属液中排出时就会产生缺陷,这种气孔表面有炭黑存在。 防止措施: (1)改进浇注方案,使充型过程逐层置换,不产生紊流。 (2)提高浇注温度。 (3)在不发生紊流的情况下,适当提高真空度,如果发生紊流而产

熔模铸造的铸件缺陷分析与防止

熔模铸造的铸件缺陷分析与防止 时间:2009-10-12 07:22来源:未知 作者:吴光来 点击: 60次 熔模铸造的铸件缺陷分析与防止 内容提要 1 铸件尺寸超差 1) 模料及制模工艺对铸件尺寸的影响 2) 制壳材料及工艺对铸件尺寸的影响 3) 浇注条件对铸件尺寸的影响 2 铸件表面粗糙1) 影响熔模表面粗糙度的因素 2) 影响型壳表面粗糙度的因素 3) 影响金属液精确复 熔模铸造的铸件缺陷分析与防止 内容提要 § 1 铸件尺寸超差 1)模料及制模工艺对铸件尺寸的影响 2)制壳材料及工艺对铸件尺寸的影响 3)浇注条件对铸件尺寸的影响 § 2 铸件表面粗糙 1)影响熔模表面粗糙度的因素 2)影响型壳表面粗糙度的因素 3)影响金属液精确复型的因素 4)其它影响表面粗糙度的因素 § 3 铸件表面缺陷 1)粘砂 2)夹砂、鼠尾和凹陷 3)斑纹 4)麻点 5)金属刺(毛刺) 6)金属珠(铁豆) § 4 孔洞类缺陷 1)气孔(集中气孔) 2)弥散型气孔 3)缩孔、缩松 4)缩陷

§ 5 裂纹和变形 1)热裂、冷裂 2)铸件脆动和变形 § 6 其它缺陷 1)砂眼 2)渣孔 3)冷隔、浇不到 4)跑火 熔模铸件缺陷的主要因素有: 易熔模质量、型壳质量和金属液质量等 § 1、铸件质量超差 1、模料及制模工艺对铸件尺寸的影响 熔模尺寸偏差主要由于制模工艺不稳定而造成的,如合型力大小、压蜡温度(压蜡温度越高,熔模线收缩率越大)、压注压力(压注压力越大,熔模线收缩率越小)、保压时间(保压时间越长其收缩越小)、压型温度(压型温度越高,线收缩也越大)、开型时间、冷却方式、室温等因素波动而造成熔模尺寸偏差。 2、制壳材料及工艺对铸件尺寸的影响 型壳热膨胀影响着铸件尺寸。而型壳热膨胀又和制壳材料及工艺有关。 3、浇注条件对铸件尺寸的影响 浇注时型壳温度、金属液浇注温度、铸件在型壳中的位置等均会影响铸件尺寸 为防止铸件尺寸超差,应对影响铸件尺寸精度的众多因素都加以重视,严格控制原材料质量及工艺,以稳定铸件尺寸。 § 2、铸件表面粗糙 1、影响熔模表面粗糙度的因素: 熔模表面粗糙度与所有压型表面粗糙度、压制方式(糊状模料压制或液态模料压制)和压制工艺参数选择有关。 糊状模料压制液态模料压制

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

消失模铸件塌箱缺陷产生的原因分析

消失模铸件塌箱缺陷产生的原因分析 消失模铸造中,塌箱缺陷是一类较为常见的消失模铸件缺陷,该缺陷往往发生在大件(大平台件更突出)或者是内腔封闭、半封闭件的生产中,从整个消失模铸造流程角度来看,该缺陷一般多发生在浇注或者凝固环节。 塌箱缺陷有时也被称为塌型缺陷或者铸型溃散,随着消失模铸造工艺应用的日趋成熟,有关塌箱缺陷的产生原因和防治办法已经有了相对详尽的研究结果,研究结果证实,塌箱缺陷的产生原因并非单方面的,下面就塌箱缺陷的产生原因做出以下总结: a. 在浇注过程中,消失模模样分解产生的气体量太多且急,铸型排气速度赶不上,加上真空泵吸气不足,容易导致铸型溃散、坍塌; b. 金属液“闪流”是造成塌型缺陷产生的原因之一,所谓金属液“闪流”就是在浇注中,部分已经流入填充消失模模样位置的金属液在受到外界作用的情况下改流到其他部位,使得原来置换出来的位置无金属液或者金属充填占据。该类问题多发生在顶注、铸件存在大平面、一型多模样这几种情况; c. 如果金属液的浮力过大,会使铸型上部型砂容易变形,可能导致局部溃散;一般情况下,铸型顶部吃砂量小,负压度不够,可能造成铸件成型不良,甚至不能成型; d. 涂料的耐火度、高温强度不够,极容易产生消失模铸件塌箱缺陷。消失模模样在浇注过程中有缓冲金属液充型和降温的作用,同时可减弱金属液冲刷铸型。当金属液置换消失模模样而充型腔后,干砂主要就依靠涂料涂层支撑,当涂层强度不够或者耐火度不够时,局部铸型会发生溃散、坍塌,特别是大件内浇道上方极容易发生坍塌。 以上为消失模铸件塌箱缺陷产生的各种原因,生产中企业可以参考上述原因并结合自身相关操作分析出消失模铸件塌箱缺陷产生的真正原因,并及时做出调整工作。

铝铸件常见缺陷及分析

. 铝铸件常见缺陷及分析 -------------------------------------------------------------------------------- 氧化夹渣一 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色 光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现或黄色,经x 产生原因:.炉料不清洁,回炉料使用量过多1 浇注系统设计不良2. 3.合金液中的熔渣未清除干净4.浇注操作不当,带入夹渣5.精炼变质处理后静置时间不够防止方法:1.炉料应经过吹砂,回炉料的使用量适当降低2.改进浇注系统设计,提高其挡渣能力3.采用适当的熔剂去渣4.浇注时应当平稳并应注意挡渣.精炼后浇注前合金液应静置一定时间5 气泡二气孔一般是发亮的氧化皮,具有光滑的表面,缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,光透视或机械加X有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过光底片上呈黑色气泡在X工发现气孔产生原因:.浇注合金不平稳,卷入气体1) 马粪等如煤屑、草根芯)砂中混入有机杂质(.型2( 3.铸型和砂芯通气不良4.冷铁表面有缩孔5.浇注系统设计不良:防止方法1.正确掌握浇注速度,避免卷入气体。砂中不得混入有机杂质以减少造型材料的发气量(芯)2.型砂的排气能力芯)3.改善( 4.正确选用及处理冷铁5.改进浇注系统设计缩松三缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具 光底x在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在有大平面的薄壁处。断口等检查方法发现片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍产生原因:1.冒口补缩作用差2.炉料含气量太多. . .内浇道附近过热3 .砂型水分过多,砂芯未烘干4 5.合金晶粒粗大6.铸件在铸型中的位置不当7.浇注温度过高,浇注速度太快 防止方法: 1.从冒口补浇金属液,改进冒口设计 2.炉料应清洁无腐蚀 3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用 4.控制型砂水分,和砂芯干燥 5.采取细化品粒的措施 6.改进铸件在铸型中的位置降低浇注温度和浇注速度 四裂纹 缺陷特征: 1.铸造裂纹。沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现 2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。常在产生应力和热膨张系数较大的合金冷却过剧。或存在其他冶金缺陷时产生 产生原因:1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊 2.砂型(芯)退让性不良 3.铸型局部过热

相关主题
文本预览
相关文档 最新文档