当前位置:文档之家› 各种各样的人造卫星

各种各样的人造卫星

各种各样的人造卫星
各种各样的人造卫星

各种各样的人造卫星

人造地球卫星有它独具的优越条件。它本身无需动力就可以在大气外层空间长时间运行,能在几百公里到几万公里高度的大范围内活动,飞越地球上的绝大部分地区,甚至全球飞行,执行航天任务。这是大气层内任何飞行器都无法比拟的。自从第一颗人造地球卫星问世后,世界各国都把

发展航天事业放在重要地位。迄今,有20多个国家先后共发射了4000多颗人造地球卫星。

各种应用卫星不仅成了人类的政治活动、生产劳动、科学研究、文化娱乐所不可缺少的设备,而且现在它已进入到能大量创造财富的实用阶段。如美国制造一颗气象卫星成本只有几千万美元,而每年可收益10~20亿美元;用2.5亿美元设置3颗资源卫星,每年可收益14亿美元。还有各种军事卫星,在军事活动中也取得非常明显的效果。

一、通信卫星

现在,人们从电视屏幕上看到世界各地生动的场景和激动人心的体育比赛场面,已习以为常。确实,这是通信卫星的功劳才让观众大饱眼福,给千家万户带来了欢乐。

现代无线电通信有长波、中波、短波、超短波、微波等几种波段。其中超短波(波长10~1米)和微波(波长1米以下)传输的信息量大,稳定可靠,适合于远距离通信,但是只能在“视距”范围内直线传播。发射站OH架设的天线越高,传播的范围越远,但超过OA的距离处就无法收到,需要一个转播站O′H′来转播。如果把转播站放到卫星上去,则传播距离就大得多。通信卫星上装有天线、转发器等无线电传输设备。地面发射站发出的微波信号,通过通信卫星接收、放大后,再远距离发回地面。

但是卫星不停地绕地面运行,只有地面上看到卫星时才能接收信号,因此,对某一地点来说就不能随时都能通信。这就要求通信卫星相对于地球是静止的,才能稳定通信。如果把卫星发射到离地面35800公里高度,那么它绕地球运行一周,正好等于地球的一天,与地球自转的速度同步,卫星相对于地球就是静止的。这个轨道就是同步轨道。一颗通信卫星在这个高度上可以覆盖地球表面积的三分之一。因此,在赤道上空等距安排三颗同步通信卫星,就可以实现全球通信,成一组国际通信卫星,当然还需要配备专门的地面接收和发射站。下图即为我国的WD-6六米卫星通信地面站。

同时,通信卫星要对地面站接收和发射信号,就要控制卫星的姿态,

使无线始终对着地球。最新的V号国际通信卫星有12000条电话线路,

两套彩色电视通道,重1吨,寿命7年。国际通信卫星是全世界(除两极外)交流信息的重要工具。

发射同步通信卫星比发射一般卫星要复杂得多,艰难得多。首先要把卫星发射到180~250公里高度的圆形轨道上。然后,待卫星运行到赤道上空时,卫星上的第三级火箭再次点火,使卫星进入远地点35800公里的大椭圆形转移轨道上。在这个高度上,再给卫星的远地点火箭点火,把卫星推移到离地35800公里的赤道上空的同步轨道上。

在太空点火的这一圈轨道称为“点火圈”。在发射通信卫星时,对远地点氢氧火箭点火是关系到通信卫星能否成功进入同步轨道的关键,地面工作人员都非常重视。万一点不着火,卫星只能留在转移轨道上运行,直至坠落。如果点火时间错过或控制姿态不对,这颗卫星就漫无目标飞向茫茫太空,去如黄鹤。

1984年4月8日,我国首次用“长征三号”火箭把第一颗试验同步通信卫星射入太空,远地点点火一次成功,把通信卫星准确送到同步轨道上。从此,我国也拥有自己研制和发射的同步卫星了,到1993年止,我国已发射了6颗。

随着这些卫星的发射和应用,我国的通信、电视、广播事业进入了新的发展阶段。通过通信卫星,开通了数字传真、图像传递、广播电视转播业务,改变了边远地区收视难、通信难的状况。我国通信卫星传送中央人

民广播电台30路对外广播、传播中央电视台多套节目、两套教育节目和西藏电视台节目,并用时分制方式分别传递云南、贵州、新疆等电视台的节目。目前,我国还在各主要城市修建中型卫星通信地面站,使7000多条卫星国际电话线路开通,实现了各种信息的快速传递。

二、太空望远镜

以往天文观测是用可见光和无线电技术,是通过观测天体和星际物质所发射或投射的可见光和无线电波来进行研究的。现在,除传统的光学天

文学和射电天文学外,又兴起了空间天文学,使古老的天文学又焕发了青春。

人类在宇宙空间建立天文观测站,把天文台搬上天空,可以避开地球稠密大气层对天体光谱的吸收和大气湍流对天体观测的影响。美国发射的“哈勃”太空望远镜就是一颗天文卫星,也是一座小型的空间天文台。它是以近代美国天文学家埃德温·哈勃的名字命名的。

“哈勃”太空望远镜能观察到比现在地面天文台所能观察到的暗50倍的天体,视距也从50亿光年扩大到了140亿光年,充分发挥了空间观测的优势。

光学望远镜是天文卫星的心脏,它主要包括有主反射镜、副反射镜、仪器设备等。光从舱门射入到主反射镜上,再反射到副反射镜上。而后,光又从副反射镜反射到主反射镜中心的小孔中,并在孔后成像。观测到的图像由科学仪器记录下来、传送出去。

“哈勃”天文卫星耗资21亿美元,由航天飞机直接运上太空轨道,

在地面站遥控下独立工作。同步通信卫星对它的往返信息承担着中转传输的任务,把它观测的数据源源传送给地面站,并将地面站对它的跟踪和遥控信息转送上去。

哈勃太空望远镜为天文学界增添了一个新天文观测工具,可以更好观测天体,揭示出宇宙中的一些重大秘密。据称,美国又于1997年在它的上面增添新的设备,研究宇宙的红外辐射;1999年将对它进行一次维修,然后推进到更高的轨道上,将为人类进一步揭示宇宙的奥秘做出新的贡献。

三、测地卫星

这种人造卫星最初称为“地球资源技术卫星”,后来改称为“测地卫星”。卫星上装有高分辨率照像机、红外探测仪、测地雷达等各种遥感、遥测设备,可以进行地质勘探、农业调查、环境污染监视、森林火警、测

绘沙漠戈壁高山河川地质图等工作,其中有些项目是在大气层内难以完成

的。卫星上用红外遥感能觉察到地面上一根火柴的热量,能分辨出30厘米的物体。

曾从测地卫星拍摄发回的照片中,发现了地图上历来没有标明的湖泊,而找到苏丹油田;从磁场变异中找到巴西的锡矿和澳大利亚的铀矿。从卫星的照片上,还可以发现地下断层的结构,使铁路选线得以优化、避开滑坡和断层,这是人工测绘难以做到的。美国曾用测地卫星引导破冰沿

海湾破冰,勘察破冰的深度。美国的测地卫星于1978年估算了苏联的小麦产量,比后来苏联官方提出的小麦产量仅少1%,测算的精度之高,确实令人惊叹!

测地卫星多选用太阳同步轨道。这种卫星的轨道平面绕地球自转,跟地球公转方向相同,速度的大小基本一致,即它的轨道平面与太阳到地心连线的夹角β保持不变,卫星都能得到阳光的照射,有利于对地观测和拍摄地形照片。

1972年美国发射的“陆地卫星-1”,就是在太阳同步轨道运行的,在赤道上的光照角设计为37.5°。如果地球不绕太阳公转的话,则光照角是不会改变的。但是,地球带着这卫星绕太阳公转,光照角每天要增加0.9856°(360°/365.25天)。这样,地球从秋分位置运行到立冬位置时,太阳的光照角β就会变为82.5°,到了冬至时就变为127.5°。如果卫星的轨道平面向东转动,每天也转过0.9856°,那么,地球公转引起

光照角的变化也就消除了,保持了光照角不变,而达到了与太阳同步的要求了。

1985、1986年,我国分别发射了两颗国土普查卫星,拍摄3000多幅国土卫星照片(简称卫片)每幅卫片的覆盖面积为2000平方公里。通过这些卫片,发现了塔里木盆地新的油田构造,在内蒙古找到铁矿和铬矿;查明了京、津、塘地区近10种资源;查清了黄河、滦河、海河三大富含泥沙河流的活动规律及其相互作用的关系。

1988年我国和巴西开始合作研制“资源1号”地球资源探测卫星,将采用太阳同步轨道运行。这颗卫星现在已进入全面研制阶段,它拟用“长征”4号乙运载火箭从山西太原卫星发射中心发射。这颗卫星可用于监测国土资源的变化、每年更新全国的利用图、测量全国耕地面积、农作物估产、监测自然灾害和人为的灾害等,这必将为我国的资源普查、勘察等提供现代化的新手段。

四、太空气象站

在陆地上大量建立气象站,费用大,况且海洋覆盖了约70%的地球表面,完全不可能建站,因此只能在小范围内观测天气,传统的天气预报往往不准,有时会造成巨大的经济损失。要是把气象站搬到太空上去,情况就大不一样。

气象卫星装有各种气象测量仪器和信息传输系统,可以把测出的大气参数和太阳辐射等数据传输到地面上来。电视摄像机能拍下方圆1000公里以上范围云层的照片,随时可以掌握瞬息万变的天气情况,把信息送往世界各地。美国发射的云雨气象卫星能始终对着地球,稳定在轨道上运行。卫星上装有自动传输系统,面对卫星的任何地方、任何人都可以用比较简便的设备接收半径为1610公里的当地云层覆盖图。气象卫星的预警使得数千公顷的庄稼免遭灾害和成千上万人免受飓风的袭击。美国利用气象卫星准确预报天气,每年可减少自然灾害带来的损失达20亿美元。气象卫星是现阶段最先进的气象观测手段。

1988年9月7日,我国在太原卫星发射基地发射了在太阳同步轨道上运行的“风云1号”气象卫星,拍摄的云图照片,纹理清晰,层次丰富,标志着我国气象卫星事业的现代化进入了新的发展阶段。1990年我国发

射第二颗气象卫星,性能有了进一步改善,拍摄云图的质量与美国当代气象卫星的水平相当。现在,中国空间技术研究院在加紧研制具有国际先进水平的减灾卫星,拟于2000年发射,利用卫星遥感器来日夜监视地球。下图为我国第一颗静止轨道气象卫星──风云二号卫星。它每半小时可获取一幅可见光、红外线和水汽光谱特性的云图,覆盖地球约三分之一的面积。它覆盖了我国全部领土和领海,极大地提高和加强了我国短期天气预报的水平。

五、空间导航

飞机和船只装上雷达,可根据多普勒效应测出在已知轨道上运行的导航卫星的相对距离和方位,再通过计算机换算后就可确定自己在大地坐标上的位置。那么多普勒效应是怎么一回事呢?你要是站在铁路旁看到火车疾速驶来,会听到汽笛的声调(频率)突然升高,而离去时,汽笛的声调突然降低。就是说,当波源和观察者有相对运动时,观察者接收到的频率和波源发出的频率不同。当两者相接近时接收到的频率升高,当相对离开时频率则降低。这种现象是奥地利物理学家多普勒首先发现的,就称多普勒效应。

前苏联发射第一颗人造卫星时,美国约翰·霍普金斯大学的两位年轻教师就用多普勒仪对卫星进行跟踪试验,算出和预报了卫星的运行轨道。因此导航卫星起着“全天候”导向的作用,云层对它也无能为力,它非常适用于对天上的、陆上的、水上的、水下的航行工具的导航,是太空的“指南针”。

由于导航卫星是在轨道上运行的,飞机或船只不可能在任何时刻都能用雷达测到导航卫星,为此,美国研制的卫星导航系统采用均布在轨道平面上的24颗卫星组成的3个卫星网来进行导航。这样,在地球上的任何地方至少能同时看到6颗导航卫星,飞机、船只等就可随时随地用它来导航了。它的导航定位距离误差在6~9米之内,测出的速度误差小于0.6米/秒,定位所需的时间不超过1分钟。卫星导航,这种先进的导航手段,必将在海、陆、空各种运输工具和军事武器中越来越普遍得到应用。

六、空间平台

随着航天技术的发展,人造卫星逐渐暴露出许多难以解决的问题,已不能满足人类的进一步需要。

人造卫星的有效载荷小,功能单一、成本高,一旦发射上天,就很难再加注燃料,修换部件,因此寿命只有几年。各国单一用途的卫星相继发

射上天,造成空间轨道的拥挤,限制了它的功能和应用范围。为此,70年代中期,空间平台的设想便应运而生了。

空间平台可采用大型构件积木式组装建成。可以设有多种对接口,供航天飞机、轨道间飞行器等“停泊”,可加注燃料、更换、修理构件和设备,使之永久性留在空间工作。由于平台的有效载荷大,可同时搭载通信、气象、天文等多种学科所需的大型设备。空间平台与空间站相比,由于不载人,只要人给予短期照料就可以了,因此风险小,投资少,技术可行,没有污染,不受干扰。发射一个空间平台,耗资仅相当于发射数颗人造卫星,但它能灵活地执行各种复杂的马拉松式的太空任务。空间平台具有多学科关联工作或各种有效载荷同步工作的优点,不但大幅度降低了成本,也缓解了轨道拥挤状况。因此许多国家都竟相研究开发。这种由人造卫星发展起来的组合式大型“超级卫星”,将是21世纪应用卫星发展的必然趋势。

80年代开始,许多国家都投入空间平台的研究,提出的方案也不少,有共轨平台、极轨平台、静止平台、地球观测极轨平台、科学与应用平台等等。有些空间平台,人们考虑在空间组装,然后用机动火箭由转移轨道推向地球同步轨道或太阳同步轨道。空间平台可以与空间站共轨运行,共同用一种资源舱,可以得到在空间站附近运行的小型轨道间载人飞行器的定期支援。平台的起码要求是关键设备要容易装拆、宇航员进出平台要方便,各分系统都应是单元体结构,以便于维护和扩充功能。

欧洲空间局提出一种“卫星簇式”的专用通信平台方案就很有特色。它是将9颗小型卫星置于同一轨道上,作“编队运行”,形成星座。各卫星之间用激光或微波线路连接,形成无机械连接的大型空间平台。

预计,到21世纪空间平台将逐步取代各类应用卫星,在太空大放异彩。

七、太空反卫星武器

人们已经把雷达站、气象站、导航台、监视台、天文台搬上了太空,发展成各种专用卫星。或许你会想到,会不会把战争舞台也搬上太空呢?看来有可能。有些应用卫星装的像“平民百姓”,其实是不穿军装的“军人”。一旦发生战争,它们就会摇身一变,披甲上阵,为军事效力,成为军事卫星了。

你看!通信卫星不就可以成为迅速、大容量向首脑机关和武器系统传递数据和指挥信息的桥梁么!测地卫星上的红外遥感探测器不也可以探测地下掩体,或感受洲际弹道导弹、巡航导弹发射时的红外辐射,探测出它的方位,及时预警么!气象卫星不也可以及时、准确发播战区的气象么!导航卫星为海、陆、空武器导航不更是反应快速、得心应手么!说不定将来外层空间发生战争,天文卫星还会派上用场哩!

将来要是发生战争,人们想到,外层空间的卫星“手无寸铁”,又是军队的“耳目”,理所当然会首当其冲地被作为摧毁的目标。未来的战争

很可能就从外层空间的反卫星战开始,于是空间武器和防御办法也相应发展起来了。

对付敌方军事卫星的办法可从大气层内发射或由空间轨道上的卫星直接发射反卫星武器,对它进行干扰、打击和破坏。目前,进攻和防御用的空间武器发展有反卫星武器、卫星轰炸武器、动能武器和定向能武器。

将来太空战,敌对双方军事卫星之间、航天飞机与空间站之间将出现格斗的局面。现在,美国可以从航天飞机上投放和发射反卫星武器,摧毁敌方的卫星,或用航天飞机去攫取敌方的卫星。

八、动能武器

1985年9月13日,美国用一种三级小型的反卫星导弹,装在F-15战斗机腹部发射架上,首次发射便击毁美国已报废的一颗低轨道试验卫星。

当F-15战斗机爬升到10~15公里高空时,根据地面站的指令,驾驶员按下发射按钮,导弹射出。它的1、2级固体火箭相继点火,由惯性制导系统控制飞行,燃料烧完后抛掉外壳。当导弹飞入大气外层空间时,弹头上的红外探测器自动搜索、跟踪目标。接近目标时,弹头上的第三级固体火箭点火,加速冲上,将报废的实验卫星撞毁。

这种反卫星导弹靠弹头和卫星之间极高的相对速度(高达每秒10公里以上),也就是相对动能极大,就能有效地拦截、击毁卫星。这种拦截导弹就是一种动能武器。道理很简单,飞机在高速飞行中,如果有一只小鸟飞来,迎面相撞,就会把飞机打坏,鸟飞的速度虽然不快,但是相对速度很大,动能就很大。动能武器的弹头不装炸药,靠直接撞击来催毁目标,因此需要极高的命中精度。

动能武器除了用火箭推进外,还有一种是用电磁力推动的电磁炮。电磁炮用电磁力来加速弹头,本身的速度就可达到10公里/秒,比炮弹快数倍,比导弹的飞行速度也快得多。

80年代初,苏联曾经试验改变卫星的倾角,在几百公里的高度上飞行,绕地球1~2圈后,卫星就以6000公里/小时的相对速度接近目标卫星,在距离目标1公里处发射空间武器摧毁敌方卫星。

为预防受到空间武器的袭击,军事卫星上也采取了防御措施,加强了卫星的壳体,加装了报警装置。当发现敌方卫星来袭时,它就启动火箭,远离来袭卫星的轨道。

有一种装有核弹头的卫星,平时环绕在地球轨道上运行,如果地面站发给遥控指令,它就立即点火启动火箭,脱离轨道,再入大气层,居高临下攻击目标。这种卫星就称“卫星轰炸武器”,其实是一种“自杀攻击”的卫星,可简称“自杀卫星”。这种自杀卫星的反应速度快、攻击力强,很难对付它。可惜它的代价太高,只用于攻击敌方的战略目标。

九、定向能武器

它是靠定向发射激光、粒子束和微波能束等能量来伤毁目标的武器。目前最有效的、最可能实现的是激光武器,它是靠强大的激光束击毁或烧毁来袭的导弹。

激光武器反弹道导弹的过程是:当地球同步预警卫星的红外探测器探测到敌方洲际弹道导弹发射时,就立即发出警报,指令地面上的激光武器向太空辐射出一束束高能激光,由同步卫星上的大型反射镜将激光束折射到飞行中的弹道导弹或敌方的低轨道卫星上,将其摧毁,

另外一种办法是由航天飞机或飞船运载,将大型激光器送入太空,成为“激光卫星”武器,直接将激光束对准敌方的卫星或洲际导弹,予以击毁,真像我国神话小说中神仙的魔镜、照妖镜之类的武器,神奇极了。

如果敌方同时发射上百成千的导弹,那么就需好几百面反射镜在太空飞转,众多的“激光卫星”在天上运行,这种规模庞大、壮观的阵容,恐怕还不是目前所能办到的。

十、粒子束武器

它是利用大型加速器将粒子源产生的电子、质子和离子加速到近光速,并用磁场聚成密集的束流射出,来击毁目标。微波能束武器是用强微波能束来杀伤目标的射频武器。

其实,外层空间的军事化不是什么新问题,从50年代第一批导弹研制成功起,就开始了军事化的进程。

随着航天技术的发展,军队对卫星的依赖性将逐渐增大。未来战争的胜负在很大程度上将受外层空间优势的影响。有的国家在加紧研制反卫星武器,抢先打掉敌方的卫星,以一开始就取得战争的主动权。

人造地球卫星问题大盘点

人造地球卫星问题大盘点 由于人造卫星、宇宙飞船、航天飞机的问世,使人们不断地探索宇宙,为开发宇宙新能源而努力,是当今世界先进的科学领域,近几年针对人造卫星问题考查的频率较高,卫星问题与现代科技结合密切,出应用型试题,结合实际,正是今后高考的命题趋势。现就卫星问题盘点如下,供同学们学习参考。 一、卫星的原理 当地球与物体之间的万有引力恰好提供物体围绕地球做匀速圆周运动的向心力时,物体就会围绕地球永远运动下去,就成了地球的人造卫星。 二、卫星轨道 卫星运动时,地球对其万有引力提供向心力,所以卫星的轨道平面必过地球球心。其可能轨道分别如图1、2、3所示.但卫星不可能位于某一纬度平面上,如图4所示,原因是卫星仅受一个万有引力作用,这个万有引力将分解成垂直地轴的向心力和指向赤道面的分力,由牛顿第二定律可知,卫星将会在该方向上加速而脱离纬度平面。由于地球的自转,图2所示卫星轨道平面不可能总和某一经线圈所在平面重合。 三、人造卫星的线速度、角速度、周期与轨道半径的关系 1)运动速度:由得,即半径越大,线速度越小。 角速度:由得,即半径越大,角速度越小。 周期:由得,即半径越大,周期越长。 向心加速度:得,即半径越大,向心加速度越小。也为该处的重力加速度。 2)求中心天体的质量或密度(设中心天体的半径) 若已知卫星绕中心天体做匀速圆周运动的周期与半径 若已知卫星绕中心天体做匀速圆周运动的线速度与半径 若已知卫星绕中心天体做匀速圆周运动的线速度与周期 若已知中心天体表面的重力加速度及中心天体的球半径

例1一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量() A.飞船的轨道半径 B.飞船的运行速度 C.飞船的运行周期D.行星的质量 例2“神舟六号”飞行到第5圈时,在地面指挥控制中心的控制下,由近地点250km圆形轨道1经椭圆轨道2转变到远地点350km的圆轨道3。设轨道2与1相切于Q点,与轨道3相切于P点,如图3所示,则飞船分别在1、2、轨道上运行时() A.飞船在轨道3上的速率大于在轨道1上的速率 B.飞船在轨道3上的角速度小于在轨道1上的角速度 C.飞船在轨道1上经过Q点时的加速度大于在轨道2上经过Q点的加速度 D.飞船在轨道2上经过P点时的加速度等于在轨道3上经过P点的加速度 例3在地球上(看做质量均匀分布的球体)上空有许多同步卫星,下面说法中正确的是()A.它们的质量可能不同 B.它们的速度可能不同 C.它们的角速度可能不同 D.它们离地心的距离可能不同 四、同步地球卫星(通讯卫星) (1)所谓的同步地球卫星就是相对地球静止的和地球具有相同周期的卫星,T=24小时。 (2)同步地球卫星必位于赤道的上方,相对地面的高度为定值,与地球的自转方向相同。 五、宇宙速度 (1)由知,当卫星绕地球近表上空运行时,半径最小,运行速度最大,称为第一宇宙速度,其大小为。若卫星的发射速度小于第一宇宙速度,则卫星所受万有引 力大于卫星所需向心力而使卫星落回地球。因此,发射卫星的最小速度不能小于第一 宇宙速度,所以说第一宇宙速度是卫星发射的最小速度,是卫星运行的最大环绕速度。 这里的规律同样适用于其它星体。 (2)卫星能挣脱地球引力的速度,称为第二宇宙速度(脱离速度),其大小为 。 (3)卫星能挣脱太阳引力的速度,称为第三宇宙速度(逃逸速度),其大小为。 六、卫星的发射、回收和对接 (1)卫星的发射速度要求大于或等于,小于。 卫星的高度越高,要求发射的速度就要越大,在上升过程机械能守恒,动能转化成势能,速度逐渐减小,到达该轨道的速度都要比低轨道的速度小,同一卫星所在处的轨道越高,机械能越大。 (2)发射同步卫星一般采用变轨发射的方法

我国人造卫星的种类、发射时间、用途和意义

我国人造卫星的种类 环绕地球飞行并在空间轨道运行一圈以上的无人航天器。简称人造地球卫星。人造卫星是发射数量最多,用途最广,发展最快的航天器。1957年10月4日苏联发射了世界上第一颗人造卫星。之后,美国、法国、日本也相继发射了人造卫星。中国于1970年4月24日发射了东方红1号人造卫星,到1992年底中国共发射33颗不同类型的人造卫星。 在人类发射的数千颗人造卫星中,90%以上是直接为国民经济和军事服务的卫星,称为应用卫星。此外,还有科学卫星和技术试验卫星。应用卫星按其用途可分为空间物理探测卫星、通信卫星、天文卫星、气象卫星、地球资源卫星、侦察卫星、导航卫星、测地卫星等。 人造卫星一般由专用系统和保障系统组成。专用系统是指与卫星所执行的任务直接有关的系统,也称为有效载荷。应用卫星的专用系统按卫星的各种用途包括:通信转发器,遥感器,导航设备等。科学卫星的专用系统则是各种空间物理探测、天文探测等仪器。技术试验卫星的专用系统则是各种新原理、新技术、新方案、新仪器设备和新材料的试验设备。保障系统是指保障卫星和专用系统在空间正常工作的系统,也称为服务系统。主要有结构系统、电源系统、热控制系统、姿态控制和轨道控制系统、无线电测控系统等。对于返回卫星,则还有返回着陆系统。 人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈,不受领土、领空和地理条件限制,视野广阔。能迅速与地面进行信息交换、包括地面信息的转发,也可获取地球的大量遥感信息,一张地球资源卫星图片所遥感的面积可达几万平方千米。 在卫星轨道高度达到35800千米,并沿地球赤道上空与地球自转同一方向飞行时,卫星绕地球旋转周期与地球自转周期完全相同,相对位置保持不变。此卫星在地球上看来是静止地挂在高空,称为地球静止轨道卫星,简称静止卫星,这种卫星可实现卫星与地面站之间的不间断的信息交换,并大大简化地面

人造卫星设计

沈阳航空航天大学课程设计任务书CAD课程设计说明书人造地球卫星设计 院系航空航天工程学部(院) 专业空间飞行器设计与工程 班号24030601 学号2012040306013 姓名李桦 指导教师杨靖宇 沈阳航空航天大学 2015年9月

沈阳航空航天大学课程设计任务书 承诺书 本人声明所呈交的课程设计说明书是本人在导师指导下进行 的设计工作及取得的研究成果。除了文中特别加以标注和致谢的地 方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包 含为获得沈阳航空航天大学或其他教育机构的学位或证书而使用 过的材料。 本人授权沈阳航空航天大学可以将论文的全部或部分内容进 行存档,可以采用影印、缩印或扫描等复制手段保存、汇编论文。 (保密的论文在解密后适用本承诺书) 作者签名: 日期: 2015.9.18

摘要 课程设计目的在于培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。本文对人造卫星进行了相关的设计、绘制和装配。这次课程设计持续三周,用CATIA进行绘制并进行合理的调整。 关键词:CATIA.人造卫星设计.装配

ABSTRACT The purpose of curriculum design is to cultivate students comprehensive use of knowledge , discovery, analyzing and solving practical problems. My Course Exercise is about artificial satellite, which include designing, drawing and assemblage. This Course Exercise lasted three weeks, using CATIA software to draw artificial satellite and make reasonable adjustments. In these three weeks, I spend most of my time on studying, I learned a lot from this Course Exercise, which increase my spoken English, ability of designing and innovation. Keywords: CATIA artificial satellite assemble

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨 问题专题 集团文件版本号:(M928-T898-M248-WU2669-I2896-

人造卫星变轨问题专题 (一) 人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。 轨道半径r 确定后,与之对应的卫星线速度 r GM v = 、周期 GM r T 3 2π =、向心加速度2r GM a =也都是唯一确定的。如果卫星的质 量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。一旦卫星发生了变轨,即轨道半径 r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情 况决定)。同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。 (二) 常涉及的人造卫星的两种变轨问题 1. 渐变 由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。 1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄 大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。这种变轨的起因是阻力。阻力对卫星做负功,使卫星速 度减小,卫星所需要的向心力r mv 2减小了,而万有引力2 r GMm 的 大小没有变,因此卫星将做向心运动,即轨道半径r 将减小。 由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。 为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。

人造卫星专题练习有答案

人造卫星专题练习 1.有a、b、c、d四颗地球卫星,a还未发射,在地球赤道上随地球表面一起转动,b处于地面附近的近地轨道上正常运动,c是地球同步卫星,d是高空探测卫星,各卫星排列位置如图所示,则有( ) A.a的向心加速度等于重力加速度g B.b在相同时间内转过的弧长最长 C.c在4小时内转过的圆心角是π/6 D.d的运动周期有可能是20小时 2.据报道,我国自主研制的“嫦娥二号”卫星在奔月的旅途中,先后完成了一系列高难度的技术动作,在其环月飞行的高度距离月球表面100 km时开始全面工作。国际上还没有分辨率优于10米的全月球立体图像,而“嫦娥二号”立体相机具有的这种高精度拍摄能力,有助于人们对月球表面了解得更清楚,所探测到的有关月球的数据比环月飞行高度约为200 km的“嫦娥一号”更加翔实。若两颗卫星环月运行均可视为匀速圆周运动,运行轨道如图所示,则( ) A.“嫦娥二号”环月运行的周期比“嫦娥一号”更长 B.“嫦娥二号”环月运行的速度比“嫦娥一号”更大 C.“嫦娥二号”环月运行时向心加速度比“嫦娥一号”更大 D.“嫦娥二号”环月运行时角速度比“嫦娥一号”更小 3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周 运动,动能减小为原来的1 4 ,不考虑卫星质量的变化,则变轨前后卫星的( ) A.向心加速度大小之比为4∶1 B.角速度大小之比为2∶1 C.周期之比为1∶8 D.轨道半径之比为1∶2 4 . 2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家。如图2所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动,则此飞行器的( ) A.线速度大于地球的线速度 B.向心加速度大于地球的向心加速度C.向心力仅由太阳的引力提供 D.向心力仅由地球的引力提供 5.如图所示,飞船从轨道1变轨至轨道2。若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )

六年级科学下册 人造地球卫星教案

人造地球xx 教学设计思想: 学习人造地球卫星方面的知识,就是要让学生初步了解航天技术的杰出成就,通过查阅资料和图片,使学生了解更多地球卫星方面的知识,激发学生研究探索地球卫星运动规律和原理的兴趣。模拟实验进一步培养学生推理思维能力,体会地球的引力导致卫星围绕地球做圆周运动的原理。 教学目标: 一、科学探究目标 1.能设法调查出各国人造地球卫星的资料。 2.能按照一定标准对人造地球卫星进行分类。 3.能有根据地对所研究的问题提出自己的假设。 4.能设计模拟实验证实自己的假设。 二、情感态度与价值观目标 能主动与同学交流各种人造地球卫星的用途。 三、科学知识目标 能用自己的话解释人造地球卫星的飞行原理。 四、科学、技术、社会、环境目标 能主动与其他同学交流人造地球卫星的发展对促进社会、经济进步的作用。 教学重点和难点: 重点是指导学生查阅资料,获得卫星用途方面的知识。 难点是用模拟实验来研究xx的运动规律。

教学方法: 教师讲授与学生活动相结合的互动教学法。 教学过程: 一.教学导入: 师:今天我们先来欣赏一些特别振奋人心的图片,边欣赏边思考你有什么体会?(杨利伟在太空中的相关图片) 1师:看完图片,你能不能用一句话说一说你的体会? 生:很激动。 生:很让人羡慕啊。 生:杨利伟可真棒啊!我也想乘坐人造地球卫星遨游太空。 师:杨利伟乘坐“神州五号”飞船成功的绕地球进行了飞行,那“神州五号”是什么卫星你知道吗? 生:人造地球xx。 师:这节课我们就来共同揭开人造地球卫星的神秘面纱。 (板书:人造地球xx) 二.探究过程 (1)资料交流 师:课前同学们搜集了大量关于人造地球卫星的资料和图片,下面我们以小组为单位交流一下你搜集到的内容,交流后选择1、2个你认为最精彩的资料到前面来汇报,组内其他同学作为补充,看看哪个组汇报的最完善! 生:组内进行交流。

高考冲刺专题系列15:人造卫星专题

高考冲刺专题系列15:人造卫星专题 一、同步卫星 1、同步卫星A 的运行速率为1υ,向心加速度为1a ,运转周期为T 1;放置在地球赤道上的物体B 随地球自转的线速度为2υ,向心加速度为2a ,运转周期为T 2;在赤道平面上空做匀速圆周运动的近地卫星C 的速率为3υ,向心加速度为3a ,动转周期为T 3。比较上述各量的大小可得:〔AD 〕 A .T 1=T 2>T 3 B .3υ>2υ>1υ C .1a <2a =3a D .3a >1a >2a 2、气象卫星是用来拍照云层照片,观测气象资料和测量气象数据的。我国先后自行成功研制和发射了"风云一号"和"风云二号"两颗气象卫星,"风云一号"卫星轨道与赤道平面垂直,通过两极,每12小时巡视一周,称为"极地圆轨道","风云二号"气象卫星轨道平面在赤道平面内,称为"地球同步轨道",那么:〔BD 〕 A.〝风云一号〞比"风云二号"的发射速度大 B.〝风云一号〞比"风云二号"的线速度大 C.〝风云一号〞比"风云二号"的运动周期大 D .〝风云一号〞比"风云二号" 的向心加速度大 3、1984年4月8日,我国第一颗地球静止轨道试验通信卫星发射成功,16日,卫星成功地定点于东经125度赤道上空。2003年10月15日9时整,〝神舟〞五号载人飞船进入预定轨道,将中国第一名航天员送上太空,飞船绕地球14圈,即飞行21小时后,于16日6时23分在内蒙古阿木古郎草原安全着陆,由以上材料可知:(AB) A .〝通信卫星〞运行周期较〝神舟〞五号的大 B .〝通信卫星〞运行轨道半径较〝神舟〞五号的大 C .〝通信卫星〞运行的线速度较〝神舟〞五号的大 D .〝神舟〞五号通过赤道上空时,也能够实现定点,与地球自转同步 4、万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g 。某同学依照以上条件,提出一种估算地球质量M 的方法: 同步卫星绕地球作圆周运动,由h T m h Mm G 2 22??? ??=π得2324GT h M π= ⑴请判定上面的结果是否正确,并讲明理由。如不正确,请给出正确的解法和结果。 ⑵请依照条件再提出两种估算地球质量的方法并解得结果。 (1)上面结果是错误的,地球的半径R 在运算过程中不能忽略。 正确的解法和结果是:222()()()Mm G m R h R h T π=++ ①

人造卫星问题专题

人造卫星问题专题 一. 教学容: 人造卫星问题专题 二. 学习目标: 1、掌握人造卫星的力学及运动特点。 2、掌握地球同步卫星的特点及相关的题目类型。 3、强化对于人造卫星问题中典型题型的相关解法。 考点地位: 人造卫星问题是万有引力定律应用部分的难点问题,是近几年高考命题的热点,这部分容综合性很强,从高考出题形式上分析,突出了对于卫星的发射、运转、回收等多方面的考查,人造卫星问题中涉及到的同步卫星的定位,人造卫星问题中的超重失重问题,人造卫星与地理知识与现代科技知识的综合问题,都是近几年高考考查的热点问题,2007年全国各地的高考题目中,2007年单科卷第16题是以大型计算题目形式出现的,2007年天津理综卷的第17题理综卷的第17题均以绕月探测工程为物理背景以选择题形式出现。 三. 重难点解析: 1. 人造地球卫星的发射速度 对于人造地球卫星,由,得,这一速度是人造地球卫星在轨道上的运行速度,其大小随轨道半径的增大而减小,但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,所以将卫星发射到距地球越远的轨道,在地面上所需的发射速度就越大。 2. 人造卫星的运行速度、角速度、周期与半径的关系 根据万有引力提供向心力,则有 (1)由,得,即人造卫星的运行速度与轨道半径的平方根成反比,所以半径越大(即卫星离地面越高),线速度越小。 (2)由,得,即,故半径越大,角速度越小。 (3)由,得,即,所以半径越大,周期越长,发射人造地球卫星的最小周期约为85分钟。 3. 人造卫星的发射速度和运行速度(环绕速度) (1)发射速度是指被发射物在地面附近离开发射装置时的速度,并且一旦发射后就再也没有补充能量,被发射物仅依靠自身的初动能克服地球引力做功上升一定高度,进入运动轨道(注意:发射速度不是应用多级运载火箭发射时,被发射物离开地面发射装置的初速度)。

(完整版)人造卫星选择专题练习有答案

e p q 人造卫星选择题专题练习 1.如图,地球赤道上山丘e ,近地资源卫星p 和同步通信卫星q 均在 赤道平面上绕地球做匀速圆周运动。设e 、p 、q 的圆周运动速率分别 为v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则 A .v 1>v 2>v 3 B .v 1a 2>a 3 D .a 1

地球同步卫星原理及用途

地球同步卫星即地球同步轨道卫星,又称对地静止卫星,是运行在地球同步轨道上的人造卫星,星距离地球的高度约为36000 km,卫星的运行方向与地 球自转方向相同、运行轨道为位于地球赤道平面上圆形轨道、运行周期与地球自转一周的时间相等,即23时56分4 秒,卫星在轨道上的绕行速度约为3.1公里/秒,其运行角速度等于地球自转的角速度。在地球同步轨道上布设3颗通讯卫星,即可实现除两极外的全球通讯。 同步卫星分类 地球同步卫星分为同步轨道静止卫星、倾斜轨道同步卫星和极地轨道同步卫星。 原理及用途 当同步轨道卫星轨道面的倾角为零度,即卫星在地球赤道上空运行时, 由于运行方向与地球自转方向相同,运行周期又与地球同步,因此,人们从地球上仰望卫星,仿佛悬挂在太空静止不动,所以,把零倾角的同步轨道称作静止轨道,在静止轨道上运行的卫星称作静止卫星。 静止卫星上的天线所辐射的电波,对地球的覆盖区域基本是稳定的, 在这个覆盖区内,任何地球站之间可以实现23.56小时不间断通信。因此,同步轨道静止卫星主要用于陆地固定通信,如电话通信、电视节目的转播 等,但也用于海上移动通信,不过,它不象陆上蜂窝移动通信那样有那么 多的基站,只有卫星是一座大的基站,移动业务交换中心依然设在岸上(称为岸站),海上移动终端之间(即船舶与船舶之间)的通信,需经卫星两

跳后才能实现,例如,如果甲船需同乙船联系,那么,甲船将信号发至卫星,经卫星一跳到达岸站上的移动业务交换中心,然后,岸站又将信号发至卫星,再经卫星一跳到达乙船。 倾斜轨道和极地轨道同步卫星从地球上看是移动的,但却每天可以经过特定的地区,因此,通常用于科研、气象或军事情报的搜集,以及两极地区和高纬度地区的通信。 地球同步卫星常用于通讯、气象、广播电视、导弹预警、数据中继等方面,以实现对同一地区的连续工作。在遥感应用中,除了气象卫星外,一个突出的应用就是通过地球同步轨道上的4颗跟踪和数据中继卫星系统 高速率地传送中低轨道地球观测卫星或航天飞机所获取的地球资源与环境遥感数据。世界上第一颗地球同步卫星是1964年8月19日美国发射的“辛康” (syncom)3号。中国于1984年4月8日、1986年2月1日和1988 年3月7日分别发射3颗用于通信广播的地球同步卫星。 同步卫星的数据特点 ①周期、角速度一定,与地球自转周期(T=23时56分4秒)、角速度 相同; ②轨道平面在赤道平面上; ③距离地心的距离一定:h=4.225 X 10A4km 距离地面的高度为 3.6 X 10A4km ④环绕速度一定:v=3.08km/s,环绕方向与地球自转方向相同; ⑤向心加速度大小一定:a=0.23m/(sA2

各种各样的人造卫星

各种各样的人造卫星 人造地球卫星有它独具的优越条件。它本身无需动力就可以在大气外层空间长时间运行,能在几百公里到几万公里高度的大范围内活动,飞越地球上的绝大部分地区,甚至全球飞行,执行航天任务。这是大气层内任何飞行器都无法比拟的。自从第一颗人造地球卫星问世后,世界各国都把 发展航天事业放在重要地位。迄今,有20多个国家先后共发射了4000多颗人造地球卫星。 各种应用卫星不仅成了人类的政治活动、生产劳动、科学研究、文化娱乐所不可缺少的设备,而且现在它已进入到能大量创造财富的实用阶段。如美国制造一颗气象卫星成本只有几千万美元,而每年可收益10~20亿美元;用2.5亿美元设置3颗资源卫星,每年可收益14亿美元。还有各种军事卫星,在军事活动中也取得非常明显的效果。 一、通信卫星 现在,人们从电视屏幕上看到世界各地生动的场景和激动人心的体育比赛场面,已习以为常。确实,这是通信卫星的功劳才让观众大饱眼福,给千家万户带来了欢乐。 现代无线电通信有长波、中波、短波、超短波、微波等几种波段。其中超短波(波长10~1米)和微波(波长1米以下)传输的信息量大,稳定可靠,适合于远距离通信,但是只能在“视距”范围内直线传播。发射站OH架设的天线越高,传播的范围越远,但超过OA的距离处就无法收到,需要一个转播站O′H′来转播。如果把转播站放到卫星上去,则传播距离就大得多。通信卫星上装有天线、转发器等无线电传输设备。地面发射站发出的微波信号,通过通信卫星接收、放大后,再远距离发回地面。

但是卫星不停地绕地面运行,只有地面上看到卫星时才能接收信号,因此,对某一地点来说就不能随时都能通信。这就要求通信卫星相对于地球是静止的,才能稳定通信。如果把卫星发射到离地面35800公里高度,那么它绕地球运行一周,正好等于地球的一天,与地球自转的速度同步,卫星相对于地球就是静止的。这个轨道就是同步轨道。一颗通信卫星在这个高度上可以覆盖地球表面积的三分之一。因此,在赤道上空等距安排三颗同步通信卫星,就可以实现全球通信,成一组国际通信卫星,当然还需要配备专门的地面接收和发射站。下图即为我国的WD-6六米卫星通信地面站。 同时,通信卫星要对地面站接收和发射信号,就要控制卫星的姿态, 使无线始终对着地球。最新的V号国际通信卫星有12000条电话线路,

人造地球卫星运行问题的几个原则

人造地球卫星运行问题的几个原则 人造地球卫星的运行问题的分析和求解,需综合运用万有引力定律、牛顿第二定律等力学规律及方法,分析与求解人造地球卫星运行类问题遵从以下几个原则。 1.轨道球心同面原则 轨道球心同面原则,是说人造地球卫星的运行轨道平面必通过地球球心。设想有一人造地球卫星的运行轨道不通过地心,而仅垂直于地轴,如图1所示。则卫星将在地球对其的万有引力F的分量F2作用下绕地轴做圆周运动;同时在F的分量F1的作用下在地球赤道平面上下振动。这样,这个卫星的运行轨道将成为螺旋线,而不是圆形轨道了,这样的轨道显然是不存在的。 各种人造地球卫星的运行轨道,不论是圆还是椭圆,其轨道平面一定通过地球球心,不存在轨道平面不通过地球球心的运行轨道。但轨道平面不一定都要与赤道平面重合,目前常见的有与赤道平面重合的赤道轨道,若轨道上运行的卫星的周期与地球自转周期相同,卫星相对地面静止,这种卫星主要用于通讯;有轨道平面与赤道平面垂直且经过两极的极地轨道,卫星在绕地球圆周运行的同时还沿地球自转方向从西向东转动,其周期等于地球公转周期,所以这种轨道也称太阳同步轨道;还有轨道平面既不与赤道平面重合也不垂直的轨道的倾斜轨道。 2.轨道决定一切原则 设地球质量为M、半径为R,一质量为m的人造地球卫星在距地面h高度的轨道上做圆周运动,向心加速度为A、线速度为v、角速度为ω、周期为T。由牛顿第二定律和万有引力定律有: 或,而、。解以上几式得: ,,,。 由此结果可以看出,影响卫星运动情况的与卫星有关的参数中仅仅是卫星的轨道半径。 3.速度影响轨道原则 在某确定轨道(半径一定)上圆周运动的卫星,由于某种原因的影响,若速度为生了变化,由基本关系式可以得出:。由此知,轨道半径随卫星运行速度的增大而减小,

卫星的大小分类

神舟太空集团信息,重量在1000Kg以下的人造卫星统称为“微小型卫星”,进一步可细分为:“小卫星”(smallsat),重100~1000Kg;“微卫星” (microsat),重10~100Kg;“纳卫星” (nanosat),重1~10Kg;“皮卫星” (picosat),重0.1~1Kg;“飞卫星” (femtosat),重0.1Kg以下。英文词中的micro (微)、nano (纳)、pico (皮)和femto (飞)等,是国际单位制中用以表示十进制倍数的词头,其数值分别为10-6、10-9、10-12和10-15,这里只是借用来对微小型卫星按重量进行分类,并不具有其数值的实际含义。 微小型卫星体积小、重量轻、研制周期短、成本低、发射方式灵活,在军事上有较大的应用潜力,20世纪80年代中期以来受到越来越多国家的重视。美国已发射重量在几百千克以下的多种小卫星和重量不足10千克的试验型纳卫星和皮卫星;英国、瑞典也在2000年发射了纳卫星;法国、印度、阿根廷、智利、巴西、韩国、泰国、巴基斯坦等国已经有了自己的小卫星。此外,印度尼西亚、马来西亚、菲律宾等国及中国台湾地区正在与航天大国合作研制小卫星或微卫星。 微小型卫星目前主要用于通信、对地遥感、行星际探测、科学研究和技术试验,它的发展依然是受需求牵引和技术推动的制约。更广泛的应用需要在关键技术上有革命性的突破与创新。这些新技术主要包括电推进技术、多功能结构、微机电系统、一体化设计、先进的存储器与计算机软件技术以及轨道控制技术等。随着这些技术不断被攻克,微小型卫星必将成为一大类航天器,并作为大型航天器的补充,在军事、国民经济各部门得到广泛应用。 根据太空垃圾尺寸的大小,国际上把太空垃圾分为3类:尺寸>10厘米的为大碎片,现在大概有2万多块,可被监测到;尺寸介于1~10厘米之间的为小碎片,现在大概有11万块;尺寸介于1毫米~1厘米之间的为微小碎片,现在大概有37万块。而尺寸不大于1毫米的碎片现在大概有几千万块。 多年来,科学家一直担心卫星有可能会撞上这些太空垃圾。一次撞击就有可能产生数千个垃圾,这些碎片存在摧毁其他卫星的潜在风险。轨道里大约有2.2万个尺寸足以让地面上的人进行追踪的物体,以及无数更小的垃圾,它们会对载人飞船和非常重要的人造卫星造成严重破坏。电视信号、天气预报、全球定位导航和国际电话连接均是存在撞击风险的一些服务项目。最近美国宇航局在一份报告中称,围绕在地球周围的太空垃圾的数量已经达到一个“临界点”。

人造卫星的分类及主要用途

人造卫星的分类及主要用途 自从牛顿发现万有引力定律,并设想在高山上水平抛出物体,当速度大到一定程度时,物体就不会落回地面,成为一颗人造卫星,300多年过去后,他的这一理论得到了证实,在地球上方发射了各种各样的人造卫星。 一、人造卫星的分类。 1、按用途分:科学探测和研究的科学卫星,包括空间物理探测卫星和天文卫星等;试验卫星,包括进行航天新技术试验或者是为应用类卫星进行试验的卫星;应用卫星,包括通信卫星、气象卫星、地球资源卫星、侦察卫星、导航卫星等, 2、按轨道的高低分:低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道、大椭圆轨道和极地轨道7大类。 3、按运行轨道划分: 顺行轨道:顺行轨道的特点是轨道倾角即轨道平面与地球赤道平面的夹角小于90度。卫星地面较近,高度仅为数百公里,故又将其称为近地轨道。我国用长征一、二号、风暴一号两种运载火箭发射的8颗科学技术试验卫星, 17颗返回式遥感卫星,神州号试验飞船,都是用顺行轨道。 逆行轨道:逆行轨道的特征是轨道倾角大于90度。欲把卫星送入这种轨道运行,运载火箭需要朝西南方向发射。不仅无法利用地球自转的部分速度,而且还要付出额外能量克服地球自转。因此,除了太阳同步轨道外,一般都不利用这类轨道。 赤道轨道:赤道轨道的特点是轨道倾角为0度,卫星在赤道上空运行。这种轨道有无数条,但其中的一条地球静止同步轨道具有特殊的重要地位。世界上主要的通信卫星都分布在这条轨道上。我国用长征三号火箭先后发射了1颗试验卫星、5颗东方红二号系列通信卫星、2颗风云二号气象卫星、用长征三号甲火箭发射了1颗实践四号探测卫星、2两颗东方红三号通信卫星、1颗中星22号通信卫星都在这一轨道上。 极地轨道:就卫星轨道类型来说,还有一种轨道倾角为90度的极地轨道。它是因轨道平面通过地球南北两极而得名。在这种轨道上运行的卫星可以飞经地球上任何地区上空。我国长征二号丙改进型火箭以1箭双星的方式6次从太原起飞,把12颗美国铱星送入太空,就属于这种发射方式。

人造地球卫星知识点解析

人造地球卫星知识点解析 一、难点形成原因: 卫星问题是高中物理内容中的牛顿运动定律、运动学基本规律、能量守恒定律、万有引力定律甚至还有电磁学规律的综合应用。其之所以成为高中物理教学难点之一,不外乎有以下几个方面的原因。 1、不能正确建立卫星的物理模型而导致认知负迁移 由于高中学生认知心理的局限性以及由牛顿运动定律研究地面物体运动到由天体运动规律研究卫星问题的跨度,使其对卫星、飞船、空间站、航天飞机等天体物体绕地球运转以及对地球表面物体随地球自转的运动学特点、受力情形的动力学特点分辩不清,无法建立卫星或天体的匀速圆周运动的物理学模型(包括过程模型和状态模型),解题时自然不自然界的受制于旧有的运动学思路方法,导致认知的负迁移,出现分析与判断的失误。 2、不能正确区分卫星种类导致理解混淆 人造卫星按运行轨道可分为低轨道卫星、中高轨道卫星、地球同步轨道卫星、地球静止卫星、太阳同步轨道卫星、大椭圆轨道卫星和极轨道卫星;按科学用途可分为气象卫星、通讯卫星、侦察卫星、科学卫星、应用卫星和技术试验卫星。。。。。。由于不同称谓的卫星对应不同的规律与状态,而学生对这些分类名称与所学教材中的卫星知识又不能吻合对应,因而导致理解与应用上的错误。 3、不能正确理解物理意义导致概念错误 卫星问题中有诸多的名词与概念,如,卫星、双星、行星、恒星、黑洞;月球、地球、土星、火星、太阳;卫星的轨道半径、卫星的自身半径;卫星的公转周期、卫星的自转周期;卫星的向心加速度、卫星所在轨道的重力加速度、地球表面上的重力加速度;卫星的追赶、对接、变轨、喷气、同步、发射、环绕等问题。。。。。。因为不清楚卫星问题涉及到的诸多概念的含义,时常导致读题、审题、求解过程中概念错乱的错误。 4、不能正确分析受力导致规律应用错乱 由于高一时期所学物体受力分析的知识欠缺不全和疏于深化理解,牛顿运动定律、圆周运动规律、曲线运动知识的不熟悉甚至于淡忘,以至于不能将这些知识迁移并应用于卫星运行原理的分析,无法建立正确的分析思路,导致公式、规律的胡乱套用,其解题错误也就在所难免。 5、不能全面把握卫星问题的知识体系,以致于无法正确区分类近知识点的不同。如,开普勒行星运动规律与万有引力定律的不同;赤道物体随地球自转的向心加速度与同步卫星环绕地球运行的向心加速度的不同;月球绕地球运动的向心加速度与月球轨道上的重力加速度的不同;卫星绕地球运动的向心加速度与切向加速度的不同;卫星的运行速度与发射速度的不同;由万有引力、重力、向心力构成的三个等量关系式的不同;天体的自身半径与卫星的轨道半径的不同;两个天体之间的距离L与某一天体的运行轨道半径r的不同。。。。。。只有明确的把握这些类近而相关的知识点的异同时才能正确的分析求解卫星问题。 二、难点突破策略: (一)明确卫星的概念与适用的规律: 1、卫星的概念: 由人类制作并发射到太空中、能环绕地球在空间轨道上运行(至少一圈)、用于科研应用的无人或载人航天器,简称人造卫星。高中物理的学习过程中要将其抽象为一个能环绕地球做圆周运动的物体。

高考物理专题复习:人造卫星变轨问题专题

高考物理专题复习: 人造卫星变轨问题专题 随着我国航天事业的蓬勃发展,高考对天体运动及宇宙航行的考查也逐渐成热点,然而在复习中许多同学对于万有引力在天体运动中的运动仍有许多困惑,其中有不少同学对于人造卫星的变轨问题模糊不清,在此针对上述问题,将个人在卫星变轨问题上的处理与同行共享,希望能够对二轮复习有所帮助,不妥之处,还望指正。 一、人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =也都是确定的。如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。同理,只要上述物理量之一发生变化,另外几个也必将随之变化。 二、在高中物理中,会涉及到人造卫星的两种变轨问题。 1、渐变 由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。 解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。 如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。 由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r m v 2 减小了,而万有引力大小2r GMm 没有变,因此卫星将做向心运动,即半径r 将减

天体运动与人造卫星知识点

天体运动与人造卫星知 识点 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

天体运动与人造卫星 要点一宇宙速度的理解与计算 1.第一宇宙速度的推导 方法一:由G=m得 v1==m/s =7.9×103m/s。 方法二:由mg=m得 v1==m/s=7.9×103m/s。 第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min=2π=5075s≈85min。 2.宇宙速度与运动轨迹的关系 (1)v发=7.9km/s时,卫星绕地球做匀速圆周运动。 (2)7.9km/s<v发<11.2km/s,卫星绕地球运动的轨迹为椭圆。 (3)11.2km/s≤v发<16.7km/s,卫星绕太阳做椭圆运动。 (4)v发≥16.7km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。 要点二卫星运行参量的分析与比较 1.四个分析 “四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半径的关系。 = 2.四个比较 (1)同步卫星的周期、轨道平面、高度、线速度、角速度绕行方向均是固定不变的,常用于无线电通信,故又称通信卫星。 (2)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。 (3)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9km/s。 (4)赤道上的物体随地球自转而做匀速圆周运动,由万有引力和地面支持力的合力充

当向心力(或者说由万有引力的分力充当向心力),它的运动规律不同于卫星,但它的周期、角速度与同步卫星相等。 要点三卫星变轨问题分析 1.变轨原理及过程 人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图4-5-2所示。 图4-5-2 (1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。 (2)在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ。 (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。 2.三个运行物理量的大小比较 (1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点速率分别为v A、v B。在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。 (2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。 (3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律=k可知T1<T2<T3。 [方法规律] 卫星变轨的实质(1)当卫星的速度突然增加时,G<m,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=可知其运行速度比原轨道时减小。 (2)当卫星的速度突然减小时,G>m,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=可知其运行速度比原轨道时增大。卫星的发射和回收就是利用这一原理。 要点四宇宙多星模型 1.宇宙双星模型 (1)两颗行星做匀速圆周运动所需的向心力是由它们之间的万有引力提供的,故两行星做匀速圆周运动的向心力大小相等。 (2)两颗行星均绕它们连线上的一点做匀速圆周运动,因此它们的运行周期和角速度

人造地球卫星教案

课题: 人造地球卫星 课型: 一对二同步复习(基础) 科目: 物理 备课时间: 2012.7.2 讲师: 邝飞云 课程适合学生: 人教版高一学生 教学目标 1.熟练掌握人造卫星各个物理量的变化规律 2.掌握三个宇宙速度及其意义 3.掌握同步卫星的特点 教学内容 人造地球卫星、同步卫星、宇宙速度、人造卫星的超重和失重 重点 人造卫星物理量的变化规律、同步卫星的特征 难点 灵活运用已知天体的物理量计算未知天体的物理量、灵活运用万有引力和向心 力计天体物理量 知识导入: 一、人造地球卫星。 这里特指绕地球做匀速圆周运动的人造卫星,实际上大多数卫星轨道是椭圆,而中学阶段对做椭圆运动的卫星一般不作定量分析。 1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。 2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有 3、人造卫星运动的物理量:线速度、角速度、周期等: ①向心加速度向a 与r 的平方成反比。 向a =2r GM 当r 取其最小值时,向a 取得最大值。 a 向max =2R GM =g=9.8m/s 2 ②线速度v 与r 的平方根成反比 v =r GM ∴当h↑,v↓ 当r 取其最小值地球半径R 时,v 取得最大值。 v max = R GM =Rg =7.9km/s ③角速度ω与r 的三分之三次方成反比 ω=3 r GM ∴当h↑,ω↓ 当r 取其最小值地球半径R 时,ω取得最大值。ω max =3R GM =R g ≈1.23×10-3rad/s r T m r m r m ma r GmM 2222) 2(πωυ====

相关主题
文本预览
相关文档 最新文档